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Restrained warping is important for the torsion deformation and axial stresses of thin-wall open

sections. However, this phenomenon is not included in commonly used frame analysis programs.

This paper presents a simple method to include the effect of restrained warping of member ends

in a frame analysis. In this method, prior to the frame analysis the structural designer increases the

section torsion stiffness by a factor. After the analysis the structural designer obtains the extreme

bi-moments and axial stresses from the computed torsion moment. The method is demonstrated in

three examples. The importance of restrained warping is shown.

Key words: Torsion, frame analysis, restrained warping, design method

1 Introduction

When a beam is loaded in torsion the cross-sections deform in the axial direction. In other

words plane cross-sections do not remain plane (Fig. 1). This phenomenon is called warping.

Three dimensional frame analysis programs usually apply the torsion theory of De Saint

Venant. This theory assumes free warping of the member sections. In reality many joints are

such that they prevent the member ends from warping freely. This increases the member

torsional stiffness and introduces axial stresses especially in the member ends. For solid and

thin-wall closed sections these effects can be often neglected. However, for thin-wall open

sections restrained warping is often important.

The torsion theory of Vlasov includes the effect of restrained warping [Vlasov 1959, 1961,

Zbirohowski-Koscia 1967]. Compared to the traditional beam theory, the Vlasov theory

introduces two extra quantities; the warping constant Cw and the bi-moment B. The warping

constant is a cross-section property and a measure for the effort needed to reduce warping. The

unit of the warping constant is [length6]. The bi-moment is a measure for the stresses needed to

reduce warping. The unit of the bi-moment is [force length2]. For an I-section the bi-moment is

the moment in the flanges times their distance (Fig. 2). For other cross-section shapes the

interpretation is much more difficult.

The Vlasov torsion theory can be implemented in frame analysis programs [Meijers 1998]. The

adaptations include one extra degree of freedom (the warping) and an extra force (the bi-

moment) for every member end. In the Appendix the stiffness matrix is included for

implementation of the Vlasov theory in a frame analysis program. If implemented the
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structural designer would be able to specify for every member end whether warping is, free,

fixed or connected. If free warping would be selected for all member ends the frame analysis

would be exactly the same as a traditional De Saint Venant analysis. If fixed warping or

connected warping would be selected the member would be stiffer and a bi-moment

distribution needs to be displayed. Such a frame program would also allow distributed torsion

moment loading, which often occurs in practice. However, none of the commonly used frame

analysis programs include the Vlasov torsion theory. The reason might be that Vlasov torsion

theory is not well known as yet and that engineers are not educated in the effects of restrained

warping. To the authors opinion the Vlasov torsion theory should be standard functionally in

three dimensional frame analysis programs.

Figure 1: Free warping (a) and restrained Figure 2: Interpretation of the bi-moment in

warping (b) of an I-section loaded in torsion an I-section

Nonetheless, the effects of restrained warping can already be taken into account in a traditional

frame analysis. To this end, a simple method is presented in Chapter 5. The method includes

prevented warping at one or both member ends. The method is not valid for connected

warping, for example in continuous beams or at a change of cross-section (non-prismatic

members). The method also does not allow distributed torsion moment loading. For connected

warping and distributed torsion loading the structural designer needs to use a frame program

that includes Vlasov torsion theory. In Chapter 2 the Vlasov torsion theory is summarised. In

Chapter 3 the analysis method is derived. In Chapter 6 the method is demonstrated for three

structures.

It is noted that the torsion theory of De Saint Venant is also referred to as uniform torsion or

circulatory torsion. The torsion theory of Vlasov is also referred to as non-uniform torsion or

warping torsion.
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2 Vlasov Torsion Theory

In 1940, V.Z. Vlasov developed a torsion theory in which restrained warping is included

[Vlasov 1959]. The rotation j of the beam cross-section follows from the differential equation

, (1)

where, GJ is the torsion stiffness, ECw is the warping stiffness and mx is a distributed torsion

moment along the beam. The torsion stiffness and warping stiffness are cross-section properties

that can be computed with specialised software [ShapeDesigner,  ShapeBuilder]. Tables exist for

often occurring cross-sections [Timoshenko 1961, Young 1989]. 

The torsion moment is

. (2)

The bi-moment is

.
(3)

The beam-ends can have either an imposed rotation ϕ=ϕ0 or an imposed torsion moment

Mt=Mt0 . At the same time they have either an imposed warping . or an imposed bi-

moment B=B0. The Vlasov theory reduces to the theory of De Saint Venant if the warping

stiffness is zero, the distributed moment is zero and warping is free.

3 Derivation of the Analysis Method

Suppose that warping is prevented at both sides of a beam. Than the boundary conditions are

. (4)

The solution of differential equation (1) is

.

where (5)
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. (6)

Using , and the element stiffness matrix

is derived. In which, the indices 1, 2 refer to the left and right of the beam, respectively.

. (7)

The bi-moments at both beam-ends can be expressed in terms of the torsion moment

. (8)

We assume that mx=0. In the previous stiffness matrices we observe that the torsion stiffness GJ

is increased by the factor

. (9)

For β > 5 this can be approximated with 1% accuracy by

. (10)

For β > 6 the expression for the bi-moment can be approximated with 1% accuracy by

. (11)

Suppose that warping is prevented at one side of a beam (x = 0). Than the boundary conditions

are

(12)

The solution of the differential equation is too large to include in this paper. The element

stiffness matrix is

ϕ ϕ ϕ

ϕ ϕ ϕ

x
x

x l
x l

d
dx

d

dx

=
=

=
=

= =

= =

0 1
0

2

2

2

0

0

, ,

, .

 

 

B B
l

Mt1 2= = −
β

β
β − 2

β

β β

β

β
( )

( )

1

2 2

+

+ + −

e

e

B M
l

m
l e e

e

B

t x1
1
2

2

2

2

2

2

2 1

1
= − + + −

−

= −

β
β

β

β β β

β
tanh( )

MM
l

m
l e e

e
t xβ

β
β

β β β

β
tanh( )1

2

2

2

2

2
2 1

1
− + −

−

M

M
e

e

GJ
l

GJ
l

GJ
l

G
1

2

1

2 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= +

+ + −

−

−

β

β β

β

β
( )

( ) JJ
l

m
l

l
x

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
−

−

⎡

⎣

⎢ϕ
ϕ

1

2

1
2
1
2

⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

B B
x l2 = −

=
M M B B M Mt x x t x l1 0 1 0 2= = =

= = =
- , ,

β = l
GJ

ECw

58



The bi-moments at both beam-ends are (13)

(14)

We assume that mx=0 . In the previous stiffness matrices we observe that the torsion stiffness is

increased by the factor

. (15)

For β > 3 this can be approximated with 1% accuracy by

. (16)

For β > 3 the expression for the bi-moment can be approximated with 1% accuracy by

. (17)

Table 1: β numbers for several cross-sections
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4 Number ββ

The number β is defined as (6)

,

which is a member property that determines to what extent torsion according to De Saint

Venant can develop when warping is restrained. Table 1 gives an overview of β numbers. For

most beams β is larger than 6. The approximations in the previous section are accurate for β > 6.

In this case the deviations from the exact values are smaller than 1%. For short thin-wall open

sections β can be smaller than 6. As an example, we consider an I-section with a length of 4000

mm. The height is 300 mm, the width is 150 mm and the wall thickness is 10 mm. Poisson’s

ratio is ν = 0.35. Using Table 1 we find β = 3. For this case the exact formulae needs to be used

instead of the approximations. Note that for small values of β a large increase in member

torsional stiffness is obtained.

It can be shown that the member torsional stiffness cannot be larger than GIp/l, where GIp is the

polar moment of inertia. In theory the derived member torsional stiffness can become larger

than this maximum for very short members. However, this has no practical consequences

because the difference between a very stiff member and an extremely stiff member gives no

difference in structural force flow.

5 Restrained Warping Method

1) For including the effect of restrained warping we need to know the torsion constant J and the

warping constant Cw of the member cross-section. Many frame programs include section

libraries with commonly used sections and their properties. If the torsion properties are not

available a program for cross-section analysis can be used to compute their values

[ShapeDesigner, ShapeBuilder].

2) Subsequently the β number is calculated (6)

,

where l is the member length, G is the shear modulus and E is Young's modulus. G is defined as

, (18)

where ν is Poisson’s ratio. If β is larger than 6 the subsequent formulas are valid. If β is smaller

than 6 these formulas might not be valid and more elaborate formulas might be needed, which

G
E=

+2 1( )ν

β = l
GJ

ECw

β = l
GJ

ECw
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are derived in Section 3.

3) Before the frame analysis the torsion stiffness is entered or changed in the frame program. If

warping is prevented at one member-end the torsion stiffness J needs to be multiplied by (16)

.

If warping is prevented at two member-ends the torsion stiffness J needs to be multiplied by (10)

.

4) After the frame analysis the largest bi-moment is calculated with (11), (17)

at one beam end (x = 0) if it is restrained there,

at the other beam end (x = l ) if it is restrained there.

5) Finally, the resulting stress state in the cross-section can be computed by a program for cross-

section analysis [ShapeDesigner, ShapeBuilder]. This program can also take into account the

stresses due to other section moments, shear forces and the normal force.

6 Applications

6.1 Cantilever

A beam is fixed at one end at which rotation and warping are prevented (Fig. 3). At the other

end the beam is loaded by a torque T = 2.26 kNm while warping can occur freely. The material

and cross-section data of the beam are E = 207000 N/mm2, G = 79300 N/mm2, J = 269800 mm4

and Cw = 1503 107 mm6. This example is also analysed in [Chen 1977].

Figure 3:  Thin-wall cantilever loaded in torsion
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The torsion stiffness included in the frame analysis is

.

The computed rotation at the member end is 0.213 rad and the computed torsion moment is 

Mt = 226 104 Nmm. The rotation is 18% smaller than the same beam with unrestrained warping.

Subsequently, the bi-moment is

.

Using the torsion moment and bi-moment a program for cross-section analysis [ShapeDesigner]

calculates the shear stress distribution and the normal stress distribution. The largest shear

stress is 109 N/mm2, which occurs at the loaded end along the circumference of the cross-

section. The extreme normal stress is -458 N/mm2, which occurs at the clamped end in the left

of the top flange.

The computed axial stress value is 10% larger (in absolute sense) than those found in [Chen

1977]. The analysis in [Chen 1977] is based on exactly the same Vlasov torsion theory but the

cross-section analysis is performed analytically using the thin-wall assumption while the cross-

section program used in this paper is suitable for both thin- and thick-wall analysis. Therefore,

the differences are caused by differences in the cross-section analysis – which is not the subject

of this paper. A noticeable detail is that the warping constant computed by the program is 27%

smaller than found in the thin-wall analysis. Nonetheless, the stresses differ much less.

6.2 Box-Girder

A box-girder bridge has a length l = 60 m. The cross-section dimensions and properties are

shown in Figure 4.1 The concrete Young’s modulus is E = 0.30 1011 N/m2 and Poisson’s ratio ν =

0.15. At both ends the bridge is supported while warping is free (Fig. 5). In the middle the

bridge is loaded by a torque T = 269 105 Nm. This loading occurs when the bridge is supported

at mid span by two temporary columns of which one fails due to an accident. Therefore, the

torque T is due to the support reaction of the remaining temporary column. 

B
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Figure 4:  Bridge cross-section

Figure 5:  Structural model of the bridge including fork supports and torsion loading

Due to symmetry the warping in the middle section is prevented. The structural model consists

of two beam elements. The β number is

.

Both elements have warping restrained at one side. Therefore, the torsion constant for the frame

analysis is

.

The frame program computes a rotation of 129 10–5 rad in the middle of the bridge. This is 14%

smaller than the unrestrained behaviour. The program computes the torsion moment Mt = -1345

104 Nm for the left beam and  = 1345 104 Nm for the right-hand beam. Therefore, the largest bi-

moment in the right-hand end of the left beam is

.

The largest bi-moment in the left end of the right-hand beam is
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Using the torsion moment and bi-moment a program for cross-section analysis calculates the

shear stress distribution and the normal stress distribution. The largest shear stress is -1.74

N/mm2, which occurs everywhere in the bottom flange left of the symmetry plane. The largest

normal stress is 7.28 N/mm2, which occurs in the symmetry plane in the left side of the bottom

flange (Fig. 6). It shows that also for closed thin-wall sections the stresses due to restrained

warping can be important. In the bridge also stresses due to the flexural moment, shear and

prestressing occur but these have not been considered in this example.

Figure 6:  Distribution of the normal stresses due to restrained warping in the middle cross-section

6.3 Traffic sign

The structure of a traffic signpost consists of two inclined columns and a horizontal beam (Fig.

7). All members are steel sections IPE400. The top joint and the foundation joints are such that

warping cannot occur. At the free end of the horizontal beam warping can occur.

Figure 7:  Structural model of a traffic sign

The length of the inclined columns is 10.05 m. Young’s modulus is E = 2.1 105 N/mm2 and

Poisson’s ratio is ν = 0.35. All values are assumed to be design values, therefore, safety factors

are already included. The β numbers of the columns and the beam are, respectively
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The torsion constants for the frame analysis are respectively

The frame program computes a rotation of the free beam end of 0.107 rad in the direction of the

moment loading. This is 51% smaller than computed with free warping of all member ends.

The horizontal displacement of the free beam end is 107 mm, which is 1% smaller than with

free warping. The torsion moment in the beam is 3.00 kNm. The torsion moment in the

columns is 0.15 kNm. Consequently, the bi-moments are

in the fixed beam end,

in the column ends.

With a cross-section analysis program the normal stress is computed due to the bi-moments.

The largest normal stress due to B = -4.62 kNm2 is σxx = 164 N/mm2. It occurs at the fixed end

of the horizontal beam in the top and bottom flanges.

It is noted that for I-beams a formula can be derived for restrained warping stresses [Young

1989].

(19)

where h is the height of the cross-section, b is he width of the cross-section and t is the thickness

of the flanges. The thickness of the web is not relevant.

7 Remarks

Though large stresses can occur due to restrained warping, this does not necessarily mean that

traditional frame analysis is unsafe for the ultimate limit state. The reason is that traditional

frame analysis provides a force flow that is everywhere in perfect equilibrium. The lower

bound theorem of plasticity theory states that any equilibrium system that does not violate the

ultimate stress conditions provides a safe solution for the limit load of the structure. In other

words, the material will yield and the peak restrained warping stresses will not occur.

Therefore, traditional frame analysis is safe provided that the materials used are sufficiently

ductile to allow redistributions.

The advantages of using Vlasov torsion theory is mainly related to the serviceability limit state.
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It can be used to show that the deformations will be smaller than found with the traditional

theory. It can also be used for crack control in structural concrete box-girders.

8 Conclusions

A simple method is presented to include the effect of restrained warping of member-ends in

traditional frame analyses. The method consists of just 5 steps and the formulas can be easily

memorised.

Restrained warping can substantially reduce the structural deformation. It can also introduce

large axial stresses in the restrained sections.

Restrained warping is not only important for thin-wall open sections. Also in thin-wall closed

sections the normal stresses due to the restrained sometimes can be considerable.

Despite the large stresses that can occur when warping is restrained, a traditional frame

analysis is a safe method of computing the ultimate load provided that the materials applied

are sufficiently ductile.
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Appendix

Stiffness matrix for the Vlasov Torsion Theory

This matrix can be used for implementation of restrained warping in structural analysis

software.

For large values of β the stiffness matrix can be approximated as
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If β to zero from above the stiffness matrix reduces to
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