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ABSTRACT
Biostatistics is now an integral part of medical research. Knowledge of statistics is also 
becoming mandatory to understand most medical literature. The word data denotes the 
values of variables. It is important to understand the types of data and their mutual 
interconversion. The raw data for statistical analyses come from experiments or observations 
and can be numerical or categorical. Numerical variables may be continuous or discrete. 
Categorical data are described in terms of frequencies, proportions, or percentages. The 
applications of statistics in medical sciences can be categorized as descriptive statistics, 
inferential statistics and statistical modeling. Descriptive statistics implies summarizing 
a collection of data from a population. The observations within a sample tend to cluster 
around a central location, with more extreme observations being less frequent. The extent 
to which the observations cluster is summarized by measures of central tendency, while 
the spread is described by measures of dispersion. The measurement of central tendency 
include mean, median and mode, while the measurement of dispersion include range, 
standard deviation, mean deviation and others. The population mean, median, standard 
deviation, etc., are known as the parameters, while the sample mean, median, standard 
deviation, etc., are known as the statistics. We can hardly know the true values of 
parameters. However, we can obtain a reasonable point estimate of a parameter and 
define an interval in which the true population value is likely to lie with a certain level 
of confidence. This range is known as the confidence interval (CI). A CI of a parameter 
that has X% confidence is defined as an interval so that the parameter will lie within 
this interval with probability X. Conventionally, a 95% CI is used for most analyses. 
Understanding patterns in data sets and the distribution of the corresponding population 
are important components of descriptive statistics. The most common distribution is 
the normal distribution, which is depicted as the well-known symmetrical bell-shaped 
Gaussian curve. Familiarity with other distributions such as the binomial and Poisson 
distributions is also helpful. Various graphs and plots have been devised to summarize 
data and trends visually. Some plots, such as the box-and-whiskers plot and the stem-
and-leaf plot are less familiar but provide useful summaries in select situations.

Keywords: Descriptive statistics, Confidence interval, Normal distribution, Boxplot, 
Stem-and-leaf plot.

Biostatistics is a broad discipline encompassing  
the application of  statistical theory and prac-
tice to understand living systems. Today, 
the practice of  designing and conducting 
biomedical observations and experiments, 
presenting the data accruing therefrom and 
interpreting the results, would be impos-
sible without applying statistics. There are 
multiple reasons for this. The major factor  

is the enormous variability shown by living 
systems coupled with our inability to under- 
stand the sources of  such variations and 
to control them during our observations 
or experiments. Variations may be due to 
characteristics of  individual subjects, the 
effects of  interventions, measurement errors 
or simply unknown ‘chance’ factors. The 
application of  statistics allows adjusting for 
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these variations to reach meaningful conclusions using 
representative samples drawn from the population. 
Another important reason for applying statistics is 
that, most of  the time, researchers in the life sciences 
are interested in small changes or effects that require 
mathematical tools to ascertain if  these changes 
or effects are significant enough to be enthused or 
bothered about. Therefore, in biomedical research, 
statistical analysis is essential for making sense of  
inevitable uncertainty. Statistical description is also 
used in everyday data presentation outside the ambit 
of  biomedical research.
Before the advent of  computers and statistical soft-
ware, researchers and others dealing with statistics had 
to do most of  their analysis by hand, taking recourse 
to books of  statistical formulas and statistical tables. 
This required one to be proficient in the mathematics 
underlying statistics. This is no longer necessary since 
increasingly user-friendly statistical software takes the 
drudgery out of  calculations and obviates the need for 
looking up statistical tables. Therefore, today, under-
standing the applied aspects of  statistics suffices for 
the majority of  researchers, who do not require delv-
ing deep into the mathematical part of  statistics, in 
order to make sense of  data that they generate or 
scrutinize.
The applications of  biostatistics can broadly be envis-
aged as covering three domains – descriptions of  pat-
terns in observed values through various descriptive 
measures (descriptive statistics), drawing conclu-
sions regarding populations through various statistical 
tests applied to sample data (inferential statistics), 
and applications of  modeling techniques to under-
stand relationship between variables, sometimes with 
the goal of  prediction (statistical modeling). In this 
article, we will look at the descriptive uses of  statistics 
without delving into mathematical depths. This is not 
to deny the mathematical underpinnings of  statistics – 
these can be found in statistics textbooks. Our goal 
here is to present the concepts and look at the applica-
tions from the point of  view of  the applied user of  
biostatistics.

DATA AND VARIABLES

Data constitutes the raw material for statistical work. 
They are records of  measurement or observations or 
simply counts. A variable refers to a particular charac-
ter on which a set of  data are recorded. Data are thus 
the values of  a variable. Before a study is undertaken 
it is important to consider the nature of  the variables 
that are to be recorded. This will influence the man-
ner in which observations will be undertaken, the way 

in which they will be summarized and the choice of   
statistical tests that will be used.
At the most basic level, it is important to distinguish 
between two types of  data or variables. The first type 
includes those which are defined by some character-
istic, or quality, and is referred to as qualitative vari-
able. Because qualitative data are best summarized by 
grouping the observations into categories and counting 
the numbers in each, they are often referred to as cat-
egorical variables. The second type includes those that 
are measured on a numerical scale and is called quan-
titative variable. Since quantitative variables always 
have values expressed as numbers and the differences 
between values have numerical meaning, they are also 
referred to as numerical variables. They have also 
been called metric variables as their value is obtained 
through measurement using an appropriate measuring 
scale or device.
A qualitative variable can be a nominal variable or 
an ordinal variable. A nominal variable covers catego-
ries that cannot be ranked; and no category is more 
valuable than another. The data is generated simply by 
naming the appropriate category to which the observa-
tion belongs. An ordinal variable has categories that 
follow a logical hierarchy and hence can be ranked. 
We can assign numbers (scores) to nominal and ordi-
nal categories; although the differences among those 
numbers do not have numerical meaning. However, 
category counts do have numerical significance. A 
quantitative variable can be continuous or discrete. 
A continuous variable can, in theory at least, take on 
any value within a given range, including fractional val-
ues. A discrete variable can take on only certain values 
within a given range; these values are usually integers. 
Often certain variables, like age or blood pressure, are 
treated as district variables although strictly speaking 
they are continuous. A special case may exist for both 
categorical or numerical variables, when the variable in 
question can take on only one of  two numerical val-
ues or belong to only one of  two categories; these are 
known as binary or dichotomous data, as opposed 
to non-binary or polychotomous data that can take 
more than two values.
To illustrate the above data types, let us consider the 
human hair as an example. Hair color would be a cat-
egorical variable, but hair length would be a numerical 
one. Since there is no natural hierarchy of  hair color, nor 
is any ranking possible, hair color would be a nominal 
variable. However, hair loss may be an ordinal variable 
if  it is expressed as none, partial and total, for example. 
Hair length would be a continuous variable, but we can 
treat is as discrete if  we are recording it only to the near-
est millimeter. It is possible to convert numerical data 
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to categorical. Thus, after recording hair length we may 
classify the subject into long, medium or short hair cat-
egory. If  we are interested in only two categories of  hair 
length, say long or short, then this becomes a binary 
variable.
Numerical data can be recorded on an interval scale 
or a ratio scale. On an interval scale, the differences 
between two consecutive numbers carry equal signifi-
cance in any part of  the scale, unlike the scoring of  an 
ordinal variable (‘ordinal scale’). For example, when 
measuring distance, the difference between 1 and 2 
meters is the same as the difference between 1000 and 
1001 meters. Ratio scale is a special case of  recording 
interval data. With interval data the zero value can be 
arbitrary, such as the position of  zero on some tem-
perature scales – the Fahrenheit zero is at a different 
position to that of  the Celsius scale. With ratio scale, 
zero actually indicates the point where nothing is scored 
on the scale (‘true zero’), such as zero on the absolute 
or Kelvin scale of  temperature. Only on a ratio scale, 
can differences be judged in the form of  ratios. 0°C is 
not zero heat, nor is 26°C twice as hot as 13°C; whereas 
these value judgments hold with the Kelvin scale. In 
practice, this distinction is not tremendously important 
so far as the handling of  numerical data in statistical 
tests is concerned.
Changing data scales is possible so that numerical data 
may become ordinal, and ordinal data may become cat-
egorical (even dichotomous). This may occur because 
the researcher is not confident about the accuracy of  
the measuring instrument, is unconcerned about loss 
of  fine detail, or where group numbers are not large 
enough to adequately represent a variable of  inter-
est. It may also make clinical interpretation easier. For 
example, in ECG monitoring, the extent of  ST-segment 
depression indicates the degree of  myocardial ischemia. 
Although, theoretically a continuous variable, it is gen-
erally accepted that ST-segment depression greater than 
1.0 mm indicates significant ischemia, so that ST-seg-
ment depression less than this value is categorized as 
‘no ischemia’. This results in some loss of  detail, but 
clinically this is more convenient to deal with and is 
therefore widely accepted.
When exploring the relationship between variables, 
some can be considered as dependent (dependent vari-
able) on others (independent variables). For instance, 
when exploring the relationship between height and age, 
it is obvious that height depends on age, at least until a 
certain age. Thus, age is the independent variable, which 
influences the value of  the dependent variable height. 
When exploring the relationship between multiple vari-
ables, usually in a modeling situation, the value of  the 
outcome (response) variable depends on the value of  

predictor (explanatory) variables. In this situation, 
some variables may be identified that cannot be accu-
rately measured or controlled and only serve to confuse 
the results. They are called confounding variables or 
confounders. Thus, in a study of  antihypertensive drug 
effect, the change in blood pressure (outcome) would 
depend on the dose and maybe on the age of  the patient 
(predictors). However, it will also be confounded by salt 
or sodium intake which cannot be accurately measured 
or strictly regulated.
Numerical or categorical variables may sometimes need 
to be ranked, that is arranged in ascending order and 
new values assigned to them in serial order. Values that 
tie are each assigned average of  the ranks they encom-
pass. Thus, a data series 2, 3, 3, 3, 3, 5, 7, 9, 15 can be 
ranked as 1, 3.5, 3.5, 3.5, 3.5, 6, 7, 8, 9, since the four 3s 
encompass ranks 2, 3, 4, 5 giving an average rank value 
of  3.5. Note that when a numerical variable is ranked, it 
gets converted to an ordinal variable. Ranking obviously 
does not apply to nominal variables because their values 
do not follow any order.

DESCRIPTIVE STATISTICS

Descriptive statistics means summarizing a collection of  
data from a group. Traditionally, summaries of  sample 
data (‘statistics’) have been denoted by Roman letters 
(e.g.,`x for mean, SD for standard deviation, etc.) while 
summaries of  population data ('parameters') have been 
denoted by Greek letters (e.g., m for mean, s for stan-
dard deviation, etc.).
For numerical data, the individual observations within 
a sample or population tend to cluster around a central 
location, with more extreme observations being less fre-
quent. The extent to which observations cluster is sum-
marized by measures of  central tendency while the 
spread is described by measures of  dispersion.

MEASURES OF CENTRAL TENDENCY

The common measures of  central tendency include 
mean, median, and mode. The mean (or more correctly, 
the arithmetic mean) is calculated as the sum of  the 
individual values in a data series, divided by the num-
ber of  observations. The mean is the most commonly 
used measure of  central tendency to summarize a set 
of  numerical observations. It is usually stable and reli-
able. However, the presence of  extreme values (outliers) 
can distort the mean. It should not ordinarily be used in 
describing categorical variables because of  the arbitrary 
nature of  category scoring. It may, however, be used to 
summarize category counts. Note also that the mean 
value need not be an actual value in the sample from 
which it is derived.
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The median denotes the point in a data series at which 
half  the observations are larger and half  are smaller 
than it. If  the values in a data series are arranged (either 
in ascending or descending order), then the median is 
the middle value (for an odd number of  observations) 
or the average of  the two middle values (for an even 
number of  observations). It is a useful summary mea-
sure, particularly if  the distribution of  the data is not 
symmetrical, since it is less sensitive to extreme values 
than the mean. The median value is also known as the 
50th percentile value.
The mode is the most frequently occurring value in a 
data series. It is not often used, for the simple reason 
that it is difficult to pinpoint a mode if  no value occurs 
with a frequency markedly greater than the rest. Two 
or more values may occur with equal frequency, making 
the data series bimodal or multimodal.
The relationship between the three measures of  cen-
tral tendency depends on the shape of  the data distri-
bution. In a unimodal symmetrical distribution (such 
as the normal distribution shown in Figure 1), all 
three measures are identical, but in a skewed distribu-
tion they will usually differ. The mode would simply 
be the most frequently occurring value (the highest 
point on the distribution curve); the mean is pulled to 
one side by the influence of  a relatively small number 
of  very high or very low values; and the median lies 
between the two, dividing the distribution into two 
equal areas under the curve.
Two other measures of  central tendency are geometric 
mean and harmonic mean. The geometric mean of  
a series of  n observations is the nth root of  the prod-
uct of  all the observations. It is always equal to or less 
than the arithmetic mean. It is not often used, but is 
a more appropriate measure of  central location when 
data has been recorded on a logarithmic scale. Interest-
ingly, the logarithm of  the geometric mean is the arith-
metic mean of  the logarithms of  the observations. As 
such, the geometric mean may be calculated by taking 

the antilog of  the arithmetic mean of  the log values 
of  the observations. The harmonic mean of  a set of  
non-zero positive numbers is obtained as the recipro-
cal of  the arithmetic mean of  the reciprocals of  these 
numbers. It is seldom used in biostatistics.
Oftentimes data is presented as a frequency table. If  
the original data values are not available, a weighted 
average can be estimated from the frequency table by 
multiplying each data value by its frequency (the number 
of  cases in which that value occurs), summing up the 
products and dividing the product sum by the sum of  
the frequencies (total number of  observations). A fre-
quency table of  numerical data may report the frequen-
cies for class intervals (the entire range covered by the 
observations being broken up into a convenient num-
ber of  intervals) rather than for individual data values. 
In such cases, we can calculate the weighted average by 
using the mid-points of  the class intervals and their cor-
responding frequencies. However, in this instance the 
weighted mean may vary slightly from the arithmetic 
mean of  all the raw observations.

MEASURES OF DISPERSION

The spread, or variability, of  a data series can be readily 
described by the range, which is the interval between 
minimum and maximum values. However, the range 
does not provide much information about the overall 
distribution of  observations, and obviously responds 
only to the two extreme values.
A more useful estimate of  the dispersion can be obtained 
by first arranging the values in ascending order and then 
grouping them into 100 equal parts (in terms of  the num-
ber of  values). The partition values are called centiles or 
percentiles. For example, a value for which 10% of  the 
observations are less than it is known as the 10th percen-
tile. Thus, we can have the 10th, 25th, 50th, 75th, 90th, or any 
other percentile. It is then possible to state the range cov-
ered by any two of  these percentiles such as the 10th to 
90th or 25th to 75th percentile range. It may be noted that 
the median represents the 50th percentile. If  we estimate 
the range of  the middle 50% of  the observations about 
the median by using the 25th and 75th percentile values, 
we have the interquartile range. The interquartile range 
is another useful estimate of  dispersion, especially for 
skewed distributions. If  the dispersion in the data series 
is less, we can use the range defined by 10th and 90th per-
centile values to denote the dispersion.
A still better method of  measuring variability about the 
central location is to estimate how closely the individual 
observations cluster about it. This leads to the mean 
square deviation or variance, which is calculated as 
the sum of  the squares of  the differences of  individual 

 

 
 

 
 
 

Figure 1:  Examples of frequency distributions – A) Symmetric and 
normal B) Symmetric but not normal C) Asymmetric, negatively 
skewed D) Asymmetric, positively skewed.
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deviations from mean, divided by the number of  obser-
vations. The squaring removes the effect of  negative 
values. The standard deviation (SD) of  a data series 
is simply the square root of  the variance. Note that the 
variance is expressed in squared units, which is difficult 
to comprehend, but the standard deviation retains the 
original unit of  observation. The standard deviation is 
particularly useful in normal distributions, because the 
proportion of  values in the normal distribution (i.e., the 
area under the curve) is a constant for a given number 
of  standard deviations above or below the mean of  the 
distribution, as shown later.
The formulae for the calculation of  variance (and stan-
dard deviation) of  a population has the value ‘n’ as the 
denominator. However, the expression (n – 1) is used 
when calculating the variance (and standard deviation) 
of  a sample. The quantity (n – 1) denotes the degrees 
of  freedom, which is the number of  independent obser-
vations or choices available. For instance, if  a series of  
four numbers is to add up to 100, we can assign different 
values to the first three, but the value of  the last is fixed 
by the first three choices and the condition imposed that 
the total must be 100. Thus, in this example, the degrees 
of  freedom can be stated to be 3. The degrees of  free-
dom is used when calculating the variance (and standard 
deviation) of  a sample because the sample mean is an 
estimate of  the predetermined population mean, and, in 
the sample, each observation is free to vary except the 
last one which must be a defined value.

MEASURES OF PRECISION

The coefficient of  variation (CV) of  a data series 
denotes the SD expressed as a percentage of  the mean. 
Thus, it denotes the relative size of  the SD with respect 
to the mean. The CV is calculated by dividing the SD 
by mean and multiplying by 100. An important source 
of  variability in biological observations is measurement 
imprecision and CV is often used to quantify this impre-
cision. It is thus commonly used to describe variability 
of  measuring instruments, and it is generally taken that 
a CV of  less than 5% is acceptable reproducibility. CV 
can be conveniently used to compare variability between 
studies, as, unlike standard deviation, its magnitude is 
independent of  the units employed.
Another measure of  precision for a data series is the 
standard error of  the mean (SEM), which is simply 
calculated as the SD divided by the square root of  the 
number of  observations. The SEM is primarily used to 
construct confidence intervals of  population mean. Its 
use to depict dispersion of  data in place of  SD is erro-
neous. The standard error is a measure of  precision and 
not dispersion. It is meant to provide an estimate of  a 

population parameter from a sample statistic in terms 
of  the confidence interval.
It is self-evident that when we observe a sample, and 
calculate the sample mean, this will not be identical to 
the population (‘true’) mean. However, if  our sample 
is sufficiently large and representative of  the popula-
tion, and we have made our observations or measure-
ments carefully, then the sample mean would be close 
to the true mean. If  we keep taking repeated samples, 
and calculate a sample mean in each case, the distribu-
tion of  these sample means would be expected to have 
less dispersion than that of  all the individual observa-
tions in the samples. In fact, it can be shown that the 
sample means would have a symmetrical distribution, 
with the true population mean at its central location, 
and the standard deviation of  this distribution would be 
nearly identical to the SEM calculated from individual 
samples. This is the essence of  the central limit theo-
rem in probability theory.
In general, we are not interested in drawing mul-
tiple samples, but rather would like to know how reli-
able our one sample is in describing the population. 
We use standard error to define a range in which the 
true population value is likely to lie, and this range is 
the confidence interval, with its two terminal values 
being called confidence limits. The width of  the con-
fidence interval depends on the standard error and the 
extent of  confidence required. Conventionally, the 95% 
confidence interval (95% CI) is most commonly used. 
From the properties of  a normal distribution curve (see 
below) it can be shown that the 95% CI of  the mean 
would cover a range 1.96 standard errors on either side 
of  the sample mean, and will have a 95% probability of  
including the population mean; while 99% CI will span 
2.58 standard errors on either side of  the sample mean 
and will have 99% probability of  including the popula-
tion mean. Thus, a fundamental relation that needs to 
be remembered is 

95% CI of  mean = Sample mean ± 1.96 X SEM

It is evident that the confidence interval would be 
narrower if  SEM is smaller. The larger the sample 
size, the smaller is the SEM. The confidence interval 
is correspondingly narrower and thus more ‘focused’ 
on the true mean. Large samples therefore increase 
precision.
Confidence intervals can be used to capture most pop-
ulation parameters from sample statistics like means, 
medians, proportions, correlation coefficients, regres-
sion coefficients, odds ratios, relative risks, and others. 
In all cases, the principles and the general pattern of  
estimating the confidence interval remain the same, 
that is
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out on the transformed data before converting the 
results back to the original scale. A linear relationship 
between variables is desirable in regression analysis, and 
the logarithmic transformation is also useful in linear-
izing data, if  an exponential relationship exists between 
two variables (Figure 2).
It is possible that Datasets may have more than one 
peak (mode). Such data can be difficult to manage and it 
may be the case that neither the mean nor the median is 
a representative measure of  the central tendency. How-
ever, it is important to remember that bimodal or mul-
timodal distributions are rare and may even be artifacts. 
A distribution with two peaks may actually be reflect-
ing a combination of  two unimodal distributions, for 
instance one for each gender or different age groups. In 
such cases, appropriate subdivision, categorization, or 
even recollection of  the data may be required to elimi-
nate multiple peaks.

THE NORMAL DISTRIBUTION

Many biological variables tend to cluster around a cen-
tral value, with a symmetrical positive and negative 
dispersion about this point. The more extreme values 
become less frequent the further they lie from the cen-
tral point. These features describe a normal distribution 
(Figure 3); the term ‘normal’ probably relating to the 
wide prevalence of  this distribution. It is also referred to 
as a Gaussian distribution after the German mathemati-
cian, Karl Friedrich Gauss (1777–1855), although Gauss 
was not the first person to describe such a distribution. 
Some of  the properties of  a normal distribution are:

•	 Unimodal, bell-shaped distribution
•	 Symmetric about the mean

95% CI of  a parameter = Sample statistic ± 1.96 X 
Standard error for that statistic
The formula for estimating standard error however var-
ies for different statistics, and in some instances is quite 
elaborate. The situation therefore is usually managed by 
relying on computer software to do the calculations.

FREQUENCY DISTRIBUTIONS

It is useful to summarize a set of  observations with 
a frequency distribution. The summary may be in the 
form of  a table or a graph (plot). Many frequency dis-
tributions are encountered in medical literature and it is 
important to have a clear idea of  the more commonly 
encountered ones.
Majority of  distributions that quantitative clinical data 
follow are unimodal, that is the data has a single peak 
(mode) with a tail on either side. The more common 
of  these unimodal distributions are symmetrical. How-
ever, some are skewed with a substantially longer tail 
on one side (Figure 1). The type of  skew is determined 
by which side tail is longer. A positively skewed distri-
bution has a longer tail on the right; with the majority 
of  values being relatively low with a smaller number of  
extreme high values. A negatively skewed distribution 
has a longer tail to the left; with the extreme values being 
markedly low in comparison to the rest of  the dataset. 
In this instance the mean, being unduly influenced by 
the extreme low values on the left, will be smaller than 
the median. On the other hand, in a positively skewed 
distribution the mean will be greater than the median 
because the mean is strongly influenced by the extreme 
values in the right-hand tail. 
Manipulation of  a dataset in order to alter its distri-
bution is called data transformation. There are many 
different transformations, such as logarithmic, square 
root, reciprocal, logit transformation, and so on. There 
are certain advantages in working with symmetrical 
rather than asymmetrical data sets, and the most com-
monly used transformation to make positively skewed 
data symmetrical is the logarithmic transformation. 
In this, every value in the dataset is replaced by its 
logarithm. Logarithms are defined to a base, the most 
common being base e (natural logarithm) or base 10 
(common logarithm). The end result is independent 
of  the base chosen, provided the same base is used 
throughout. Notice that in log transformation, the 
differences in the transformed values are larger at the 
lower end of  the scale. The logarithmic transformation 
stretches out the lower end and compresses the upper 
end of  a distribution, with the result that positively 
skewed data will tend to become more symmetrical in 
shape. Calculations and statistical tests can be carried 

 

 
 
 

 
Figure 2:  Two uses of logarithmic transformation of data. A & B: 
making positively skewed data normally distributed, and C & D: 
linearizing exponential relationship between two variables.
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•	 Flattens symmetrically as the variance is increased
•	 �Kurtosis is zero (‘kurtosis’ refers to how peaked 

a distribution is)

In a normal distribution curve, the mean, median and 
mode coincide. The area delimited by one standard 
deviation on two sides of  the mean includes 68% of  the 
total area under the curve, that for two standard devia-
tions includes 95.4%, and for three standard deviations 
includes 99.7%; 95% of  the values lie within 1.96 stan-
dard deviations on two sides of  the mean. It is for this 
reason that the interval denoted by mean ± 1.96 X SD, 
is often taken as the normal range or reference range 
for many physiological variables. Anthropometric mea-
surements (e.g., weight, height, waist circumference), 
biochemical evaluations (e.g., plasma glucose, liver func-
tion tests, urea, creatinine, serum electrolytes) and psy-
chometric parameters (e.g., intelligence quotient scores) 
are common examples of  variables that tend to follow 
normal distribution.
If  we look at the formula for the normal distribution 
given below, it is evident that there are two parameters 
that define the curve, namely µ (the mean) and σ (the 
standard deviation):

f x e x <x( )
1

2
= − ∞ < ∞( )

πσ
µ σ− − 2 22/ ,

The standard normal distribution curve is a particu-
lar normal distribution for which the probabilities that x 
will be in any interval have been extensively calculated. 
It is a symmetrical bell-shaped curve with a mean of  
0 and a variance (or standard deviation) of  1. This is 
also known as the z distribution. The standardized 
normal deviates or z values or z scores of  a random 
variable x can be calculated as follows:

µ-
z =

x
s

The z value tells us how many standard deviations the 
corresponding value of  x lies above or below the mean 
of  the normal distribution. Tables of  z scores (in statis-
tics books or generated using computer software) can be 
used to find out what proportion of  any normal distribu-
tion lies above any given z score. We can also do the con-
verse, that is, use z scores to find the score that divides 
the distribution into specified proportions. The z scores 
also allow us to determine the probability of  a randomly 
picked element being above or below a particular score.
As the number of  observations increase (say, n > 30), 
the shape of  the distribution of  sample means will 
approximate a normal distribution curve even if  the 
distribution of  the variable in question is not normal. 
This is explained by the central limit theorem, and is 
one reason why the normal distribution is so important 
in biomedical research.
Many statistical techniques require assumption of  nor-
mality of  the dataset. It is not mandatory for the sample 
data to be normally distributed, but it should represent 
a population that is normally distributed.

BINOMIAL DISTRIBUTION

A binomial distribution can exist if  a population has 
a characteristic that belongs to one of  two mutually 
exclusive categories. This distribution describes the 
probability of  ‘success’ of  an event in a fixed num-
ber of  observations. It is frequently used to model the 
number or proportion of  successes in a sample of  size 
n drawn with replacement from a population of  size N. 
The binomial variate satisfies the following properties:

•	 �A Bernoulli (success – failure) experiment is per-
formed n times

•	 The trials are independent
•	 �The probability of  success on each trial is a con-

stant p; the probability of  failure is q = 1–p
•	 �The random variable X counts the number of  

successes in the n trials

 

 
 
 
 

 
 

Figure 3:  Normal distribution of a variable x with mean µ and 
standard deviation σ. The bottom panel shows z-transformation of 
x to derive the standard normal curve with mean 0 and standard 
deviation 1.
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The probability of  an event in a binomial distribution 
can be calculated from the binomial distribution for-
mula. We use the properties of  the binomial distribu-
tion when drawing inferences about proportions of  
successes. The normal approximation to the binomial 
distribution is often used when analyzing proportions.
If  the number of  observations is very large, and the 
probability of  a particular event is very small, then cal-
culation of  binomial probabilities can become quite 
tedious. An approximation, called Poisson distribution, 
can be used in such cases.

POISSON DISTRIBUTION

The Poisson distribution (named after Siméon Denis 
Poisson) is expressed by an exponential formula, that 
can be used to calculate the probability of  ‘rare’ events 
that occur randomly but at a fixed ‘mean’ rate. Its 
assumptions are:

•	 Events occur randomly
•	 Events occur independent of  one another
•	 Events occur at a uniform long-term rate

The mean equals the variance in a Poisson distribution. 
The distribution is skewed to the right when this mean 
is small, but approximates a normal distribution as 
mean becomes larger. Many interesting phenomena can 
be modeled by the Poisson distribution. Two frequently 
stated examples from biology are the number of  sui-
cides in a population and the number of  mutations in a 
DNA strand.

PRESENTING DATA

Once summary measures of  data have been calculated, 
they need to be presented in tables and graphs. Regard-
ing data presentation in tables, it is helpful to remember 
the following:

•	 �The mean is to be used for numerical data and 
for symmetric (non-skewed) distributions

•	 �The median should be used for ordinal data or 
for numerical data if  the distribution is skewed

•	 �The mode is generally used only for examining 
bimodal or multimodal distributions

•	 �The range may be used for numerical data to 
emphasize extreme values

•	 �The standard deviation is to be used along with 
the mean

•	 �Interquartile range or percentiles should be used 
along with the median

•	 �Standard deviations and percentiles may also 
be used when the objective is to depict a set of  
norms (‘normative data’)

•	 �The coefficient of  variation may be used if  the 
intent is to compare variability between datasets 
measured on different numerical scales

•	 �95% confidence intervals should be used when-
ever the intent is to draw inferences about popu-
lations from samples

For presenting data graphically, it is usually necessary to 
obtain the frequency distribution or relative frequency 
distribution (e.g., percentages) of  the data. This can 
then be utilized to draw different types of  graphs (or 
charts or plots or diagrams). Some useful graphs are as 
follows:
Pie chart: This depicts frequency distribution of  cat-
egorical data in a circle (the ‘pie’), with the sectors of  
the circle proportional in size to the frequencies in 
the respective categories. A particular category can be 
emphasized by pulling out that sector. All sectors are 
pulled out in an ‘exploded’ pie chart. Pie charts can 
be made highly attractive, by using color and three-
dimensional design enhancements, but become cum-
bersome if  there are too many categories.
Bar chart (also called column chart): This depicts 
categorical or discrete numerical data as a series of  ver-
tical or horizontal bars, with the bar heights being pro-
portional to the frequencies. The separation between 
bars is of  little significance other than to indicate that 
the bars denote discrete values or categories. Usually 
the separation distance is kept equal. Bars depicting 
subcategories can be stacked one on top of  another 
(compound, segmented or stacked bar chart). Two 
or more data series can be depicted on the same bar 
chart by placing corresponding bars side by side – dif-
ferent patterns or colors are used to distinguish the 
different series (clustered or multiple bar chart). It 
is believed that the first bar chart appeared in the 1786 
book, ‘The Commercial and Political Atlas’, by William 
Playfair.
Histogram: This is similar to a bar chart but is used 
for summarizing continuous numerical data and hence 
there should not be any gaps between the bars. The 
bar widths correspond to the class intervals. The 
alignment of  the bars can be vertical or horizontal. A 
histogram is popularly used to depict the frequency 
distribution in a large data series. The class intervals 
should be so chosen that the bars are narrow enough 
to illustrate patterns in the data but not so narrow that 
they become too many in number. A histogram should 
be labeled carefully to clearly depict where the bound-
aries lie.
Dot plot: This depicts frequency distribution like his-
tograms and can also be used for summarizing dis-
crete numerical data. Instead of  bars, it has a series 
of  dots for each value or class interval – each dot 
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representing one observation. The alignment can 
be vertical or horizontal. Dot plots are conceptually 
simple but become cumbersome for large data sets. 
In the example given in Figure 4, note that the data 
is not showing a clear distribution.
Stem-and-leaf  plot: This plot was introduced by the 
renowned statistician John Wilder Tukey in his 1970 
book, Exploratory Data Analysis. It is sort of  mixture of  
a diagram and a table and was devised to depict fre-
quency distribution as well as individual data values for 
numerical data. The data values are examined to deter-
mine their last significant digit (the ‘leaf ’ item) and this 
is ‘attached’ to the previous digits (the ‘stem’ item). The 
stem items are arranged in ascending or descending 
order vertically and a vertical line is usually drawn to 
separate the stem from the leaf. The number of  leaf  
items should total up to the number of  observations. 
An example of  a stem-and-leaf  plot is provided in Fig-
ure 5. The figures to the left of  the vertical line consti-
tute the stem, while those to the right comprise the leaf. 
The number of  digits in the leaf  equals the number of  
observations in the data set. Note that the plot gives 
an idea of  the underlying distribution while retaining 
all the individual values. However, it becomes cumber-
some with large data sets.
Box-and-whiskers plot (or box plot): This was also 
introduced by Tukey in his 1970 book Exploratory 
Data Analysis. This is a graphical representation of  
numerical data based on the five-figure summary–  
minimum, 25th percentile, median (50th percentile), 
75th percentile and maximum values. A rectangle is 
drawn extending from the lower quartile to the upper 
quartile, with the median dividing this ‘box’ but not 

necessarily equally. Lines (‘whiskers’) are drawn from 
the ends of  the box to the extreme values. Outli-
ers may be indicated beyond the extreme values by 
dots or asterisks – in such ‘refined’ box plots, the 
whiskers have lengths not exceeding 1.5 times the 
interquartile range. The whole plot may be aligned 
vertically or horizontally. Box plots are ideal for sum-
marizing large samples and are being increasingly 
used. Multiple box plots, arranged side by side, allow 
ready comparison of  data sets. A horizontal box plot 
depicting the five number summary of  numerical 
data is shown in Figure 6. Note that this particular 
dataset is not symmetrical but is skewed to the left.
Finally, an increasingly important plot these days is the 
forest plot. This is intended to illustrate the strength 
of  treatment effects in multiple studies addressing the 
same outcome or multiple subgroups within the same 
study. Most commonly, a forest plot is used to sum-
marize the results of  a meta-analysis in terms of  odds 
ratios (or relative risks) and their confidence intervals. 
As shown in Figure 7, each study is represented by a 
small box (or circle), the size of  which is proportional 
to the weight given to the study, which is usually depen-
dent on its sample size. The mid-point of  this box is 
positioned at the value of  its treatment effect (in terms 
of  the point estimate i.e., the odds ratio or the relative 
risk) with horizontal lines extending on both sides to the 
95% confidence limits. A diamond placed at the bottom 
with its mid-point being positioned at the pooled point 
estimate depicts the overall result. The width of  the dia-
mond indicates the 95% CI for the pooled results. There 
is also a vertical line corresponding to the position of  
no treatment effect. The term ‘forest’ probably relates 

Figure 4:  A simple dot plot depicting a series of discrete scores.

 

 
 
 
 
 

 
 
 
 
 

Figure 5:  A stem-and-leaf plot depicting systolic blood pressure 
recordings (recorded as even values only) in 100 individuals.

100	 002266
110	 0002224468
120	 000002222244444444666666688888
130	 000222224444446666668888
140	 00000222224444446666
150	 0022244668

Key: 120 | 4 means 124 mmHg
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Figure 6:  A horizontal box plot depicting the five number summary 
of numerical data. Note that this particular dataset is not symmetri-
cal but is skewed to the left.
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Figure 7:  The typical appearance of a forest plot.

 

 
 
 
 

 
 

to the collection of  lines in the plot. It is customary to 
indicate the names of  the studies in a column to the left 
hand side of  the plot with additional summary data, if  
considered necessary. 
We have looked at the commonly used plots used for 
summarizing data and depicting underlying patterns. 
Many other plots are used in biostatistics for depict-
ing data distributions, time trends in observations, 
relationships between two or more variables, exploring 
goodness-of-fit to hypothesized data distributions and 
drawing inferences by comparing data sets.
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