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Abstract

The urgent need of neuraminidase inhibitors (NI) has provided an impetus for understanding 
the structure requisite at molecular level. Our search for selective inhibitors of neuraminidase 
has led to the identification of pharmacophoric requirements at various positions around acyl 
thiourea pharmacophore. The main objective of present study is to develop selective NI, with 
least toxicity and drug like ADMET properties. Electronic, Steric requirements were defined 
using kohnone nearest neighbour- molecular field analysis (kNN-MFA) model of 3D-QSAR 
studies. Results generated by QSAR studies showed that model has good internal as well as 
external predictivity. Such defined requirements were used to generate new chemical entities 
which exhibit higher promising predicted activities. To check selective binding of designed 
NCE’s docking studies were carried out using the crystal structure of the neuraminidase 
enzyme having co-crystallized ligand Oseltamivir. Thus, molecular modelling provided a good 
platform to optimize the acyl thiourea pharmacophore for designing its derivatives having 
potent anti-viral activity
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Introduction

Influenza virus infection is commonly known 
as flu and it is the contagious etiologic agent 
that causes an acute respiratory infection; hence 
it has always been a major threat (1) to human 
health worldwide and cause for economic 
burden. Currently, effective chemotherapy for 
influenza virus is also limited due to newly 
discovered drug resistance in mutant strain (2). 
Although the viral replicative cycle has revealed 
several potential molecular targets (M2 proteins 

endonuclease, hemagglutin and neuraminidase) 

that can be used as anti-flu for drug design (3-
6). There are currently only a few licensed drugs 
available for influenza treatment. M2 inhibitors 
such as Amantadine and Rimantadine, which act 
specifically against Influenza A virus by blocking 
the ion channel of the M2 protein, provide only 
limited protection due to a narrow spectrum of 
activity (7). Neuraminidase (NA), also called 
sialidase, is the major surface glycoprotein 
that possesses enzymatic activity essential for 
viral replication and infection (8). The crystal 
structure of influenza virus Neuraminidase is 
well known and it is a critical enzyme in the 
infestation, replication, maturity and delivery of 
influenza virus (9). 

Though Neuraminidase inhibitors like 
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considering structural necessities for selective 
neuraminidase inhibitors at active binding 
sites of neuraminidase, the pharmacophore 
of acyl thiourea was optimized so as to 
inhibit neuraminidase efficiently. Optimized 
pharmacophore was used and little bit modified 
to generate basic templates so as to design 
new chemical entities using Combi-Lib tool of 
V-Life MDS 3.5. Generated library contains 
more than 100 entities, designed on the basis of 
equation of multiple linear regression studies. 
Out of 100, best 10 molecules were selected on 
the basis of predicted activity. Those best 10 
molecules were subjected to docking studies. 
Docking studies were carried out by Glide tool 
of Schrodinger Inc. Software. QSAR (13-17) 
model gave good insights for developing new 
analogues as influenza virus NAI. On the basis 
of docking studies, it is concluded that designed 
entities show best binding interactions including 
Hydrogen bonds as well as Van-der-Waals 
forces within neuraminidase active binding site 
so as to inhibit neuraminidase efficiently for the 
treatment of influenza.

Experimental

Dataset 
A series (18) of total 28 compounds for whose 

absolute IC50 values is reported for their anti-
influenza activity was used for QSAR studies 
(Table 1 and Table 2). Biological activity was 
expressed in terms of pIC50 which was calculated 
as log1/IC50 against neuraminidase enzyme. All 
QSAR models were generated using a Training 
set of 22 molecules. Test set of 6 molecules 
with varied chemical and biological activities 
were used to access the predictive power of 
QSAR models generated using training set of 
molecules. The sphere exclusion method was 
used for the selection of molecules in training 
and test sets.

Uni-Column statistics for training set and 

Zanamivir displays excellent anti-viral activity 
when administered intranasal, it is less effective 
when delivered systemically. It has very low oral 
bioavailability and is rapidly eliminated by renal 
excretion (10).Oseltamivir is orally active, but 
it has been reported to cause vomiting, nausea 
and several allergic reactions. While remaining 
Neuraminidase inhibitors such as Peramivir, 
Laninamivir are still in phase III clinical trials. 
Peramivir shows less oral bioavailability than 
Oseltamivir. So, there is still an enormous 
need to design and identify new agents for 
the chemotherapy of influenza virus infection 
and formulate effective drugs for systemic 
administration. Therefore in present study we 
put forth following objectives: 

1.	 To search the structural fragments 
responsible for selective NA inhibition. 

2.	 To quantify the contribution of each 
structural fragments towards biological activity 
by comparing. 

3.	 The contributing physicochemical 
parameters of required chemical groups in the 
given series.

The understanding of the enzyme’s structure 
and functions can be helpful for the development 
of novel Neuraminidase Inhibitors. Quantitative 
Structure Activity Relationships (QSAR) for 
different sets of compounds has been reported by 
Verma and Hansch (11) which gives seventeen 
different QSAR equations to understand 
chemical and biological interactions governing 
their activities toward influenza neuraminidase. 
Another QSAR model was developed with 
spatial, topological, electronic, thermodynamic 
and E-state indices on 30 thiourea analogues 
as influenza neuraminidase inhibitors using 
SYBYL 7.1 molecular modelling software and 
genetic algorithm method (12).

In this study, we performed 3D-QSAR 
using kNN-MFA method with the help of 
V-Life MDS 3.5. Considering electronic, steric 
parameters stated by 3D-QSAR studies, and also 

Training Set Average Test Set Average Training Set 
Max a Test Set Max a Training Set Mina Test Set Mina

-0.17912 -0.10595 1.09691 0.4437 -1.2672 -0.8567

Table 1. Uni-Column statistics for Training and Test set of Compounds.

a Higher the value of pIC50 (Greater +ve-value), higher is the potency.
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test set were generated to check correctness 
of selection criteria for trainings and test set 
molecules (Table 1).Selection of molecules in 
the training set and test is a key and important 
feature of any QSAR model, therefore due 
care was taken in such a way that biological 
activities of all compounds in test set lie 
within the maximum and minimum value 
range of biological activities of training set of 
compounds.

The common pharmacophore used for 
QSAR study is Acyl thiourea with R1 and R2 
substitutions is represented (Figure 1).

Selected series of acyl thiourea compounds 
with biological activity as neuraminidase 
inhibitors is depicted in tabular form along 
with training set and test set molecules 
(Table 2). Selected series is a collection of 
structures having wide range of neuraminidase 
inhibitory activity ranging from minimum 0.08 
to maximum 18.5 µM.Validation of QSAR 
studies: Models generated by 3D-QSAR study 
was cross-validated using standard LOO 
procedure (19). 

QSAR Studies 
3D-QSAR Studies
3D-QSAR studies were performed using 

V-Life Molecular Design Suite Software Version 
3.5 (20). 3D-QSAR Studies were carried out by 
k Nearest Neighbor Molecular Field Analysis 
(kNN MFA) using Simulated Annealing (SA) 
variable selection method majority of its 
k-Nearest Neighbors in the training set (21-22).

3D model was generated using following steps:
1. Molecules were optimized MMFF 

energy minimization method before alignment. 
Optimization is necessary process for proper 
alignment of molecules around template.

2. kNN-MFA method requires suitable 

alignment of given set of molecules; alignment 
was carried out by template based alignment 
method. Alignment of Substituted Acyl Thiourea 
Derivatives using template based alignment 
method is represented below (Figure 2).

3.	This was followed by generation of common 
rectangular grid around the molecules, the steric 
and electrostatic interaction energies were 
computed at the lattice points of the grid using a 
methyl probe of charge +1.

4.	The optimal training and test set were 
generated.

5.	Models were generated by SA kNN MFA 
method.

6.	The activity of the test set of compounds 
was predicted.

7.	The 3D-QSAR model was evaluated using 
important statistical measures such as, ‘n’ is 
number of molecules (> 20 molecules), ‘k’ is 
number of descriptors in a model (statistically 
n/5 descriptors in a model), ‘q2’’ is cross-
validated r2 (>.0.5), ‘pred_r2’ is r2 for external 
test set (>.0.5), ‘q2_Se’ is Standard Error in cross 
validation and ‘pred_r2_se’ is Standard Error in 
external validation.

Optimization of pharmacophore
The information obtained from 3D QSAR 

study and active binding site was used to 
optimize the electrostatic and steric requirements 
as well as essential structural requirements 
for neuraminidase inhibition around the Acyl 
Thiourea nucleus for selective inhibition of 
Neuraminidase and in turn to enhance anti-
influenza activity.

Generated 3D descriptors are correlated 
structurally and biologically with most potent 
compound (Figure 3) from the selected series of 
acyl thiourea having neuraminidase inhibitory 
activity up to 0.08 µM.

Figure 1. Acyl thiourea template. Figure 2. Alignment of Substituted Acyl Thiourea Derivatives 
using template based alignment method.
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Considering above requirements obtained 
from QSAR studies and binding site studies, 
pharmacophore was optimized.

Design of new chemical entities using 
designing of new templates and generation of 
library

Information obtanined from QSAR studies 
and active binding site have helped us a lot to 
design new chemical Entities (NCE‘s).We have 
generated two templates using Lead Grow tool 
of V-Life MDS software and on the basis of 
these templates,we have generated more than 
hundrded molecules using CombiLib tool of 
V-Life MDS software.

Molecular docking studies
Molecular docking studies were performed 

using Glide (5.0) (26) tool of Schrodinger 
molecular docking software. Those who had 
predicted activity as similar as PIC50 of most 
active molecule present in the reported series 
were selected for docking studies.

ADMET prediction
All designed compounds were filtered 

by predicting their Absorption, Distribution, 
Metabolism, Excretion and Toxicity (ADMET) 
properties by means of Qikprop 2.2 Tool of, 
Schrodinger (Table 8).

Results and Discussion

Result of 3D-QSAR
Series of Acyl thiourea derivatives was 

carefully divided into training set and test set. 
3D-QSAR Studies were carried out by k Nearest 
Neighbor Molecular Field Analysis (kNN MFA) 
on the selective training set and test set as 

depicted in Table 2.
kNN MFA is a novel method which utilizes 

k-Nearest Neighbor (kNN) principle to correlate 
molecular field descriptors with biological 
activity. The kNN methodology relies upon 
a simple distance learning approach. In this 
method an unknown member is classified 
according to the majority of its k-Nearest 
Neighbors in the training set. The nearness is 
measured by an appropriate distance metrics 
(e.g., a molecular similarity measure calculated 
using field interactions of molecular structures). 
The standard kNN Method is implemented 
simply as follows:

1.	 The distances between an unknown 
object (u) and all other objects in the training set 
were calculated. 

2.	 The k objects were selected from the 
training set most similar to object u, according 
to the calculated distances.

3. The object u was classified with the group 
to which the majority of the k objects belong. 
An optimal k-value is selected by optimization 
through the classification of a test set of samples 
or by Leave-One Out (LOO) cross validation 
(19). The variables and optimal k-values 
were chosen using different variable selection 
methods. Here we have used simulated annealing 
as variable selection method.

Statistical result of 3D-QSAR kNN MFA 
method is tabulated below (Table 3).

Model showed best internal as well as 
external predictivity as q2 = 0.6840, pred_r2 = 
0.7697 and also error occurred during internal 
and external validation obtained was very low 
as q2_se = 0.2811, pred_r2_se = 0.2972.Stereo 
view of superposed molecular units of Acyl 
Thiourea series shows the generated data points 
around the pharmacophore in three dimensional 

Figure 3. Most potent Compound from selected series.
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Table 2. Training set and Test Set from selected series of compounds for QSAR study with Acyl Thiourea pharmacophore.
1)	 Training set molecules.

2)	 Test set molecules.

Table 3. Statistical results of 3D QSAR generated by SA kNN MFA method for Acyl Thiourea Derivatives.

Sr. No R1 R2 IC50 pIC50

1 4-Ethoxy-6-Methyl pyrimidine 5-(2-chlorophenyl)-2-furyl 1.65 -0.21748

2 4,6-diethoxy pyrimidine 5-(2-chlorophenyl)-2-furyl 0.08 1.09691

3 4-Hydroxy-6-Methyl pyrimidine 5-(2-chlorophenyl)-2-furyl 0.32 0.49485

4 4,6-dimethoxy pyrimidine 5-(2-chlorophenyl)-2-furyl 1.77 -0.24797

5 4,6-dichloro pyrimidine 5-(2-chlorophenyl)-2-furyl 14.5 -1.16137

6 4,6-dichloro pyrimidine 5-(4-nitrophenyl)-2-furyl 1.66 -0.22011

7 t-butyl amino carbonyl 5-(4-nitrophenyl)-2-furyl 1.30 -0.11394

8 t-butyl amino carbonyl Phenyl 1.79 -0.25285

9 t-butyl amino carbonyl Methyl 1.83 -0.26245

10 t-butyl amino carbonyl (2,4-Dichloro-Phenyl)-OCH2 1.67 -0.22272

11 t-butyl amino carbonyl 2,6-Difluoro-Phenyl 1.43 -0.15534

12 t-butyl amino carbonyl 2-Methyl-1-(4-Chloro-Phenyl)-Propane 1.35 -0.13033

13 t-butyl amino carbonyl 3-(2, 2-dichloro ethenyl)-2,2-dimethyl cyclopropyl. 0.26 0.58503

14 4-Methoxy-6-chloro pyrimidine 5-(2-chlorophenyl)-2-furyl 1.29 -0.11059

15 4-Methyl-6-Hydroxy pyrimidine 6-Chloro-3-Pyridine 8.58 -0.93349

16 4,6-dimethoxy pyrimidine 5,6-Dichloro-3- Pyridine 18.5 -1.26717

17 4,6-dimethyl pyrimidine Phenyl 2.1 -0.32222

18 4,6-diethoxy pyrimidine 2-Methyl-1-(4-Chloro-Phenyl)-Propane 0.31 0.50864

19 4,6-dimethoxy pyrimidine 3-(2-chloro-3,3,3-trifluropropenyl)-2,2-dimethyl cyclopropyl 0.97 0.01323

20 4,6-dimethyl pyrimidine 3-(2-chloro-3,3,3-trifluropropenyl)-2,2-dimethyl cyclopropyl 0.58 0.23657

21 4,6-dimethyl pyrimidine 2-Fluoro-4-Chloro-Phenyl 1.36 -0.133539

22 4-Methoxy-6-chloro pyrimidine 2-Fluoro-4-Chloro-Phenyl 5.1 -0.70757

Sr.No R1 R2 IC50 pIC50

1 4-Hydroxy-6-Methyl pyrimidine 5-(4-nitrophenyl)-2-furyl 0.36 0.4437

2 t-butyl amino carbonyl 5-(2-Chloro-Phenyl)-2-Furyl 1.42 -0.152288

3 t-butyl amino carbonyl 3-(2-chloro-3,3,3-trifluropropenyl)-2,2-dimethyl cyclopropyl 0.51 0.29243

4 4-Methoxy-6-methyl pyrimidine 5-(4-nitrophenyl)-2-furyl 1.22 -0.08636

5 4,6-dimethyl pyrimidine 2-Chloro-3- Pyridine 7.19 -0.856729

6 4,6-dimethoxy pyrimidine (2,4-Dichlorophenyl)-OCH2 1.89 -0.276462

q2 pred_r2 q2_ se K Nearest Neighbour pred_r2se

0.6840 0.7697 0.2811 2 0.2972
Contributing
Steric
Parameters

S_333(-0.0053,0.0041)

Contributing
Electronic
Parameters

E_449(0.0749,0.0796)
E_450(-0.0456,0.0118)

Contributing
Hydrophobic
Parameters

H_1047(0.3218,0.3622)

N 24
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Figure 4. Stereo view of the molecular rectangular field grid 
generated around the superposed molecular units of Acyl 
Thiourea series using SA kNN-MFA Model.

Table 4. Structures of designed compounds on the basis of template B with their predicted activity.

manners, which is shown below (Figure 5).
Thus, SA KNN-MFA model leads to 

identification of various local interacting 
molecular features responsible for activity 
variation and hence provides direction for design 
of new molecules in a convenient way.

Interpretation from 3D QSAR studies and 
correlation of 3D descriptors

electronic parameters 
3D QSAR studies revealed the electronic 

requirements around the acyl thiourea 
pharmacophore. The points those were found 
in SA KNN-MFA model are E_449, E_450 
implying that these points are indeed significant 
for structure activity relationship and require 
the electronic properties as mentioned in the 
ranges in parenthesis for maximum biological 
activity.

Range for electronic descriptor E_450 
(-0.0456, 0.0118).Descriptor ranging from 
negative to positive values specifies that the 
pharmacophore should be substituted with 
electronegative and electropositive groups 
so that it should increase the neuraminidase 

Figure 5. Stereo view of the molecular rectangular field grid 
generated around the superposed molecular units of Acyl 
Thiourea series using SA kNN-MFA Model.

inhibiting activity, such as –OH, –Cl, -NO2, 
-OR and most potent compound possesses two 
electronegative groups such as –Cl, -OC2H5 
from the parent series.

Steric parameters
The steric points that were found in SA 

KNN-MFA model is S_333 implying that these 
points are indeed significant for structure activity 
relationship and require the steric properties 
as mentioned in the ranges in parenthesis 
for maximum biological activity. Range for 
steric descriptor is S_333 (-0.0053, -0.0041). 
Descriptor showing negative values specifies 
that the pharmacophore should be substituted 
with sterically less bulky group so that it can 
increase the NA inhibiting activity, such as lower 
alkyl groups, unsubstituted or mono substituted 
aryl rings. 

Study of structural necessity for 
neuraminidase inhibition

Wang and Wade have reported guidelines 
for structural modification of developing 
neuraminidase inhibitors and the design of 

Mol No. R1 R2 Predicted 
activity

Lipinski’s score
and Screen

R-1 4-nitrophenyl 4-methoxyphenyl 0.8564 ADRXWS (6)

R-2 4-nitrophenyl 4-nitrophenyl -0.3876 ADRXWS (6)

R-3 Benzyl 4-hydroxyphenyl 0.9765 ADRXWS (6)

R-4 3-aminophenyl 4-nitrophenyl 0.8450 ADRXWS (6)
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novel inhibitors in order to optimize inhibitory 
activity (Figure 6) (23). Since the catalytic site 
of influenza virus Neuraminidase was totally 
conserved among all influenza viral strains, 
an ideal drug which effectively blocked one 
neuraminidase would be effective at blocking 
all other neuraminidases, even those on viruses 
which have not yet appeared in humans (8). 

Thus, along with QSAR study, we are herein 
considering the essential structural necessities 
which should be present in the acyl thiourea 
pharmacophore. It will be beneficial in such 
a way that we can design better compounds 

which would fit into neuraminidase binding site 
perfectly and would show best interactions than 
standard, marketed neuraminidase inhibitors.

A negatively charged (Nc) group that makes 
strong charge-charge interactions with the 
triarginyl pocket as Arg 292, Arg 371 and Arg 
118 is highly favorable for binding. Positively 
charged (Pc) group is favoured for binding 
by the electrostatic interactions with residue 
Asp151.While, Arg 152 requires hydrogen 
bond acceptor (Ha) group for binding. Trp 178 
requires such a structural functionality which 
should be hydrogen bond donor (Hd) as well as 
small hydrophobic group for favourable binding. 
While, large hydrophobic group contributing to 
the van der Waals interaction should be preferred 
for three different amino acid residues such as 
Arg 224, Ala 246 and Glu 276.

Along with structural necessities for 
neuraminidase inhibition, we are considering air 
plane model of neuraminidase enzyme, so as to 
design potential derivatives with excellent anti-
influenza activity (24). Wang and co-workers (24) 
derived an airplane model of the neuraminidase 
active site as illustrated in (Figure 7) to 
summarize the basic structural requirements of 
potent neuraminidase inhibitors. The active site 
of neuraminidase has four main well conserved 
binding sites. The centre of site 2 is about 6 A.U. 

Figure 6. Important structural features for potent inhibitor and 
corresponding neuraminidase residues (23).

Figure 7. Diagram of neuraminidase sites S1-S4 and important nearby residues (25). 
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from site 1 and about 4 A.U. from site 3, while 
site 4 is about 6 A.U. from site 1 and 5 A.U. from 
site 3. Sites 1 and 3 are separated by 9-10 A.U. or 
about 7 single bond lengths.

Gong and co-workers have proposed about 
the pocket study of neuraminidase active site (8). 

By taken into consideration, structural 
necessity and airplane model and pockets of 
neuraminidase enzyme, we will design such new 
chemical entities which are much potential than 
standard and selective inhibitors.

Design of new chemical entities
Designed compounds generated in this way 

were then screened by three type of screening 
methods; Lipinski’s rule and prediction of 

activity using multiple linear regression equation                                                                                              
[pIC50 = 0.250765 T_C_N_6 + 0.106694 
T_C_O_2 + 0.637398 MMFF_2 - 0.623115 
chiV3 + 6.1896] obtained by the two 
dimensional QSAR studies and to ensure drug 
like pharmacokinetic profile by prediction of 
ADMET properties for finding a new compounds 
having neuraminidase inhibitor and anti-
influenza activity (20). New chemical entities 
were generated using optimized pharmacophore 
shown in (Figure 8).

More than one hundreds of molecules 
were generated using CombiLib tool which 
follows the Lipinski’s rule, but we have 
selected only 10 most active molecules on the 
basis of predicted activity. The most potent 

Figure 8. Pharmacophore Requirement of Acyl thiourea 
Derivatives Generated for Selective Inhibition of 
neuraminidase for anti-influenza activity.

Figure 9. Template A.

 

 
Figure 10. Template B.
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compounds have positive values of pIC50, 
similarly the predicted activity values for new 
chemical entities were found to lye towards 
positive side.Compounds qualifying all 
required parameters set for Lipinski’s Screen/
filter are indicated by ADRXWS strings. The 
columns containing the Lipinski’s screen 
score and other column containing the strings 
of alphabets, ADRXWS indicate that all 6 
conditions are satisfied by that corresponding 
compound. Lesser the screen score, lesser 
is the pharmacokinetic compatibility (drug 
likeliness) for that designed compound.

Generation of templates
We have generated two templates 

considering above stated pharmacophore 
requirements. Designed templates consist of 
dicarbonyl groups which are different than 
parent series, while parent series has single 
acyl group in it, we have placed another acyl 
group instead of any aryl ring containing 
oxygen atom, as in parent series has furan 
ring in it (19). 

One template (Figure 9) consists of 3 –NH 
groups in the pharmacophore, while another 
template (Figure 10) consists of 2 –NH groups, 
one –NH group is isosterically replaced by –CH2 
group.

Both of the templates have seven single 

Figure 11. Designed template with active binding site.

bonds between R1 and R2 substituents as it is 
basic structural requirement for neuraminidase 
inhibition, where in case of R1 and R2, we 
have used aryl ring with electronegative and 
electropositive groups such as–OH,-COOH,-
NO2 and –OCH3, –NH2 and aryl ring also 
contributes to hydrophobicity, as correlated in 
3D-QSAR studies. Those seven single bonds 
are represented in red colour in designed 
template (Figure 11). Even placement of extra 
carbonyl functionality and aryl ring with 
electronegative carboxyl group in the acyl 
thiourea pharmacophore becomes helpful for 
binding it with triarginyl residues as discussed 
above (Figure 6,7).

Generation of combinatorial library 
We have generated more than hundrded 

molecules using CombiLib tool (20) which 
follows the Lipinski’s rule, but we have 
selected only 10 most active molecules on the 
basis of their predicted activity using Multiple 
Linear regression equation. 

We have selected only four molecules 
from the B template (Table 4) considering 
promising predicted activity.While from A 
template we have selected seven molecules 
(Table 5) on the basis of predicted activity.

Out of total 11 designed new chemical 
entities only 3 compounds viz. R-8,R-9 and 
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Table 5. Structures of designed compounds on the basis of template A with their predicted activity.

aHydrogen Bond.
bVan der Waals forces.

Table 6. Results of Molecular Docking Studies performed using extra precision mode of Glide (34).

R-10 show predicted activity less potent  as 
compared with most potent compound from the 
parent series with pIC50 1.09691,because higher 
the value of pIC50 more potent is the entity.

Molecular docking studies
Molecular Docking is a key tool in structural 

molecular biology and computer-assisted 
drug design. Selected most active molecules 
were docked on crystallographic structure of 
neuraminidase enzyme available in the RCSB 
PDB Database (Code: 3b7e) co-crystallized with 
the ligand Zanamivir (27). A molecular docking 
study helps to determine possible interaction of 
new chemical entities with the enzyme on PDB 
(3b7e).

The goal of ligand–protein docking is to 
predict the predominant binding mode(s) of a 
ligand with a protein of known three-dimensional 
structure. Virtual screening on the basis of 
molecular descriptors and physicochemical 
properties of active ligands has great usefulness 
in finding hits and leads through library 
enrichment for screening (28), a strategy that 
is also well-used for reducing and enriching the 
library of ligands for molecular docking; there 
are recent reports that ligand shape-matching 
does as well as, if not better than, docking (29). 

Glide was found to produce least number 
of inaccurate poses and 85% of Glides binding 
models had an RMSD of 1.4 A0 or less from 
native co-crystallized structures (30). The Glide 

Molecule No. G- Score E- model No of H a Bond No. of Good Vdw b No. ofBad Vdw b No.ofUgly Vdwb

R-7 -5.98 -51.6 3 220 12 3

R-8 -5.58 -50.5 4 233 10 3

Peramivir -5.53 -45.5 7 278 14 2

R-4 -5.14 -47.3 2 241 7 1

R-10 -5.07 -43.2 8 150 9 2

R-9 -4.83 -47.9 2 210 9 2

R-2 -4.79 -41.2 3 234 11 1

R-5 -4.58 -47..3 3 134 6 1

Oseltamivir -4.57 -49.3 4 266 8 1

R-3 -4.27 -51.3 2 233 6 0

R-6 -3.91 -58.0 6 167 7 0

R-1 -2.74 -2.74 2 173 6 0

Molecule No. R1 R2 Predicted activity Lipinski’s score and Screen

R-5 3-nitro phenyl 3-carboxy phenyl -0.03206 ADRXWS (6)

R-6 2-hydroxy phenyl 3-carboxy phenyl -0.06934 ADRXWS (6)

R-7 2-hydroxy phenyl 3-hydoxy phenyl  -0.156 ADRXWS (6)

R-8 4-nitrophenyl 3-carboxy phenyl -0.18876 ADRXWS (6)

R-9 Benzyl 3-hydoxy phenyl -0.38875 ADRXWS (6)

R-10 4-methoxy phenyl 3-carboxy phenyl -0.39318 ADRXWS (6)
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docking program approximated a complete 
systematic search of the conformational, 
orientation and positional space of the docked 
ligand molecules in to the receptor (protein) 
binding pocket. 

Overview of docking of new chemical entities
All the designed compounds that show good 

predicted activity and follows Lipinski’s rule 
were docked into neuraminidase enzyme (pdb 
code: 3b7e) to study the binding mode of designed 
compounds. Further screening to sort out the best 
compound having good binding affinity which 
was compared with binding mode of Standard 
Neuraminidase Inhibitors, e.g. Oseltamivir, 
Zanamivir and Peramivir results of which are 
depicted in (Table 6 and 7).

The reliability of the docking results was first 
checked by comparing the best docking poses 
obtained for the co-crystallized inhibitor with its 
bound conformation. 

As a result, a root mean square deviation 
(RMSD) of 0.7 Å was found suggesting that the 
docking procedure could be relied on to predict 
the binding mode of our compounds. 

Poses of interactions of ligands along with 
standard are represented in (Figure 12, 13, 14 
and 15).

Key findings of overall Docking studies
The close inspection of result of molecular 

docking studies indicated that the designed 
compounds docked better than ligand Oseltamivir 
and Peramivir. Following are the reasons for the 
same.

1. G-Score
Molecules R-7 and R-8 show highest 

G-score than both the standards Peramivir and 
oseltamivir. While, molecules such as R-2, R-4, 
R-5, R-9 and R-10 show higher G-score than 
oseltamivir.

2. Hydrogen bond interactions
Molecule R-10 shows highest hydrogen 

bond interactions i.e. 8 than Peramivir and 
Oseltamivir, which show 7 and 4 interactions 
respectively. While, R-6 shows 6 hydrogen bond 
interactions which are more than oseltamivir.

3. Van der waals interactions
R-1, R-3, R-4, R-5, R-6 show less bad 

van der Waals interactions than oseltamivir 
and Peramivir, where only Peramivir shows 
highest bad van der Waals interactions as 14 
and oseltamivir shows 8 bad van der Waals 
interactions. Molecules R-1, R-3 and R-6 

 

 

Figure 12. Hydrogen bond interaction of R-7.
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Figure 13. Hydrogen bond interaction of R-10.

Figure 14. Hydrogen bond interaction of Oseltamivir.
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show zero ugly forces, where oseltamivir and 
Peramivir show 2 and 1, respectively.

4. In all the bad and ugly contacts penalize the 
G-score and overall conformation of ligand does 
matter a lot while binding to amino acid residues 
at active binding site. This also penalizes the 
energy of the model.

Key interactions are depicted in tabular 
form (Table 7). It was observed from docking 
studies that all ligands lie in the same pocket of 
neuraminidase binding site of enzyme containing 
Arg 152, Tyr 406, Arg 371, Arg 118, Glu 227, 
Glu 277, Asp 151, Arg 292, Asn 294 and Ser 
246 amino acids. Thus designed compounds 
showed a good binding affinity for interaction 
with neuraminidase active binding site.R-7, R-8, 
R-9 and R-10 show Hydrogen bond interaction 
with different arginine residues, in this case one 
carbonyl group, a negatively charged group from 
dicarbonyl thiourea interacts with positively 
charged groups or ions such as –NH2 or H+ of 
OH arginine residues. Here, one of structural 
necessity for selective neuraminidase inhibition 
is satisfied.

R-7, R-8, R-9 and R-10 show electrostatic 
interaction with different glutamic acid residues. 
In their case, either a positively charged group 
such as –NH2 or positively charged ion H+ of –OH 
or –COOH interacts with carbonyl or carboxyl 
group of glutamic acid residues, satisfying 
structural necessity for selective neuraminidase 
inhibitor.

Oseltamivir shows Hydrogen bonding with 
amino acids Arg 152, Tyr 406, Arg 371, Arg 
118 which are one of essential interactions for 
neuraminidase inhibition, which is described 
previously in study of structural necessity for 
neuraminidase inhibition. Distance of hydrogen 
bonds in NCEs and standard compounds 
also explain better interaction (Table 7) with 
neuraminidase binding site in 3b7e pdb.

The hydrogen bond distance in case of 
compound R-7 with Glu 227 (1.793 A.U.) 
which is less as compared to the hydrogen 
bonding interaction in case of Peramivir 
which is 2.477 A.U. Hence, less hydrogen 
bonding distance than standards is required 
for better binding which is reported in NCEs 

 

 

Figure 15. Hydrogen bond interaction of Peramivir.
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Table 7. Key interactions with distances and involved groups.

Molecule 
No.

H-bond interaction
With amino acid

H-bond interaction
in A.U.

Functional Group  of 
structure involved in bonding

Amino acid Residue involved in 
bonding

R-7
Glu 119
Arg 118
Glu 227

1.793

1.807

1.779

-NH
-C=O

H of OH

-COOH
-NH2

-COOH

R-8

Glu 119
Arg 118
Glu 227
Tyr 406

1.747
1.913

1.738

1.929

-NH
-C=O

H of COOH
-C=O

-COOH
H of OH
-COOH
-NH2

Peramivir

Trp 178
Glu 227
Tyr 406

Asp 151(2)

Arg 371(2)

1.960

2.477

1.985

a) 1.803
b) 2.315

a) 2.207
b) 1.966

-NH of guanidine
-NH of guanidine
-C=O of COCH3

a) -NH of guanidine
b)H of OH

a) -C=O of COCH3
b) -C=O of COCH3

-C=O

H of OH

H of OH

a)-C=O

b) -C=O

-NH2
-NH2

R-4 Asp 151
Trp 178

2.068
1.976

-NH
-NH

-C=O
-C=O

R-10

Asp 151
Arg 292

Arg 371(2)
Glu 277
Tyr 406
Glu 227
Arg 152

1.851
2.992

a)2.353
b)2.101

2.482

2.179

1.731
2.135

-NH
-C=O

a) -C=O
b) -C=O

-NH

-C=O

H of OH
O of OCH3

-C=O
-NH

a)-NH
b)-NH

-C=O

H of OH

-C=O
-NH

R-9 Glu 119
Arg 118

1.938
1.894

-NH
-C=O

-C=O
-NH

R-2
Asn 294
Ser 246
Asn 221

2.3
2.102
2.138

O of NO2
O of NO2
O of NO2

-NH
-NH
-NH

R-5 Asp 151
Tyr 406

2.213
2.412

-NH
-C=O

-C=O
H of OH

Oseltamivir

Arg 152
Tyr 406

Arg 371

Arg 118

2.18

2.051

2.470

1.853

-C=O of COCH3
-C=O of COCH3

-C=O 
of COOC2H5

-C=O 
of COOC2H5

-NH
-OH

-NH

-NH
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during docking study. 
G-score is calculated taking all above 

aspects in to consideration, while designing 
new chemical entities to inhibit Neuraminidase 
more effectively and in turn to optimize the 
pharmacophore required for selective inhibition 
of Neuraminidase.

ADMET prediction
Prediction of ADMET properties was used 

as last screen to sort out those compounds that 
already follow Lipinski’s rule and show good 
predicted activity and binding conformation at 
Neuraminidase receptor.

The parameters illustrated in (Table 8) 
Qikprop analysis show significant results. CNS 
parameter is related with absorption of entity 
through Blood brain barrier, standard limit 
for CNS is -2 to +2, where -2 shows inactive 
CNS penetration and +2 shows active CNS 
penetration. All the designed entities show 
satisfactory results, with negative values, 
indicating poor CNS penetration. % Oral 
Absorption parameter is related with extent 
of oral absorption of drug, indicating suitable 
route of administration, if it is going to be 
formulated. If entity shows more than 80% 
oral absorption, it is considered to be highly 
absorbed. While if any entity shows less than 
25% oral absorption, it is considered to be 
poorly absorbed. Metabolites suggest the 
number of metabolites which will possibly 
generate after undergoing metabolic changes, 
number of metabolites should range from 1-8.

Conclusion

The thorough analysis of results of 3D 
QSAR studies and the structural necessities 
for neuraminidase inhibition have helped us 
to make a decision about the electronic, steric, 
hydrophobic nature of substitution pattern around 
the selected acyl thiourea pharmacophore. 
Two different Templates were generated on the 
basis of above information using lead grow 
tool of V-life Molecular design suite. Using the 
information, the New Chemical Entities (NCEs) 
were designed using CombiLib tool with the 
help of multiple linear regression equation and 
activities were also computed for the designed 
NCEs.

The major reason for failure of NCEs at latter 
stages of drug discovery process i.e. drug like 
pharmacokinetic profile set up using Qikprop 
(33) 2.2 Tool of, Schrodinger; so that only drug 
like NCEs would be generated and resultant 
NCEs would not have the pharmacokinetic 
inadequacies. The generated NCEs were 
analyzed by Lipinski’s screen. Results indicated 
that designed NCEs are satisfying all the 
parameters set for Lipinski’s screen. The most 
potent derivatives were subjected to molecular 
docking studies to get further insights of 
interactions of NCEs with neuraminidase.

In present study, we performed molecular 
modeling study demonstrating that acyl thiourea 
derivatives inhibit neuraminidase by binding 
to the site. The results of dry lab work will be 
analyzed thoroughly to find out correctness of the 

Table 8. Prediction of ADMET properties.

Molecule No. Molecular
weight CNS % Oral

Absorption
No.of possible 

metabolites

R-7 331.345 -2 78.416 3

R-8 388.354 -2 48.485 2

Peramivir 328.411 -2 29.001 3

R-4 358.371 -2 73.409 4

R-10 373.383 -2 73.351 2

R-9 329.373 -2 84.192 3

R-2 388.354 -2 68.372 3

R-5 358.371 -2 43.878 3

Oseltamivir 312.408 -1 68.391 3
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rational used for the design of NCEs in general 
and optimization of pharmacophore for selective 
neuraminidase inhibition of in particular.
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