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Abstract- In this paper, a flexible and robust wavelet 

based image denoising algorithm is proposed, which 

adapts itself to various and unknown types of noise as 

well as to the preference of the medical expert: a single 

tuning parameter is used to balance the preservation of  

relevant details against the degree of noise reduction. We 

employ a preliminary coefficient classification technique 

to empirically estimate the statistical distributions of the 

coefficients that represent useful image features on the 

one hand and mainly noise on the other. The proposed 

algorithm is of low-complexity, both in its implementation 

and execution time. The results show that its usefulness 

for denoising and enhancement of the CT, Ultrasound 

and Magnetic Resonance images. 
 

KEYWORDS: filtering, Rician noise, speckle noise, 

Detection and Estimation. 

I. INTRODUCTION 

    The image denoising plays a significant role in modern 

applications in various fields, including medical imaging and 
preprocessing for computer vision. Medical imaging acquisi-

tion technologies and systems introduce noise and artifacts in 

the images that should be attenuated by denoising algorithms. 

The denoising process, however, should not destroy anatomi-

cal details relevant from a clinical point of view. So, it is very 

difficult to suggest a robust method for noise removal which 

works equally well for different modalities of medical 

images.   Also biomedical images show extreme variability 

and it is necessary to operate on a case by case basis. This 

motivates us the construction of robust and versatile 

denoising methods that are applicable to various 

circumstances, rather than being optimal under very specific 

conditions [1], [3].   In this paper, we propose a robust 

method that adapts itself to various types of image noise as 

well as to the preference of the medical expert: a single  

 

 
 

 

 

tuning parameter can be used to balance the preservation of 

relevant details against the degree of noise reduction.  

    In image denoising one often faces uncertainty about the 

presence of a given “feature of interest” (e.g., an image edge)  

in a noisy observation. Due to the sparsity of the wavelet 

representation, the Middleton‟s optimum coupled detection 

and estimation approach [2] seems well suited for wavelet 

domain image denoising. Bayesian methods [4], [5] take the 

uncertainty of the signal presence into account implicitly, 

assuming a Bernoulli process on the wavelet coefficients [6] 

and using Gaussian mixture models for the probability 

density functions of the wavelet coefficients. Hidden Markov 

tree models [7], [8] or Markov random field prior models [9], 

[10] are spatially adaptive methods usually employ complex 
algorithms.  Other algorithms such as spatially adaptive 

thresholding and locally adaptive Wiener filtering can be 

found in  [11] and [12]. 

    In this paper, we propose a related, but more flexi-

blemethod, which is applicable to various and unkno-wn 

types of image noise. We employ a preliminary detection of 

the wavelet coefficients that represent the features of interest 

in order to empirically esti-mate the conditional pdf‟s of the 

coefficients given the useful features and given background 

noise. At the same time, the preliminary coefficient classific-

ation is also exploited to empirically estimate the correspond-

ding conditional pdf‟s of the local spatial activity indicator. 

The preliminary classification step in the proposed method 

relies on the persistence of useful wavelet coefficients across 

the scales [13], and is related to the one in [38], but avoids its 

iterative procedure. In contrast to [2], and related methods 

like [14], where the inter-scale correlations between wavelet 
coefficients are used for a “hard” selection of the coefficients 

from which the denoised image is reconstructed, our algori-

thm performs a soft modification of the coefficients adapted 

to the spatial image context. The classification step of the 

proposed method involves an adjustable parameter that is  
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related to the notion of the expert-defined “relevant image 

features”. In certain applications the optimal value of this 

parameter can be selected as the one that maximizes the 

signal-to-noise ratio (SNR) and the algorithm can operate as 

fully automatic. However, we believe that in most medical 

applications the tuning of this parameter leading to a gradual 

noise suppression may be advantageous. The proposed 

algorithm is simple to implement and fast. We demonstrate 
its usefulness for denoising and enhancement of the 

ultrasound and the magnetic resonance images. 

   The paper is organized as follows. In Section II, the theore-

tical concept behind the proposed method and the new, 

practical algorithm are described. The application of the 

proposed method to ultrasound images is demonstrated and 

discussed in Section III. In Section IV, noise removal from 

the magnetic resonance images is addressed. The results are 

also discussed in Sections III and IV, and the concluding 

remarks are given at the end. 

 
II. THE EXPERT NOISE FILTERING TECHNIQUE 

  

  A   BASIC THEORY 

 A general noise model is defined as k k ky w n  , where 

kw  is the unknown noise-free wavelet coefficient,   a 

point-wise mathematical operation (addition in the case of 

additive noise and multiplication in the case of speckle noise) 

and kn  an arbitrary noise contribution. Our wavelet domain 

estimation approach relies on the joint detection and 

estimation theory and is related to the problem of the spectral 
amplitude estimation in [15]. The algorithm is implemented 

using the quadratic spline wavelets [13]. 

    Let kx denote a random variable, which takes 

values ky from the binary label set {0,1}. The hypothesis “the 

wavelet coefficient ky represents a signal of interest” is 

equivalent to the event 1kx  , and the opposite hypothesis is 

equivalent to 0kx  . The wavelet coefficients representing 

the signal of interest in a given sub band are identically 

distributed random variables with the probability density 

function |ˆ ( | 1)kk kY Xp w . Similarly, the coefficients in the 

same sub band, corresponding to the absence of the signal of 

interest, are random variables with the pdf |ˆ ( | 0)kk kY Xp w . 

     Under the model assumptions, the minimum mean 

squared error estimate (the conditional mean) of kw is 

ˆ ( | , 1) ( 1 | ) ( | , 0)k k k k k k k k kw E w y X P X y E w y X    

 ( 0 | )k kP X y where ( )E  stands for the expected value. If  

 

the signal of interest is surely absent in a given wavelet 

coefficient, then 0kw   and ( | , 0) 0k k kE w y X   . In the 

case where the signal of interest is surely present, we 

approximate ( | , 1)k k k kE w y X y   which accounts for 

the fact that vast majority of the coefficient magnitudes 

representing the signal of interest are highly above the noise 

level. Applying Bayes‟ rule, one can express ( 1| )k kP X y   

as a generalized likelihood ratio, and our estimate becomes 
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and P symbolically denotes the prior knowledge that is used 

to estimate the probability of signal presence. In [16], 

Pizurica proposed a method to estimate this probability for 

each wavelet coefficient from its local surrounding, using a 

chosen indicator ke of the local spatial activity. In particular, 

since our estimate of the probability of signal presence is a 

function of ke , we write    1 | 1 |k k kP X P X e  P ,  

and replace k in (2) by  
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where r is the ratio of unconditional prior probabilities  
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  For a given type of noise, one can derive the complete 

estimator analytically. In such approaches where the required 

conditional densities need to be expressed analytically, the 

choice of the local spatial activity indicator is usually 

restricted to simple forms: even when ke
 
is defined simply as 

the locally averaged coefficient magnitude, certain 

simplifying assumptions about the statistical properties of the 

wavelet coefficients are needed in order to derive 

| ( | )E X k kk k
p e x

 
analytically. The algorithm that we propose 

in this paper is applicable to various noise types, and allows 

an arbitrary choice of ke . 

    The idea behind the proposed algorithm is to empirically 

estimate the probabilities and the probability density 

functions that specify the estimator. Let N denote the number 

of wavelet coefficients in a detail image. For each detail 

image  ,1,
D D D
j N jjy yY . . , we first estimate the mask 
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 ,1,
ˆ D D D

j N jjx xX . .  which indicates the positions of 

significant wavelet coefficients (representing the signal of 

interest). As usual, we relate the notion of significant wavelet 

coefficients to the standard deviation of the noise. Also, we 

rely on the persistence of significant wavelet coefficients 

across resolution scales . In particular, we extend our robust 

coarse-to-fine classification method from as follows:          

       

2
, ,

, 2
, ,

ˆ ˆ0, if | || | ( )
ˆ

ˆ ˆ1, if | || | ( )

D D D
jk j k jD

k j D D D
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       (5)             

where ˆ D
j  is an estimate of the noise standard deviation in 

the detail image D
jY , and K  is a heuristic, tunable parameter 

that controls the notion of the signal of interest. We estimate 

the standard deviation of the input noise̂  as the median 

absolute deviation of the wavelet coefficients in the HH 

subband at the finest resolution scale, divided by 0.6745.  

   In estimating ˆ D
j , we follow 2 2ˆ ˆ( )D D

j jS  , where for 

each subband the constant D
jS  is calculated from the filter 

coefficients of the highpass filter g and the lowpass filter h  

of the discrete wavelet transform, as  , 2LH HL
j kk

S g    

 2
ll

h  and    
2 2( 1)

2 2
j

HH
j k lk l

S g h


   . To 

initialize the classification (5), we start from ˆ D D
J JW Y , 

where J  is the coarsest resolution level in the wavelet 

decomposition. 

     Now we address the estimation of the wavelet coefficients 
D
jY using the estimated mask D

Jx . The estimator requires the 

conditional densities )(| |
k

k kY Xk
p y x and )(| |

k
k kE Xk

p e x . 

Since )(| |
k

k kY Xk
p y x is usually highly symmetrical around 0, 

in practice we shall rather estimate the conditional pdf‟s 

)(| |
k

k kXkM
p m x of the coefficient magnitudes | |k km y . 

As the local spatial activity indicator ke , we use the averaged 

energy of the neighboring coefficients of ky  where the 

neighbors are the surrounding coefficients in a square 

window at the same scale and the “parent” (i.e., the 

coefficient at the same spatial position at the first coarser 

scale). Having the estimated mask 1ˆ ˆ ˆx { .. }Nx x , let 

0 ˆ{ : 0}kS k x  , and 1 ˆ{ : 1}kS k x  . The empirical 

estimates |ˆ ( | 0)M X kk k
p m  and | 0)|ˆ (E X kk

p e are computed 

from the histograms of 0{ : }km k S and 0{ : }ke k S  

respectively (by normalizing the area under the histogram). 

Similarly, |ˆ ( | 1)M X kk k
p y  and |ˆ ( | 1)E X kk k

p e are computed 

from the corresponding histograms for 1k S . 

     Our estimation approach still requires the probability 

ratio. Reasoning that ( 1)kP X 
 

can be estimated as the 

fractional number of labels for which ˆ 1kx  , we estimate the 

parameter r as 
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Then the final estimation is defined as  
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    In Fig.1, we show an example of the empirical densities 

|ˆ ( | )M X k kk k
p m x and |ˆ ( | )E X k kk k

p e x . The direct 

computa-tion of the ratios ˆ
k and ˆ k from the normalized 

histograms shown in Fig.1 is not appropriate due to errors in 

the tails. One solution is to first fit a certain distribution to the 

histogram. Here we apply a simpler approach, observing that 

both  ˆlog k and  ˆlog k can be approximated well by 

fitting a piece-wise linear curve as illustrated in Fig.1. 

Formally, we approximate  

          1 1

2 2
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Fig 1 Examples of the empirical pdf‟s and fitted log-ratios in the proposed 

method, for the top left ultrasound image. 

II. APPLICATION TO ULTRASOUND IMAGES 

    Ultrasound images are corrupted by speckle noise, which 

affects all coherent imaging systems. We compare the 

performance of the proposed method to one conventional 

approach in speckle filtering: the homomorphic Wiener filter 

. In particular, we apply Matlab‟s spatially adaptive Wiener 

filter to the image logarithm and subsequently perform the 

exponential transformation on the filtered out put. The 

window size of the Wiener filter was experimentally 

optimized to produce the maximum output SNR for each test 

image and for each amount of noise used in the simulations. 

   Table1 shows the quantitative comparison of widely used 

metrics, signal to noise ratio (SNR), and peak signal to noise 

ratio (PSNR). The computation time for each algorithm is 

also included in this table. We can notice that our proposed 
filter exhibits more than 2dB improvement in both SNR and 

PSNR over Homomorphic Wiener filter. The results clearly 

demonstrate that the proposed filter outperforms the 

homomorphic spatially adaptive Wiener filtering both in 

terms of SNR and PSNR 

 

Fig. 2Application to the real noisy image-2 (a) Real speckle noised 

Ultrasound image2 (b) Wiener filter (c) proposed filter 

 

 
Fig.3. Visual Comparison for Ultrasound Gallblader image  (a) Original 

Image  (b) artificially speckled images, the results of the homomorphic 

spatially adaptive Wiener filter, and the results of the proposed method, for 

K = 3 and window size 5x5. 

 

 
Fig.4. Horizontal profile comparison  for „synth‟ image. 

 

Table 1 Signal to Noise Comparisons for the three Test Images. 

 

 
IV  APPLICATION TO MRI IMAGES 

      In magnetic resonance imaging (MRI)  the practical 

limits of the acquisition time impose a trade-off between the 

signal to noise ratio and the image resolution. The MRI 

image is commonly reconstructed by computing the inverse 

discrete Fourier transform of the raw data. Most commonly, 

the magnitude of the reconstructed image is used for visual 

inspection and for computer analysis. Noise in the MRI 

image magnitude is Rician, having a signal dependent mean. 
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    It was noted that, due to the signal-dependent mean of the 

Rician noise, both wavelet and scaling coefficients of a noisy 

MRI image are biased estimates of their noise-free counter 

parts. It was shown that one can efficiently overcome this 

problem by filtering the square of the MRI magnitude image 

in the wavelet domain. In the squared magnitude image, data 

are non-central chi-square distributed, and the wavelet 

coefficients are no longer biased estimates of their noise-free 

counterparts. The bias still remains in the scaling 
coefficients, but is not signal dependent and it can be 

removed easily at the resolution scale 2 j , from each scaling 

coefficient 12 j
c

  should be subtracted, where 2
c is the 

under lying complex Gaussian noise variance. We therefore 

apply our method to the squared magnitude of the MRI 

image, subtract the constant bias from the scaling 

coefficients, and subsequently compute the square root of the 

denoised squared magnitude image. 

   Three clinical MR Images, a Pelvic MR Image of size 

644X626, a Brain MR Image of size 471X341, and a Spine 

MR Image of size 490X486 are used for the experimental 

evaluation purpose.  In simulations, complex zero mean 

white Gaussian noise with standard deviation 30c 
 
was 

added to these images. Following figure shows the denoising 

result of the proposed method comparison with the spatially 

adaptive wiener filter. The results show that our proposed 

algorithm out performs with that of the spatially adaptive 

Wiener filtering. Table 2 shows the quantitative comparison 

of widely used metrics, signal to noise ratio (SNR), and peak 

signal to noise ratio (PSNR). The computation time for each 

algorithm is also included in this table. We can observe that 

5.35 dB improvement in both SNR and PSNR. 
 

            V  CONCLUSIONS 

     A flexible and robust wavelet domain method for noise 

filtering in medical images is designed and presented. This 

method adapts itself to various and unknown types of image 

noise as well as to the preference of the medical expert: a 
single tuning parameter can be used to balance the 

preservation of relevant details against the degree of noise 

reduction. The presented algorithm is a  low-complexity, 

both in its implementation and execution time. The 

simulation results show that our algorithm performs better in 

terms of signal to noise ratio in relation to the existing 

methods in reducing the various types of noise such as 

Speckle noise and Rician noise by adjusting a single 

parameter. 

 

 

 

 
Fig. 5. Application to real noisy MRI images. (a) and (c) original images, 

(b) and (d) the corresponding results of the proposed method for K = 2 

and a 3x3 window size. 

 

 
Fig.6. Quantitative performance of the proposed method. (a) Influence of the 

parameter K for different values 2
c  of the underlying complex Gaussian 

noise. (b) Noise suppression performance (for K = 2) in comparison to the 

spatially adaptive Wiener filtering. 

 

Table 2 Signal to Noise Ratio comparison for three images. Pelvic MR 

Image, Brain MR Image and Spine MR Image, window size 3X3, K =2. 
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