

Design and Implementation of a Low Complex Pattern Matching

Algorithm for Memory Based Computations

SRI M.L.NAIDU(E.C.E)

Email: mllaxmi@gmail.com

ADITYA Institute of Technology and Management

Affiliated to jntu Kakinada

 K.NIVEA (MTECH)

 Email:kalinivea@gmail.com

Abstract: Network intrusion detection system is

used to inspect packet contents against thousands

of predefined malicious or suspicious patterns.

Because traditional software alone pattern

matching approaches can no longer meet the

high throughput of today’s networking, many

hardware approaches are proposed to accelerate

pattern matching. Among hardware approaches,

memory-based architecture has attracted a lot of

attention be- cause of its easy reconfigurability
and scalability. In order to accommodate the

increasing number of attack patterns and meet

the throughput requirement of networks, a

successful network intrusion detection system

must have a memory-efficient pat-tern-matching

algorithm and hardware design. In this paper, we

propose a memory-efficient pattern-matching

algorithm which can significantly reduce the

memory requirement. For Snort rule sets, the

new algorithm achieves 21% of memory

reduction compared with the traditional Aho–

Corasick algorithm. In addi-tion, we can gain

24% of memory reduction by integrating our

approach to the bit-split algorithm which is the

state-of-the-art memory-based approach.

Index Terms—Aho–Corasick (AC) algorithm,
finite automata, pattern matching.

INTRODUCTION

THE MAIN purpose of a signature-based network intru-

sion detection system is to prevent malicious network

attacks by identifying known attack patterns. Due to the

in-creasing complexity of network traffic and the

growing number of attacks, an intrusion detection

system must be efficient,flexible and scalable.

The primary function of an intrusion detection system is

to perform matching of attack string patterns. Because
string matching is the most computative task in network

intrusion detection (NIDS) systems, many hardware

approaches are pro-posed to accelerate string matching.

The hardware approaches

may be classified into two main categories, the logic and

the memory architectures In terms of reconfigurability

and scalability, the memory architecture has attracted a

lot of attention because it allows on-the-fly pattern

update on memory without resynthesis and relayout. The

basic memory architecture works as follows.First, the

(attack) string patterns are compiled to a finite-state
machine (FSM) whose output is asserted when any

substring of input strings matches the string patterns.

Then, the corre-sponding state transition table of the

FSM is stored in memory.For instance, Fig. 1 shows the

state transition graph of the FSM to match two string

patterns “bcdf” and “pcdg”, where all tran-sitions to state

0 are omitted. States 4 and 8 are the final states

indicating the matching of string patterns “bcdf” and

“pcdg”,respectively. In the architecture, the memory

address register consists of the current state and input

character; the decoder converts the memory address to

the corresponding memory location, which stores the

next state and the match vector information. A “0” in the

match vector indicates that no “suspicious” pattern is

matched; otherwise the value in the matched vector

indicates which pattern is matched. suppose the current

state is 7 and the input character and The decoder will

point to the memory location which stores the next state
8 and the match vector 2. Here, the match vector 2

indicates the pattern “pcdg” is matched.Due to the

increasing number of attacks, the memory re-quired for

implementing the corresponding FSM increases

tremendously. Because the performance, cost, and power

consumption of the memory architecture is directly

related to the memory size, reducing the memory size

has become imperative.

REVIEW OF AC ALGORITHM

In this section, we review the AC algorithm. Among all
memory architectures, the AC algorithm has been widely

adopted for string matching because the algorithm can

effectively reduce the number of state transitions and

therefore the memory size. Using some example the state

transition diagram derived from the AC algorithm where

the solid lines represent the valid transitions while the

dotted lines represent a new type of state transition

called the failure transitions.

BASIC IDEA

 Due to the common substrings of string patterns, the

K Nivea et al , International Journal of Computer Science & Communication Networks,Vol 2(3), 441-443

441

ISSN:2249-5789

compiled AC machine may have states with similar

transitions. Despitethe similarity, those similar states are

not equivalent states and cannot be merged directly. In

this section, we first show that functional errors can be

created if those similar states are merged directly. Then,

we propose a mechanism that can rectify those

functional errors after merging those similar states.

HARDWARE ARCHITECTURE:
 Our hardware module which can be configured for

matching 16 or 32 patterns with a state machine

containing 1024 valid transitions at most. The
register,called address_register, is used to store the

current state and the input character. The valid_memory

is used to store the in-formation of valid_state, path Vec,

and if Final corresponding to each valid transition while

the failure_memory is used to store the failure_state

corresponding to each failure transition. In this

prototype, we use a hardwired circuit, called A2P, to

translate the content of the address_register to a

contiguous scope, called pos, to utilize the

valid_memory. The circuit A2P can be implemented

using hardwired circuit or CAM . In addition, the signal

n_valid is high if there is no valid transition cor-

responding to the address_register.called pre-Reg, is

used to trace the precedent path Vec in each state. The

pre-Reg is initiated to be 1 for all bits and is updated by

performing a bit wise AND operation on its current

value and the path Vec from the valid_memory. The
ns_ctrl unit is used to determine the next state by the

value of pre-Reg and n_valid. If the preReg is 0 for all

bits or the n_valid is 1, the ns_sel will output low to let

the failure_state update the current_state register. On the

other hand, if the pre-Reg is not zero and the n_valid is

not 1, the ns_sel will output high to let the valid_state

update the current_state register.

CONCLUSION:
We have presented a memory-efficient pattern matching

al-gorithm which can significantly reduce the number of

states and transitions by merging pseudo-equivalent

states while main-taining correctness of string matching.

In addition, the new algo-rithm is complementary to

other memory reduction approaches and provides further

reductions in memory needs. The experi-ments

demonstrate a significant reduction in memory footprint

for data sets commonly used to evaluate IDS systems.

REFERENCES

 [1] A. V. Aho and M. J. Corasick, “Efficient string

matching: An AID to bibliographic search,”

Commun. ACM, vol. 18, no. 6, pp. 333–340,1975.

 [2] M. Aldwairi, T. Conte, and P. Franzon,

“Configurable string matching hardware for

speeding up intrusion detection,” Proc. ACM

SIGARCH

 Comput. Arch. News, vol. 33, no. 1, pp. 99–107, 2005.

 [3] M. Alicherry, M. Muthuprasanna, and V. Kumar,

“High speed pattern matching for network

IDS/IPS,” in Proc. IEEE Int. Conf. Netw. Protocols

(ICNP), 2006, pp. 187–196.

 [4] B. Brodie, R. Cytron, and D. Taylor, “A scalable

architecture for high-throughput regular-expression

pattern matching,” in Proc. 33
rd

 Int. Symp.

Comput. Arch. (ISCA), 2006, pp. 191–122.
 [5] Z. K. Baker and V. K. Prasanna, “High-throughput

linked-pattern matching for intrusion detection

systems,” in Proc. Symp. Arch. For Netw.

Commun. Syst. (ANCS), Oct. 2005, pp. 193–202.

 [6] Y. H. Cho and W. H. Mangione-Smith, “A pattern

matching co-processor for network security,” in

Proc. 42nd IEEE/ACM Des. Autom.Conf.,

Anaheim, CA, Jun. 13–17, 2005, pp. 234–239.

 [7] Y. H. Cho and W. H. Mangione-Smith, “Fast

reconfiguring deep packet filter for 1 +

GigabitNetwork ,” in Proc. 13th Ann. IEEE Symp.

Field Program. Custom Comput. Mach. (FCCM),

2005, pp. 215–224.

 [8] C. R. Clark and D. E. Schimmel, “Scalable pattern

matching on high speed networks,” in Proc. 12th

Ann. IEEE Symp. Field Program.Custom Comput.

Mach. (FCCM), 2004, pp. 249–257.
 [9] G. Dan, Algorithms on Strings, Trees and Sequences:

Computer Science and Computational Biology.

Cambridge, U.K.: Cambridge University Press,

1997.

 [10] S. Dharmapurikar, P. Krishnamurthy, T. Sproull,

and J. Lockwood,Deep packet inspection using

parallel bloom filters,” in Proc. 11
th

 Symp. High

Perform. Interconnects, Aug. 2003, pp. 44–53.

 [11] S. Dharmapurikar and J. Lockwood, “Fast and

scalable pattern matching for content filtering,” in

Proc. Symp. Arch. for Netw.Commun. Syst.

(ANCS), Oct. 2005, pp. 183–192.

 [12] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S.

Poole, and V. H.Granidt, “Towards gigabit rate

network intrusion detection,” in Proc.the Eleventh

Annual ACM/SIGDA International Conference on

Field-Programmable Logic and Applications (FPL
’03), 2002, pp. 404–413.

 [13] B. L. Hutchings, R. Franklin, and D. Carver,

“Assisting network in-trusion detection with

reconfigurable hardware,” in Proc. 10 th

Annu.IEEE Symp. Field-Program. Custom

Comput. Mach. (FCCM), 2002,pp. 111–120.

 [14] H. J. Jung, Z. K. Baker, and V. K. Prasanna,

“Performance of FPGA im-plementation of bit-

split architecture for intrusion detection

K Nivea et al , International Journal of Computer Science & Communication Networks,Vol 2(3), 441-443

442

ISSN:2249-5789

systems,”presented at the 20th Int. Parallel Distrib.

Process. Symp. (IPDPS),Rhodes Island, Greece,

2006.

 [15] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley,

and J. Turner, “Al-gorithms to accelerate multiple

regular expressions matching for deep packet

inspection,” in Proc. ACM SIGCOMM Comput.

Commun. Rev.,2006, pp. 339–350.

 [16] C. H. Lin, C. T. Huang, C. P. Jiang, and S. C.

Chang, “Optimization of pattern matching circuits

for regular expression on FPGA,”IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 15, no.
12, pp.1303–1310, Dec. 2007.

 [17] H. Lu, K. Zheng, B. Liu, X. Zhang, and Y. Liu, “A

memory-efficient parallel string matching

architecture for high-speed intrusion detection,”

IEEE J. Sel. Areas Commun., vol. 24, no. 10, pp.

1793–1804,Oct. 2006.

 [18] J. V. Lunteren, “High-performance pattern-

matching for intrusion detection,” in Proc. IEEE

INFOCOM, 2006, pp. 1–13.

 [19] J. W. Lockwood, J. Moscola, M. Kulig, D. Reddick,

and T. Brooks,Internet worm and virus protection

in dynamically reconfigurable hardware,”

presented at the Military Aerosp. Program. Logic

Device(MAPLD), Washington, DC, Sep. 2003,

E10.

 [20] D. Maier, “The complexity of some problems on

subsequences and supersequences,” J. ACM, vol.
25, no. 2, pp. 322–336, 1978.

 [21] J. Moscola, J. Lockwood, R. P. Loui, and M.

Pachos, “Implementation of a content-scanning

module for an internet firewall,” in Proc. 11
th

 Ann.

IEEE Symp. Field-Program. Custom Comput.

Mach. (FCCM),2003, pp. 31–38.

 [22] P. Piyachon and Y. Luo, “Compact state machines

for high performance pattern matching,” in Proc.

41nd IEEE/ACM Des. Autom. Conf.,2007, pp.

493–496.

 [23] M. Roesch, “Snort- lightweight intrusion detection

for networks,” in Proc. 15th Syst. Administration

Conf. (LISA), 1999, pp. 229–238.

 [24] I. Sourdis and D. Pnevmatikatos, “Pre-decoded

CAMs for efficient and high-speed NIDS pattern

matching,” in Proc. 12th Annu. IEEE Symp.Field
Program. Custom Comput. Mach. (FCCM), 2004,

pp. 258–267.

K Nivea et al , International Journal of Computer Science & Communication Networks,Vol 2(3), 441-443

443

ISSN:2249-5789

