
Analysis of Two Way Waiting Algorithm in

Databases

 Sunil Ahuja

Department of Computer Science & Engineering

Doon Valley Institute of Engineering & Technology

Karnal, India

E-mail: ahujaksunil@gmail.com

Abstract—Database is the well-organized collection of data

in a meaningful way that user can perform the

transaction. Transaction is a sequence of many actions

considered to be atomic. The throughput of the

transactions can be increased by performing the

transactions in parallel. Transactions are performed in

parallel without infringing the data integrity. When the

transactions are executing in parallel then this will lead to

concurrency in database and deadlock of the transaction.

This work is done to prevent the occurrence of deadlock

and also improves system performance by diminish the

number of restarts transaction which also saves the time

and cost for performing the transaction in the system. So,

it improves the efficiency of the distributed system.

Keywords- concurrency; transaction; timestamp; lock;

serialization; consistency;deadlock;direction.

I. INTRODUCTION

atabase is a gathering of information and

structured of data in such a way that it can be

accessed, updated and managed by the user in a

very simple way. A database is the collection of

information, which is stored in such a way that it can be

accessible to each and every user for their purposes.

Database should contain the update information so that

the user can access up-to-date data. A database should

not contain any duplicate data; if there is such a case

then it should be abolished or minimized. When there is

a collection of data and this data is accessed, updated

then this concept is known as Database Management

System (DBMS). The Main purpose of database system

is to retrieve information; perform some work on the

information and storing complete information back to

the database. When the data or information is stored at

different location or system then this is the concept of

the Distributed Database. It is the collection of logical

related data that work together in the crystal clear mode.

This mode means that the user can access the data from

the database of any system; this looks like that user is

working on the sole database. When the data is

distributed to different system; is accessed by users then

this is the concept of Distributed Database Management

System (DDBMS). In Databases, we work on the

transactions. A Transaction can be observed as a

program; whose implementation will maintains the

consistency of the database. Transaction is a sequence

of many actions that are considered to be atomic. When

the transaction is successfully completed then it said to

 Reena Sharma

Department of Computer Science & Engineering

 Doon Valley Institute of Engineering & Technology

Karnal, India

E-mail: er.sharma.reena@gmail.com

be committed otherwise it said to be aborted. When we

want to increase the throughput of the transactions then

they are executed in parallel. When the transactions are

accessing the same data at the same time then this is

said to be concurrency. When the transactions are

executed in parallel, there will be the problem of

interfacing of transaction with each other. This

interfacing will result in lost-update problem, dirty read

problem, inconsistent retrieval problem. To remove this

type of problems, we have to use the concurrency

control mechanism. Concurrency Control is the process

of running concurrent execution of transactions in a

shared database, to ensure the serializability of

transactions. It is the activity of coordinating parallel

accesses to a database in a multiuser database

management system. It permits users to access a

database in a multiprogrammed method while

preserving the false impression that each user is

executing alone on a committed system. It is an

essential element for correctness in any system where

two or more database transactions are executed with

time overlap and can access the same data. The major

technical complexity in attaining this objective is to

avoid database updates performed by one user from

interfering with database retrievals and updates

performed by another. The concurrency control problem

is exacerbated in a distributed DBMS (DDBMS)

because (1) users can access data stored in several

different computers in a distributed system, and (2) a

concurrency control device at one computer cannot

instantaneously know about interactions at other

computers [1].

II. REQUIREMENT FOR CONCURRENCY

CONTROL

When the transactions are performed in order without

any time overlap in the transaction then there will not

be any requirement of the concurrency control. But

when the transactions are performed in parallel mode

then there will be the requirement for the concurrency

control and if the transactions are performed in parallel

mode without the concurrency control the their will be

some problems like:

1. Dirty Read: This problem is also recognized as

Uncommitted Data. This problem occurs when

one transaction is performing and updates the

D

Sunil Ahuja et al, International Journal of Computer Science & Communication Networks,Vol 2(2), 214-217

214

ISSN:2249-5789

mailto:ahujaksunil@gmail.com
mailto:er.sharma.reena@gmail.com

database with the new result but later on fall

short for any reason. The updated data is

access (which is called dirty read) by any

transaction then it will give the incorrect

outcome or result. In this, if T1 and T2 are

transactions if the transaction T1 updates the

data in the database and this updated result is

read by the transaction T2 but later on

transaction T1 does not committed due to any

reason then the data read by the transaction T2

will result into an incorrect outcome.

2. Lost Update: when the transactions are

performed simultaneously on any data and

update the database by their results then the

first result is overwritten by the result of the

other transaction. In this, if T1 and T2 are

transactions and reads the record from the

database and T1 update the record by its result

after that the transaction T2 completes and it

also update its result in the database then the

result of first transaction is overwritten by

second transaction.

3. Inconsistent Retrieval: This Problem is also

known as Unrepeatable Read. When one

transaction is performing a few works on the

database and the other transaction is

performing an update process on the database.

Then this problem occurs because one

transaction reads some results before they are

changed and some after they are changed, then

results in inconsistent retrieval of data. In this,

if T1 and T2 are transactions working on the

database. The transaction T1 is to get the total

salary of all the employees in any organization

and the transaction T2 is incrementing the

salary of the employees in the organization

then there will be problem that the transaction

T1 gets some values before the completion of

transaction T2 and some after the completion

of transaction T2. Then T1 will result in

inconsistent retrieval.

III. POLICY FOR A TRANSACTION IN

DATABASE

The theory of a database transaction has evolved in

order to enable both a well implicit database system

performance in a out of order situation where crashes

can occur any time, and recovery from a crash to a well

understood database state. A Transaction in database

has four policies that leads to constant and

trustworthiness of the database management system.

The Policies are:

1. Atomicity: It refers that each transaction is a

single logical unit in database consists of

number of operations. Either all the operations

of the transaction are completed successfully

or not carried out completely. This policy is

also known as the all or nothing policy of the

transaction. In other ways, the completed

transactions have appeared by its effect in

database and an aborted transaction does not

have any effect on the database.

2. Consistency: It refers to the accuracy of the

data. This policy state that the transaction must

change from one consistent state to another

consistent state. This policy will leave the

database in the steady state. It provides

flexibility to define transaction that can

operate.

3. Isolation: Isolation means that there is no

interference of the transaction with each other.

It is the main goal of the concurrency control

in database. This means that if one transaction

is performing any read or modifying any data

then other transaction cannot do any operations

on that data.

4. Durability: It means that effects of all the

transaction completed or committed will be

store in a non-volatile memory permanently, so

that it can be access by any transaction even if

there will be any problem of power failure or

system crashes.

So these are the ACID policies which are required by

the transactions in the database.

IV. FICTION ANALYSIS OF CONCURRENCY

CONTROL METHODS

Many methods for concurrency control be present

[2][4][5][6][8][9].The major methods, which have each

many variants, are:

1. Locking: Locking is the common type of

concurrency control mechanism. It provides

the access control to data by assigning the

locks to transactions. It is mechanism

commonly used to solve the problem of

coordinate access to shared data [4]. There are

many types of locks are used in concurrency

control such as Shared or Exclusive locks ,

Binary locks (0 or 1), each transaction has a

lock related with it. When one transaction T, is

going to perform some work on the data then

they have to first examine that the related lock.

If there is no transaction that holds the lock

then the scheduler obtains the lock on the

behalf of transaction T. If another Transaction

T1, holds the lock then the Transaction T has

to wait until the transaction T1 gives up the

lock. The scheduler will not give to transaction

T until it will be releases by Transaction T1.

When the lock is associated with one

transaction then it is not assigned to another

transaction, so that the isolation policy remains

valid. When there are more number of

transactions are performing concurrently, then

there will be the greater probability that

Sunil Ahuja et al, International Journal of Computer Science & Communication Networks,Vol 2(2), 214-217

215

ISSN:2249-5789

transaction will be blocked, which leads to

more response time and very small throughput

of the transaction. The locking protocol ensure

serializability in two phase locking (2PL)

protocol [7]. This protocol requires that each

and every transaction issues request in two

phases:

1. Growing Phase: In this phase, a

transaction can obtain locks but cannot

release these locks.

2. Shrinking Phase: In this phase, a

transaction can release locks but cannot

obtain any new locks.

2. Timestamp Ordering: This is an different

approach to locking that make use of the

timestamps [6][7].Timestamps are assigned to

the transaction in a well ordered manner. The

general way is to provide each transaction a

timestamp which specify when the transaction

began. If conflicts are occurred then they

resolved by timestamp as each operation is

performed. The timestamp can be generated by

assigning sequential number to the transaction

or by the system clock value which is equal to

the value of the clock when the transaction, T,

entered into the system. If the timestamp is

assigned sequentially then after each

transaction the timestamp is increased by

counter so that a new value is assigned to the

next transaction.

3. Serialization: In this we assume that each

transaction must maintain the database

consistency. In serial implementation of set of

transaction maintains the database consistency.

It is the property of transaction history which

relates to the isolation policy. The Serialization

is of two forms:

1. Conflict Serialization: In this, when there

are different overlapping transactions with

read and write operation on the same

database.

2. View Serialization: In this, when there are

different non-overlapping transactions

with read and write operation on the same

database.

There will be testing of serialization [3] on the basis of

precedence graph. Two phase locking may lead to the

deadlock. Deadlock occurs when one transaction Ti in a

set of number transaction is waiting for any resource

which is locked by some other transaction Tj in the set.

A precedence graph is that in which transaction is

shown by vertices and arcs show the resources required

by the transaction. There will be arc between Ti and Tj if

and only if Ti is waiting for the resource which is locked

by the Tj. If there is a cycle in the precedence graph or

the wait for graph then deadlock has been occurred. So,

this deadlock can be busted by aborting that particular

transaction.

V. ANALYSIS OF TWO WAY WAITING

ALGORITHM IN DATABASES

The concurrency control method is based on the

concept of the timestamp ordering [6][7]. The

Transaction timestamp is assigned to each transaction

on the basis of the system clock or any sequential order

of transaction occurring in the system. The timestamp is

allocated to each and every transaction in a

monotonically increasing order. The transaction Ti

comes early will have lower timestamp and the

transaction Tj comes later will have the higher

timestamp i.e TS (Ti) < TS (Tj). When the two or more

transactions are waiting for the resources that are hold

by them and shown in the precedence graph. If the

graph is having the cycle then there will be deadlock.

The Deadlock can be prevented by the two methods.

These two methods will follow the timestamp ordering.

These are:

1. Wait-die: If the older transaction (Ti) is

requesting for the resource which is hold by

the younger transaction (Tj) i.e TS(Ti) <

TS(Tj). Then transaction with lesser timestamp

has to wait but if the younger transaction is

requesting for the resource then younger

transaction will be rolled back and restarted the

transaction. This rolled back transaction is

known as Victim.

2. Wound-wait: If the younger transaction (Ti) is

requesting for the resource which is hold by

the older transaction (Tj) i.e TS (Ti) > TS (Tj).

Then transaction with larger timestamp has to

wait but if the older transaction is requesting

for the resource then older transaction will give

some time to younger to complete its work in a

definite amount of time and younger

transaction is restarted if it is not complete in

definite time.

These two above methods was having the one way

waiting for the transactions. The transaction (T) will

have the direction which is denoted by D(T) are having

the values like: „neutral‟, when the transaction is

started, „forward‟, when the transaction is in wait-die

method and „backward‟, when the transaction is in

wound-wait method. The Rules for the direction of the

system transaction are:

Rule 1: The initial direction of a transaction is

„neutral‟

 Rule 2: When the Ti request for Tj, if

TS(Tj)<TS(Ti) and Ti can wait for Tj, then D(Tj)=D(Ti)=

„backward‟. This is called as backward waiting.

Rule 3: When the Ti request for Tj, if

TS(Tj)>TS(Ti) and Ti can wait for Tj, then D(Tj)=D(Ti)=

„forward‟. This is called as forward waiting.

Rule 4: When the Ti request for the Tj, but Ti is

not allowed to wait for Tj then one of the transactions is

rolled back and restarted. The timestamp of restarted

Sunil Ahuja et al, International Journal of Computer Science & Communication Networks,Vol 2(2), 214-217

216

ISSN:2249-5789

transaction does not change but its direction is changed

to „neutral‟. So this algorithm will reduces the number

of restarted transaction and also saves the time and cost

for the transaction.

VI. CONCLUSION

The two standard methods i.e wait-die and wound-wait

only provides the forward or backward direction for the

transaction. In this new algorithm, we have both type of

direction for the transaction i.e backward as well as

forward. When the older transaction is requesting the

younger transaction and the older transaction has been

waiting for the younger transaction then it is said to be

forward waiting and when the younger transaction is

requesting the older transaction and the younger

transaction has to wait for older transaction to complete

then this will said to be backward waiting. There are

number of transaction are working in the system then

this algorithm will provide some transaction with

forward waiting and some with backward waiting. This

algorithm will also diminish the number of restarts

transaction and the system will attain the high

throughput. This also saves the time and the cost for

performing the transactions in the system as there is

very less amount of transaction are restarted. It will

improve the efficiency of the distributed system. There

should also the research work for future, after finding a

transaction conflicting with another transaction how

much time should have to wait to restart the aborted

transaction.

1. A. Bernstein and Nathan Goodman,

“Concurrency Control in Distributed Database

Systems”, Computing Surveys, Vol. 13, No 2,

June 1981.

2. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I.

L. Traiger, "The notions of consistence and

predicate locks in a database

system,"Commun. ACM, vol. 19, no. 11, pp.

624-633, Nov. 1976.

3. Victor 0. K. LI, “Performance Models of

Timestamp-Ordering Concurrency Control

Algorithms in Distributed Databases” IEEE

Trans. on Computers,Vol. C-36, No. 9,

September 1987.

4. J.F.Pons and J.F. Vilarema, “A Dynamic and

Integrated Concurrency Control for Distributed

Databases”IEEE Journal on Selected Areas in

Comm. Vol. 7, No. 3, April 1989.

5. Ugur Halici & Asuman Dogac,” An Optimistic

Locking Technique for Concurrency Control in

Distributed Databases”, IEEE Trans.on

Software Engineering, vol. 17, no. 7. July

1991.

6. F. Bukhari and Sylvia L. Osborn, “Two Fully

Distributed Concurrency Control Algorithms”

IEEE Trans. on Knowledge and Data

Engineering, vol. 5, no. 5, October 1993.

7. Philip .Alexander Thomasian,”Concurrency

Control: Methods, Performance, and Analysis”

ACM Computing Surveys (CSUR) Survey

Volume 30 Issue 1, March 1998.

8. Transaction Processing” IEEE Trans. on

Knowledge and Data Engineering, Vol. 10,

No. 1, January/February 1998.

9. Alexander Thomasian,“Distributed Optimistic

Concurrency Control Methods for High-

Performance.

10. Theo Harder, Kurt Rothermel, “Concurrency

Control Issues in Nested Transactions,” VLDB

journal Vol. 2(1) page(s) 39-74, July 1993.

11. O.Bukhres, “Performance comparison of

distributed deadlock detection algorithms,”

Eighth International Conference on Data

Engineering,pp.210-217, February 1992.

12. W. Perrizo, Request order linked list (ROLL):

A concurrency control object, in: Proceeding

of the IEEE International Conference on Data

Engineering, Kobe, Japan,Apr. 1991.

13. Alexander Thomasian, In Kyung Ryu.

Performance Analysis of Two-Phase Locking;

IEEE Transactions on Software Engineering,

Vol. 17, no. 5, May 1991.

Sunil Ahuja et al, International Journal of Computer Science & Communication Networks,Vol 2(2), 214-217

217

ISSN:2249-5789

