
NAT Traversal Capability and Keep-Alive Functionality with IPSec in IKEv2

Implementation

 CHAMAN SINGH1 K.L.BANSAL2

1
Research Scholar

 chaman83mca@gmail.com

 2
Associate Professor

 kishorilalbansal@yahoo.co.in

Department of Computer Science, Himachal Pradesh University Shimla, India

Abstract

Since IPv4 Private Networks are behind NAT (Network

Address Translation) devices. So, to bypass the Binding

Update and Binding Acknowledgment by NAT, we need

to encapsulate it in UDP (User datagram Protocol)

Packets. Hence, the Dual Stack Mobile IPv6 should

support NAT Traversal and Detection. So for proper

securing and fully functionality of NAT traversal, it

should be IP Security Protected. Paper presents design

and implementation of NAT traversal capability and

keeps alive functionality with IP Security in IKEv2

(Internet Key Exchange version 2) implementation for

proper Data Communication. It also implements how

IPSec integrate with NAT.

 Keywords-Network Address Translation,

Traversal, Detection, IP Security, Home Link, Data

Traffic, Linux Kernel, IKEv2.

1. Introduction
 The Mobile IPv6 [1] is a protocol developed as a

subset of Internet Protocol veMyon 6[2] to support

mobile connections. Mobile IPv6 allows a mobile node

to transparently maintain connections while moving

from one [3] subnet to another [4]. The Mobile IPv6

protocol takes care of binding addresses between Home

Agent and Mobile Node. It also ensures that the Mobile

Node is always reachable through Home Agent. Dual

Stack Mobile IPv6 [5] is an extension of MIPv6 to

support mobility of devices irrespective of IPv4 and

IPv6 network. NEPL (NEMO Platform for Linux) [6]

is a freely available implementation of DSMIPv6 for

Linux platform. The original NEPL release was based

on MIPL (Mobile IPv6 for Linux) [7]. In DSMIPv6, all

Mobile Nodes has a fixed address, called a Home

Address assigned by Home Agent. When the MN

moves to other networks, it gets Care-of Address from

foreign network. MN sends a Binding Update message

to its home agent. Then Home Agent replies to the

Mobile Node with a Binding Acknowledgement

message to confirm the request. When MN is moved to

any foreign network all packets sent to the Home agent

will be IPSec encrypted. A bi-directional tunnel [8] is

established between the Home Agent and the care of

address of the Mobile Node after the binding

information has been successfully exchanged.

DSMIPv6 [9] extends the Mobile IPv6 and NEMO

Basic Support standards to allow Mobile Nods to roam

in both IPv6 and IPv4-only networks. [9] Solution is

an extension to the existing NEPL solution provided by

Nautilus [10]. Network Address Translation (NAT)

[15] was meant to be temporary, but it's now in

widespread use and it's actually holding back wider

deployment of IPv6. Apart from the address shortage,

Internet also has security related problems. There are

different solutions for these problems currently in use,

of which we are particularly interested in IPsec. IPsec

is architecture [16], currently in a second generation

that defines behaviour of compliant IPsec nodes. Those

are Encapsulating Security Payload (ESP) [17] used for

traffic encryption and integrity protection, and

Authentication Header (AH) [18]. Of those two, ESP is

mandatory to implement, while AH was mandatory, but

now is optional. The third protocol is Internet Key

Chaman Singh et al, International Journal of Computer Science & Communication Networks,Vol 2(1), 99-110

99

ISSN:2249-5789

Exchange version 2 (IKEv2) [19] and it is used for

authentication, authorization and key exchange within

IPsec (Internet Protocol Security) architecture.

Widespread deployment of NAT based devices creates

substantial problems to IPsec protocols. As we

implemented NAT in IKEv2 protocol we had to do

thorough analysis of possible problems and their

solutions. This paper summarizes our design and code

changes for proper communication in IKEv2

implementation. MY validated the DSMIPv6

functionality as per the requirements provided against

the draft-ietf-mext-nemo-v4traversal-08.txt I-D, [5]

along with other IETF standards. I have taken baseline

architecture implementation from the Nautilus6 which

uses Linux platform [11].

2. Network Address Translation
NAT (Network Address Translation) [13] is the

translation of an Internet Protocol address (IP address)

used within one network to a different IP address

known within another network. One network is

designated the inside network and the other is the

outside. In DSMIPv6 the mip6d Daemon should bypass

NAT, when MN is behind Nat’ Ted device in IPv4 FL.

NATs were introduced primarily because of the

shortage of IPv4 addresses. IP nodes that are "behind" a

NAT device have IP addresses that are not globally

unique. They are more often assigned from some space

that is unique within the network behind the NAT but

which are likely to be reused by nodes behind other

NATs. Node behind a NAT, which wants to

communicate with other node on the Internet, is

assigned a global IP address by NAT box which results

with change of source IP address for outgoing packets.

Similar situation is when destination node is behind a

NAT, then for incoming packets NAT box changes

destination IP address to the private IP address of node

on the internal network. NAT box keeps the mapping

for the duration of the communication. This duration is

estimated by NAT box heuristically. Mapping is often

achieved by additional translation based on UDP or

TCP ports. In that case, NAT box is known as a NAPT

box. There are many protocols having complications

with NAT [20]. Applications such as FTP, H.323, SIP

and RTSP use a control connection to establish a data

flow and they are usually broken by NAT devices en-

route. This is because these applications exchange

address and port parameters within control session to

establish data session and session orientations.

 Figure 1: NAT Detection and Traversal Module .

Most likely reasons for failures are that addressing

information in payload could be realm specific and

second, that control sessions permit data sessions to

originate in a direction that NAT might not permit. Peer

Foreign Network

Internet

Home Network

 HoA

When NAT is detected both (BU/BA)

Signaling Messages and Data Packets

will be UDP Encapsulated

 UDP Encap. BA

 UDP Encap.BU

Mobil

e

Node

Mobile

Node

Home

Agent

IPv4

CoA

NAT

Device

AR

Chaman Singh et al, International Journal of Computer Science & Communication Networks,Vol 2(1), 99-110

100

ISSN:2249-5789

to peer applications also have problems with NAT.

They can be originated by any of the peers and external

peers will not be able to locate their peers in private

realm unless they know the externally assigned IP

address. Applications requiring retention of address

mapping or requiring more public addresses than

available are broken by NAT for obvious reasons.

Namely, in the first case NAT cannot know this

requirement and may assign external addresses between

sessions to different hosts and in the second case NAT

is limited by number of available public addresses.

3. NAT Traversal and Detection Design
 NAT Detection [14] is done when the initial

Binding Update message is sent from the mobile node

to the home agent. When located in an IPv4-only

foreign link, the mobile node sends the Binding Update

message encapsulated in UDP and IPv4, this is handled

in a particular file. When the home agent receives the

encapsulated Binding Update, it compares the IPv4

address of the source address field in the IPv4 header

with the IPv4 address included in the IPv4 care-of

address option. Otherwise, a NAT is detected in the

path and the NAT detection option is included in the

Binding Acknowledgement. The Binding

Acknowledgement, and all future packets, is then

encapsulated in UDP and IPv4. Note that the home

agent also stores the port numbers and associates them

with the mobile node's tunnel in order to forward future

packets. The mip6d Daemon adds the xfrm

polices/states for UDP encapsulation of BA and

IPv6/IPv4 data traffic [21]. Upon receiving the Binding

Acknowledgement with the NAT detection option, the

mobile node sets the tunnel to the home agent for UDP

encapsulation. Hence, all future packets to the home

agent are tunnelled in UDP and IPv4. If no NAT device

was detected in the path between the mobile node and

the home agent then IPv4/IPv6 data traffic is not UDP

encapsulated. A mobile node will always tunnel the

Binding Updates in UDP when located in an IPv4-only

network. Essentially, this process allows for perpetual

NAT detection. Similarly, the home agent will

encapsulate Binding Acknowledgements in a UDP

header whenever the Binding Update is encapsulated in

UDP. The mip6d Daemon adds xfrm polices/states for

UDP encapsulation of IPv6/IPv4 data traffic, when

NAT was detected between MN and HA.

4. IPSec for Private Networks
 IPsec keeps records about traffic which needs to be

protected and how to protect it in two databases – SPD

(Security Policy Database) and SAD (Security

Association Database). SPD contains entries about

security policy – which traffic to protect, which

protocol to use, level of protection etc. Traffic selectors

specify which packets to protect by specifying source

and destination addresses, upper layer protocols and

ports. IPsec is based on SA (Security association),

which is a set of security parameters, for instance

crypto algorithms used in communication. SA is

uniquely defined by protocol (AH or ESP), destination

IP address and SPI (Security Parameters Index). Two

sides will establish connection if and only if they

successfully negotiate security parameters for the

connection. ESP and AH are two main security

protocols in the Ipsec architecture which assure traffic

protection. AH is used for authentication and integrity

check, while ESP is used primary to enable

confidentiality and optionally, authentication and

integrity check. There are two IPsec modes: transport

mode and tunnel mode. Transport mode is appropriate

for usage when communication is end-to-end. In this

mode, we have only one source and destination IPv4

address, which are in AH protected by ICV. This leads

to problems with NAT, as described later. ESP doesn't

have these problems because his integrity check doesn't

cover IPv4 header where are these addresses situated.

Tunnel mode is better where communication takes

place between security gateways. In this case

communication is maintained within the Ipsec tunnel.

This leads to another pair of IP addresses and therefore,

to another header besides the original one: "outer" IP

header. ESP encryption now covers whole IPv4

datagram, with inner header also. AH authentication

checks integrity of the both inner and outer IPv4

header, and off course, IPv4 payload. Integrity check

successfully reveals attempts of packet change by

intruder on insecure network. AH and ESP require

cryptographic keys to be in SA database. Though

possible manual key management isn't particularly

secure and doesn't scale well. These problems are

solved by automatic key exchange, specifically by

Internet Key Exchange version 2 (IKEv2) protocol.

Daemon, which runs IKEv2 protocol, generates

symmetric keys and does rekeying after some period.

Authentication in IPsec is also performed by the IKEv2

protocol using pre-shared keys, digital certificates or

EAP. IKEv2 messages are transferred via UDP

protocol in pairs, requests and response. Each pair is

known as exchange. Communication between two

IKEv2 entities is established via two exchanges.

Establishment of SA includes traffic selectors and

cryptographic algorithms to use for data protection.

There are two design possibilities with the respect to

interrelation of IPsec and NAT devices. The first one is

for IPsec protocols to completely ignore NAT, while

the other one is to introduce mechanisms in the

Chaman Singh et al, International Journal of Computer Science & Communication Networks,Vol 2(1), 99-110

101

ISSN:2249-5789

protocol that will allow IPsec compliant devices to

communicate in spite of NAT devices.

5. Interaction of IPSec and IKEv2
 XFRM [11] is a packet transformation framework

residing in the Linux kernel. It performs operations on IP

packets such as inserting, modifying headers, UDP

encapsulation and de-capsulation. DSMIPv6 XFRM

module will take the advantage of existing IPSEC

transformation and defines a simple UDP encapsulation

scheme. IPSEC module is responsible for interaction with

IKEV2 through MIGRATE messages. IPSec will be used

to protect the following traffic between Home Agent and

Mobile Node.

1. BU/BA messages.

2. Mobile prefix sollicitation and advertisement

messages.

3. Normal traffic between Mobile Node and Home

Agent.

4. All tunneled normal traffic between Mobile Node

and correspondent Node.

In Mip6d, the Mobile Node (MN) and the Home Agent

(HA) uses IPsec Security Associations (SAs) in transport

mode to protect BU/BA messages, since the MN may

change its attachment point to the Internet, it is

necessary to update its endpoint address of the IPsec

SAs.

This indicates that corresponding entry in IPsec

databases (Security Policy (SPD) and SA (SAD)

databases) should be updated when Mobile Node

performs movements. IPSec is used to protect the

following traffic between Home Agent and Mobile Node:

BU/BA messages: IPSec Protection for BU/BA

When Mobile Node moves in FL a new Care of address is

assigned to the Mobile Node by FL network. After

detecting the movement following steps are taken to

create IPSec tunnel.

1. Mip6d issues a PF_KEY MIGRATE message to the

PF_KEY socket.

2. The operating system validates the message and

checks if corresponding security policy entry exists

in SPD.

3. When the message is confirmed to be valid, the target

SPD entry is updated according to the MIGRATE

message. If there is any target SA found that are

also target of the update, those should also be

updated.

 Figure 2:- IPSec Module

 Foreign

Network

Internet

Home Network

AR

Home Agent Sends Encapsulated Packets

through IPSec Tunnel to MN’s CoA

 ESP Protected BA

 ESP Protected BU

Mobile

Node

Home

Agent

Process the Packet

 (Decapsulation)

Loop Back

IPSec with IKEv2

Chaman Singh et al, International Journal of Computer Science & Communication Networks,Vol 2(1), 99-110

102

ISSN:2249-5789

4. After the MIGRATE message is

successfully processed inside the kernel, it

will be sent to all open PF_KEY sockets.

The IKE daemon receives the MIGRATE

message from its PF_KEY socket and

updates its SPD and SAD images. The

IKE daemon may also update its state to

keep the IKE session alive.

5. After that ESP protected BU is send with

K–bit set.

Mobile IPv6 specifies a flag named Key

Management Mobility Capability bit (K-bit) in

Binding Update (BU) and Binding

Acknowledgement (BA) messages, which

indicates the ability of IKE sessions to survive

movement. When both the Mobile Node and

Home Agent agree to use this functionality, the

IKE daemons dynamically update the IKE session

when the Mobile Node moves.

6. Description and Implementation
 It contains the details about patches applied and

code changes done by me in Linux kernel, mipv6

Daemon and strongSwan in different releases of

DSMIPv6. The scope of this release is to

demonstrate the following working scenarios:

Scenario 1: Movement of MN from HL to IPv4

network.

Scenario 2: Movement of MN from IPv4 to HL

network.

Scenario 3: Movement of MN from IPv6 to IPv4

network.

Scenario 4: Movement of MN from IPv4 to IPv6

network.

It also captures the working of the below

mentioned features to demonstrate the above

mentioned scenarios:

1. Security considerations related to IPV6 with

IPSEC and IKEv2.

2. Handover interactions for IPSec and IKE

3. IKE negotiations between MN and HA.

4. IKEv2 operation for securing DSMIPv6

signalling (BU & BA).

5. NAT Detection in MN and HA.

6. NAT Traversal in MN and HA

7. UDP Encapsulation of signalling (BU/BA)

Messages.

8. UDP Encapsulation of IPv6 and IPv4 data traffic.

6.1 Linux Kernel
 Description: Used patched Linux kernel

2.6.28.2 for this release.

VeMyon: 2.6.28.2

Tar file: linux-2.6.28.2.tgz

6.2 User land-DSMIP
 Description: User land DSMIP Daemon used

in mipv6 taken from nautilus site. All patches

applied to support DSMIPv6.

VeMyon: 0.4

Tar file: mipv6-Daemon-umip-0.4.tgz

6.3 User land IKEv2 Daemon
 Description: Used strongSwan package as

user land IKEv2 Daemon

VeMyon: 4.2.9

Tar file: strongswan-4.2.9.tgz

6.4 Changes done in user land-DSMIP
 Description: Code changes have been made in

mip6d Daemon for successfully detecting NAT.

6.4.1 Change list 1.

Bug Description: NAT Detection logic was failing,

when we move from IPv6 FL to IPv4 FL.

File Modified: ha.c

Function Modified: ha_recv_bu_worker

Bug Fix Description: NAT detection logic was

failing, when we move from IPv6 to IPv4 FL. In

this scenario the CoA in bce (Binding Cache Entry)

was old value that is IPv6 Address. Due to which

IP addresses (source IP & CoA in bce) were getting

mismatched and NAT was getting detected, which

is wrong behavior. So at the time of comparing

addresses, using CoA from out.bind_coa instead of

CoA in BCE...

Code Snippet for Minor Changes

NAT detection logic was failing, when we move

from IPv6 to IPv4. In this scenario the CoA in bce

is old value that is IPv6 Address. Due to which IP

addresses (src IP & CoA in bce) were getting

mismatched and NAT was getting detected, which

is wrong behaviour. So at the time of comparing

addresses, using CoA from out.bind_coa instead of

CoA in BCE

 If (! IN6_ARE_ADDR_EQUAL

(&v4mapped_src, out.bind_coa))

 {

Chaman Singh et al, International Journal of Computer Science & Communication Networks,Vol 2(1), 99-110

103

ISSN:2249-5789

 Bce->behind_nat = 1;

}

6.4.2 Change list 2.

Bug Description: At the time of movement from

IPv4 to IPv6 Network (or HL to IPv6). Sometime

sit device was going in wrong state. And if after

that MN moves from IPv6 to IPv4. Mip6d was not

able to access the sit device and finally deleted the

sit interface. As there was no sit device in MN,

mip6d code throws assertion, when it tries to

modify the sit tunnel endpoints.

File Modified: mn.c

Function Modified: mn_tnl_state_add

New Functions Added:

 mn_clr_interface_flag

 mn_set_interface_flag

 index2name

Bug Fix Description: To avoid the assertion

currently added the hack to avoid this scenario.

Doing down or up of sit device, only when MN

moves from IPv4toIPv6 FL or HLtoIPv6 FL.

Latter need some better fix.

Comparison of Files for Major Changes:

Comparison of changes done to fix the issue in

mn.c

6.4.3 Change list 3.

Bug Description: When MN moves second time

from HL to IPv4, the IPv6 HoA is assigned to

ip6tnl and latter it should move from ip6tnl to sit

device, which was not happening. The correct

behavior should be same as we do for IPv4 HoA.

At the first movement from HL to IPv4, sit device

is assigned IPv6 HoA correctly, because hai to

if_tunnel stores the sit index value initially.

File Modified: mn.c

Function Modified: process_first_home_bu

Bug Fix Description: When Mobile Node moves

second time from Home Link to IPv4 FL, moving

IPv6 HoA from ip6tnl to sit device, by calling

routine mv_hoa

Code Snippet for Minor Changes: When MN

moves second time from HL to IPv4, the IPv6 HoA

is assigned to ip6tnl and latter it should move from

ip6tnl to sit device, which was not happening. The

correct behavior should be same as we do for IPv4

HoA. At the first movement from HL to IPv4, sit

device is assigned IPv6 HoA correctly, because ha

to is_tunnel * stores the sit index value. Done

changes to fix this issue....

 if (hai->if_tunnel!= hai->if_tunnel64)

 { struct mv_hoa_args mha;

 mha.if_next = hai-

>if_tunnel64;

 mha.target = hai;

 addr_do (&hai->hoa.addr, 128,

hai->if_tunnel, &mha, mv_hoa);

 }

 hai->if_tunnel = hai->if_tunnel64;

6.4.4 Change list 4.

Bug Description:

There was bug in mipv6 logic; it was not taking the

prefix length of IPv4 HoA configured by user in

configuration file. Due to which problem was

coming in setting v4 route, when MN boots in IPv6

FL and moves to IPv4 FL.

File Modified: mn.c

Function Modified: flag_hoa4

Bug Fix Description: Done code changes to correct

the logic, so that mipv6 Daemon should take the

prefix length of IPv4 HoA, if configured by user in

mip6d configuration file.

Code Snippet for Minor Changes: Changes have

been made to accept the actual prefix Length from

the configuration file. This case occurs when we

boot the MN in IPV6 LINK, here ifa_index

if_tunnel4 are different so take the prefix length

from conf file. This also solves when MN moves

IPV6 to IPV4 LINK because ifa_index and

hai_index are not equal so it will take 32 as prefix

length. This resolves the v4 route issue when MN

boots up in IPV6 link.

 plen4 = (ifa->ifa_index! = hai->if_tunnel4? 32:

hai->plen4);

6.4.5 Change list 5.

Chaman Singh et al, International Journal of Computer Science & Communication Networks,Vol 2(1), 99-110

104

ISSN:2249-5789

Bug Description: IPv4 traffic was not passing

through tunnel device in IPv4 FL

File Modified: dhcp_dna.c, dhcp_dna.h, mn.c

Function Modified: dhcp_configuration

New Functions Added:

mn_coa_route_

add,

mn_route_coa_

del

Bug Fix Description:

Added source based route to pass IPv4 traffic

through tunnel device and not through egress

interface of MN directly.

Code Snippet for Minor Changes:

 dhcp_dna.h

Structure for storing the route in formation needed

in IPV4 link

struct dhcp_route

{

 int if_index;

 unsigned long gateway;

};

dhcp_dna.c

Copying the value of Gateway and Ifindex value to

dhcp_route structure Will needed in creating a

source based route for BU.

 route_dhcp.if_index = if_index;

 route_dhcp.gateway = dhcp_ctrl-

>gateway;

Comparison of files for Major Changes:

Comparison of changes done to fix the issue in

mn.c

6.4.6 Change list 6.

Bug description: External IPv4 network of Home

Agent was not reachable from MN in HL.

File Modified: mn.c

Function Modified: mn_move

Bug Fix Description: - Adding default route to

Home Agent IPv4 address, when Mobile Node is in

HL. So that MN can reach to other network than

HL. Route is added on the physical interface where

IPv4 HoA is configured.

Code Snippet for Minor Changes: Adding default

route to HOMAGENTV4ADDRESS when MN is

in HOME LINK So that Mobile Node can reach to

other network than HL.Route is added on the

physical interface where IPv4 Home Address is

configured.

MDBG ("Default route is added in HL toward

iface_index %d\n", hai->hoa.iif);

if (route4_add(hai->hoa.iif, RT6_TABLE_MAIN,

NULL , NULL, 0, &any4, 0, &ha4_addr) < 0)

MDBG ("Default route insertion failed for MN in

HL.\n");

CHANGES: Deletion of default route to

HOMAGENT V4ADDRESS, when MN is not in

HOMELINK.

 MDBG ("Default route is deleted in FL toward

iface_index %d\n",hai->hoa.iif);

if (route4_del (hai->hoa.iif,

RT6_TABLE_MAIN,NULL, 0,

&any4,0,&ha4_addr) < 0) MDBG("Default route

deletion failed for MN in HL.\n");

6.4.7 Change list.

Bug Description: When MN was behind NAT in

IPv4 FL, the large size IPv4/IPv6 data traffic was

not getting exchanged. After initial handshake,

client was not able to exchange data traffic and was

in hang state. In nutshell everything that uses large

packets was not working.

File Modified: - tunnelctl.c

Function modified: __tunnel44_add

 __tunnel64_add

Bug Fix description: Set the MTU size of tunnel

device to 1472 instead of 1480, left 8 bytes for

UDP Encapsulation header.

Code Snippet for Minor Changes: __tunnel44_add

[DSMIP_BUG]: When MN was behind NAT in

IPv4 FL, the large size IPv4/IPv6 data traffic was

not getting exchanged. After initial handshake,

client was not able to exchange data traffic and was

in hang state. In nutshell everything that uses large

packets was not working. Fix: set the MTU size of

tunnel device to 1472 instead of 1480, left 8 bytes

for UDP Encapsulation header...

 ifr.ifr_ifru.ifru_mtu =

MAX_MTU_SIZE_FOR_TUNL_DEV;

Chaman Singh et al, International Journal of Computer Science & Communication Networks,Vol 2(1), 99-110

105

ISSN:2249-5789

 if (ioctl(tnl44_fd, SIOCSIFMTU, &ifr) < 0)

{

 TDBG ("SIOCSIFFLAGS failed MTU %d

%s\n",

 errno, strerror(errno));

 goto err;

 }

__tunnel64_add

CHANGES: [DSMIP_BUG]: When MN was

behind NAT in IPv4 FL, the large size IPv4/IPv6

data traffic was not getting exchanged. After initial

handshake, client was not able to exchange data

traffic and was in hang state. In nutshell everything

that uses large packets was not working. Fix: set

the MTU size of sit device to 1472 instead of 1480,

left 8 bytes for UDP Encapsulation header.

ifr.ifr_ifru.ifru_mtu=MAX_MTU_SIZE_FOR_SIT

_DEV; if (ioctl (tnl4_fd, SIOCSIFMTU, &ifr) <

0)

 {

 TDBG ("SIOCSIFFLAGS failed MTU %d

%s\n",

 errno, strerror (errno));

 goto err;

 }

6.5 Changes done in user land-DSMIP
6.5.1 Changes done in user land IKEv2 Daemon.

Description: Integration of IPsec with NAT

Change list-1:

Bug Description: IPsec signalling when MN was

behind NAT was failing.

File Modified:

strongswan-4.2.9/src/charon/sa/tasks/

child_create.c

strongswan-

4.2.9/src/charon/plugins/kernel_netlink/

kernel_netlink_ipsec.c

Function Modified: select_and_install, status_t

add_sa

Code Snippet: child_create.c: This code is present

in function select_and_install () of if (! this-

>initiator)

{ /* check if requested mode is acceptable, down

grade if required */

 switch (this->mode)

 {

 case MODE_TRANSPORT:

 if (!this->config->use_proxy_mode(this->config) &&(!ts_list_is_host(this->tsi, other) ||

 !ts_list_is_host(this->tsr, me)))

 {

 this->mode = MODE_TUNNEL;

 DBG1(DBG_IKE, "not using transport mode, not host- to-host");

 }

 else if (this->ike_sa->has condition (this->ike_sa,

 COND_NAT_ANY))

 {

 /* Do not switch to tunnel mode when nat is detected. For securing signaling we

need transport mode SA as per draft. So stopping switches to tunnel mode in

case of NAT-T. DBG1 (DBG_IKE, “not using transport mode, connection

Nated"); */

 //this->mode = MODE_TUNNEL;

 DBG1 (DBG_IKE, "using transport mode, connection NATed");

 }

 break;

 case MODE_BEET:

 if (!ts_list_is_host(this->tsi, NULL) ||

 !ts_list_is_host(this->tsr, NULL))

 {

 this->mode = MODE_TUNNEL;

 DBG1 (DBG_IKE, "not using BEET mode, not host-to-

 host");

 }

Figure 3:- Implementation of Kernel Interface.

Chaman Singh et al, International Journal of Computer Science & Communication Networks,Vol 2(1), 99-110

106

ISSN:2249-5789

/* we currently do not expire SAs by

volume/packet count */

 sa->lft.soft_byte_limit = XFRM_INF;

 sa->lft.hard_byte_limit = XFRM_INF;

 sa->lft.soft_packet_limit = XFRM_INF;

 sa->lft.hard_packet_limit = XFRM_INF;

 /* we use lifetimes since added, not since used

*/

 sa->lft.soft_add_expires_seconds =

expire_soft;

 sa->lft.hard_add_expires_seconds =

expire_hard;

 sa->lft.soft_use_expires_seconds = 0;

sa->lft.hard_use_expires_seconds = 0;

struct rtattr *rthdr = XFRM_RTA(hdr, struct

xfrm_usersa_info);

switch (enc_alg)

{

 case ENCR_UNDEFINED:

 /* no encryption */

 break;

 case ENCR_AES_CCM_ICV16:

 case ENCR_AES_GCM_ICV16:

 icv_size += 32;

 /* FALL */

 case ENCR_AES_CCM_ICV12:

 case ENCR_AES_GCM_ICV12:

 icv_size += 32;

 /* FALL */

 case ENCR_AES_CCM_ICV8:

 case ENCR_AES_GCM_ICV8:

 {

 rthdr->rta_type =

XFRMA_ALG_AEAD;

 alg_name =

lookup_algorithm (encryption_algs, enc_alg);

 break;

 default:

 break;

 }

 }

kernel_netlink_ipsec.c

 /*Implementation of kernel_interface_t.add_sa. */

static status_t add_sa (private_kernel_netlink_ipsec_t *this, host_t *src, host_t *dst, u_int32_t spi,

protocol_id_t protocol, u_int32_t reqid,u_int64_t expire_soft, u_int64_t expire_hard, u_int16_t enc_alg, chunk_t

enc_key, u_int16_t int_alg, chunk_t int_key,ipsec_mode_t mode, u_int16_t ipcomp, u_int16_t cpi, bool encap,

bool inbound)

{

 netlink_buf_t request;

 char *alg_name;

 struct nlmsghdr *hdr;

 struct xfrm_usersa_info *sa;

 u_int16_t icv_size = 64;

 /* if IPComp is used, we install an additional IPComp SA. if the cpi is 0 we are in the recuMyve call below

*/

 if (ipcomp != IPCOMP_NONE && cpi != 0)

 {

 add_sa(this, src, dst, htonl(ntohs(cpi)), IPPROTO_COMP, reqid,

0,0,ENCR_UNDEFINED,chunk_empty, AUTH_UNDEFINED,chunk_empty, mode, ipcomp, 0,

FALSE, inbound);

 ipcomp = IPCOMP_NONE;

 }

 memset(&request, 0, sizeof(request));

 DBG2(DBG_KNL, "adding SAD entry with SPI %.8x and reqid{%u}", ntohl(spi), reqid);

 hdr = (struct nlmsghdr*)request;

 hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;

 hdr->nlmsg_type = inbound ? XFRM_MSG_UPDSA

Figure 4:- Implementation of Kernel Interface.

Chaman Singh et al, International Journal of Computer Science & Communication Networks,Vol 2(1), 99-110

107

ISSN:2249-5789

 if (alg_name == NULL)

 {

 DBG1(DBG_KNL, "algorithm %N not supported by kernel!",

 encryption_algorithm_names, enc_alg);

 return FAILED;

 }

 DBG2(DBG_KNL, " using encryption algorithm %N with key size %d",

 encryption_algorithm_names, enc_alg, enc_key.len * 8);

 rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo_aead) + enc_key.len);

 hdr->nlmsg_len += rthdr->rta_len;

 if (hdr->nlmsg_len > sizeof(request))

 {

 return FAILED;

 }

 struct xfrm_algo_aead* algo = (struct xfrm_algo_aead*)RTA_DATA(rthdr);

 algo->alg_key_len = enc_key.len * 8;

 algo->alg_icv_len = icv_size;

 strcpy(algo->alg_name, alg_name);

 memcpy(algo->alg_key, enc_key.ptr, enc_key.len);

 rthdr = XFRM_RTA_NEXT(rthdr);

 break;

 }

 default:

 {

 rthdr->rta_type = XFRMA_ALG_CRYPT;

 alg_name = lookup_algorithm(encryption_algs, enc_alg);

 if (alg_name == NULL)

 {

 DBG1(DBG_KNL, "algorithm %N not supported by kernel!",

 encryption_algorithm_names, enc_alg);

 return FAILED;

 }

 DBG2(DBG_KNL, " using encryption algorithm %N with

 key size %d", encryption_algorithm_names, enc_alg, enc_key.len * 8);

 rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo) + enc_key.len);

 hdr->nlmsg_len += rthdr->rta_len;

 if (hdr->nlmsg_len > sizeof(request))

 {

 return FAILED;

 }

 struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr);

 algo->alg_key_len = enc_key.len * 8;

 strcpy(algo->alg_name, alg_name);

 memcpy(algo->alg_key, enc_key.ptr, enc_key.len);

 rthdr = XFRM_RTA_NEXT(rthdr);

 break;

 }

 }

 if (int_alg != AUTH_UNDEFINED)

 {

 rthdr->rta_type = XFRMA_ALG_AUTH;
 alg_name = lookup_algorithm(integrity_algs, int_alg);
 if (alg_name == NULL)

 {

 DBG1(DBG_KNL, "algorithm %N not supported by kernel!",integrity_algorithm_names, int_alg);

 return FAILED;
 }

Figure 5:- Implementation of Kernel Interface.

Chaman Singh et al, International Journal of Computer Science & Communication Networks,Vol 2(1), 99-110

108

ISSN:2249-5789

 DBG2(DBG_KNL, " using integrity algorithm %N with key size %d",

 integrity_algorithm_names, int_alg, int_key.len * 8);

 rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo) + int_key.len);
 hdr->nlmsg_len += rthdr->rta_len;

 if (hdr->nlmsg_len > sizeof(request))

 {

 return FAILED;
 }

 struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr);

 algo->alg_key_len = int_key.len * 8;

 strcpy (algo->alg_name, alg_name);
 memcpy (algo->alg_key, int_key.ptr, int_key.len);

 rthdr = XFRM_RTA_NEXT (rthdr);

 }

 if (ipcomp != IPCOMP_NONE)
 {

 rthdr->rta_type = XFRMA_ALG_COMP;

 alg_name = lookup_algorithm (compression_algs, ipcomp);

 if (alg_name == NULL)
 {

 DBG1(DBG_KNL, "algorithm %N not supported by kernel!",ipcomp_transform_names, ipcomp);

 return FAILED;

 }
 DBG2(DBG_KNL, " using compression algorithm %N", ipcomp_transform_names, ipcomp);

 rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo));

 hdr->nlmsg_len += rthdr->rta_len;

 if (hdr->nlmsg_len > sizeof(request))
 {

 return FAILED;

 }

 struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr);
 algo->alg_key_len = 0;

 strcpy(algo->alg_name, alg_name);

 rthdr = XFRM_RTA_NEXT(rthdr);

 }
IPsec protection for data packets is not needed as of Now. This piece of code is conflicting with mip6d.

 #if 0

 if (encap)

 {
 rthdr->rta_type = XFRMA_ENCAP;

 rthdr->rta_len = RTA_LENGTH(sizeof(struct

 xfrm_encap_tmpl));

 hdr->nlmsg_len += rthdr->rta_len;
 if (hdr->nlmsg_len > sizeof(request))

 {

 return FAILED;

 }
 struct xfrm_encap_tmpl* tmpl = (struct

 xfrm_encap_tmpl*) RTA_DATA (rthdr);

 tmpl->encap_type = UDP_ENCAP_ESPINUDP;

 tmpl->encap_sport = htons(src->get_port(src));
 tmpl->encap_dport = htons(dst->get_port(dst));

 memset (&tmpl->encap_oa, 0, sizeof (xfrm_address_t));

 rthdr = XFRM_RTA_NEXT (rthdr);
 }

 #endif

 if (this->socket_xfrm->send_ack (this->socket_xfrm, hdr) !=
 SUCCESS)

 {

 DBG1 (DBG_KNL, "unable to add SAD entry with SPI %.8x", ntohl(spi));

 return FAILED;
 }

 return SUCCESS;
}

Figure 6:- Implementation of Kernel Interface.

Chaman Singh et al, International Journal of Computer Science & Communication Networks,Vol 2(1), 99-110

109

ISSN:2249-5789

Function encap_oa could probably be derived from

the traffic selectors [rfc4306]. In the net link kernel

Implementation pluto does the same as we do here

but it uses encap_oa in the pfkey implementation.

BUT as /usr/src/linux/net/key/af_key.c indicates

that the kernel ignores it anyway. Does that mean

that NAT-Traversal encapsulation doesn't work in

transport mode? No. The reason the kernel ignores

NAT-OA is that it recomputed (or, rather, just

ignores) the checksum. If packets pass the IPsec

checks it marks them "checksum ok" so OA isn't

needed.

8. Conclusion
NAT is a mechanism which brought momentary

abandon to the problem of shortage of IPv4 addresses.

Unfortunately, it also brought some problems which

we solved as described. Security is an essence part of

this protocol and therefore implementation procedure

is used for NAT detection. After detection of NAT

box, there are appropriate actions as described.

Support of NAT traversal in IKEv2 implementation

solved one of the important demands for IKEv2

implementations and made this implementation more

general and therefore, more appropriate to use in the

IPsec. We have also shows the integration of IPSec

with NAT. So for proper securing and fully

functionality of NAT traversal, it should be IP

Security Protected. It contains the details about

patches applied and code changes done by me in

Linux kernel, mipv6 Daemon and strongSwan in

different releases of DSMIPv6 to implement IKEv2.

The implementation of this release was to

demonstrate, Movement of MN from HL to IPv4

network and Movement of MN from IPv6 to IPv4

network and vice versa.

9. References
[1]. H. Soliman, Ed., Elevate Technologies,

November 3, 2008. Mobile IPv6 Support for

Dual Stack Hosts and Routers draft-ietf-mext-

nemo-v4traversal-06.txt.

[2]. Vida, R. and L. Costa, Eds., "Multicast Listener

Discovery VeMyon 2 (MLDv2) for IPv6", RFC

3810, June 2004.

[3]. Perkins, C., RFC 3344, August 2002. "IP

Mobility Support for IPv4".

[4]. Johnson, D., Perkins, C., and J. Arkko, RFC

3775, June 2004. "Mobility Support in IPv6".

[5]. H. Soliman, Ed., Elevate Technologies,

November 3, 2009. Mobile IPv6 Support for

Dual Stack Hosts and Routers draft-ietf-mext-

nemo-v4traversal-08.txt.

[6]. NEPL (NEMO Platform for Linux) how to, June

24th, 2009.

[7]. MIPL (Mobile Ipv6 for Linux), how to, 2004-4-

20.

[8]. Conta, A. and S. Deering, "Generic Packet

Tunneling in IPv6 Specification", RFC 2473,

December 1998.

[9]. K.L.Bansal, Chaman Singh, “Dual Stack

Implementation of Mobile IPv6 Software

Architecture”, IJCA- Volume 25, No 9, July

2011.

[10]. Sebastien Decugis, Nautilus6,” How To:

Dynamic keying for Mobile IPv6 using racoon2

and mip6d”. September 2007.

[11]. Yoshifuji Hideaki and al., In special section on

internet technology IV, IEICE Trans Comumun,

Vol.E87-B, No3 March 2004. Linux IPv6 Stack

Implementation based on Serialized Data State

Processing.

[12]. Arkko, J., Devarapalli, V. and F. Dupont, RFC

3776, June 2004. "Using IPsec to Protect Mobile

IPv6 Signaling Between Mobile Nodes and

Home Agents".

[13]. F. Audet and C. Jennings. Network Address

Translation (NAT) Behavioural Requirements for

Unicast UDP. RFC 4787, Internet Engineering

Task Force, January 2007.

[14]. K.L.Bansal, Chaman Singh, “NAT Traversal and

Detection on Dual Stack Implementation of

Mobile IPv6”, IJCA- Volume 29, No 7,

September 2011.

[15]. Egevang, K. and P. Francis, The IP Network

Address Translator (NAT), RFC 1631, May

1994.

[16]. Kent S, and K. Seo, Security Architecture for

Internet Protocol, RFC 4301, December 2005.

[17]. Kent, S., IP Encapsulating Security Payload

(ESP), RFC 4303, December 2005.

[18]. Kent, S., IP Authentication Header, RFC 4302,

December 2005.

[19]. C. Kaufman, Ed., Internet Key Exchange Key

(IKEv2) Protocol, 2005. URL:

http://www.ietf.org/rfc/rfc4306.txt

[20]. Holdrege, M. and P. Srisuresh, Protocol

Complications with the IP Network Address

Translator, RFC 3027, January 2001.

[21]. Chaman Singh, S Kumar, S Kumar, K.L.Bansal,”

Design and Implementation of Mobile IPv6 Data

Communication in Dual Networks”, IJCSI -

Volume 1, Issue 9, Page N0. 182-190, January

2012.

Chaman Singh et al, International Journal of Computer Science & Communication Networks,Vol 2(1), 99-110

110

ISSN:2249-5789

http://www.nautilus6.org/

