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Abstract  

 
 In this paper a new model-based approach is used to 

optimize the charging current of lead acid batteries for 

use in hybrid electric. The used model is a dynamical 

nonlinear model and so steepest descent, as a 

nonlinear optimization technique, is used to design the 

desired current profile. To verify the results, 

Unscented Kalman Filter is used to estimate battery 

capacity as a criterion of the state of health of the 

battery. Simulation results show that in comparison 

with multi level charging current, the proposed 

approach improves the state of health of the battery, up 

to 2.5% in the first 100 charge/discharge cycle. 

 

 

1. Introduction  
In recent years, batteries play an important role in 

many fields, such as portable equipments, hybrid 

electric vehicles (HEVs), etc. Battery life is one of 

major factors presently limiting the realization of 

economically viable HEVs [1]. 

Different charging methods exist in order to 

increase battery lifetime and reduce the charging time. 

The simplest charging method is constant current 

charging in which constant current is used to charge 

the series batteries. However battery over charging will 

result in the degradation of battery life and small 

charging current will prolong the charging time. To 

overcome this problem, two step charging method 

(CC-CV) is used, which combines the constant current 

and constant voltage charging. In the first stage of 

charging, the batteries are charged by constant current 

until the battery voltage reaches a preset value and in 

the second stage, a constant voltage is applied for 

battery charging [1]. CC-CV is still not suitable for 

rapid charging since constant voltage charging 

seriously extends the charging time. In [2] a fuzzy 

controlled active state of charge controller is proposed 

to replace the constant voltage stage in order to reduce 

the charging time. The proposed charger can 

adaptively provided suitable charging current for the 

battery. Also, other charging algorithms exist for the 

reduction of charging time. These methods include 

pulse charging algorithm [1,3], adaptable multilevel 

current controller [4], etc. In [5], a genetic algorithm 

approach to optimize a fuzzy-rule-based system was 

presented; however, the drawback of this approach is 

that a microcontroller is required to implement the  

 

 

 

 

proposed algorithm. The multistage constant-current 

charging algorithm has the advantages such as 

prolonged cycle lives, enhanced discharge/ charge 

energy efficiency, and reduced charging time [6]. To 

determine the optimal control value in each stage, all 

possible combination of charging current values should 

be tested, that is not economical for the manufacturer. 

In [7], ant colony system algorithm is used to 

determine the charging current in each stage.  

In this paper we introduce a model-based method to 

optimize the charging current for the battery. To show 

that the designed current is the optimized charging 

current, the SOH of the battery should be measured. 

The most reliable way of measuring SOH of batteries 

is to take them off-line and perform a load test on 

them. However, this is a costly, labor-intensive 

approach that requires the batteries to be taken off-line 

and is therefore typically performed at off-peak hours. 

Also a discharge test is detrimental to batteries, since 

routine deep discharges can reduce the life of the 

battery.  Considerable savings could be made if the 

battery testing could be performed on-line in a reliable 

manner [8]. Because of these shortcomings of the 

discharge test, users are increasingly turning to the use 

of much simpler methods such as: (a) partial battery 

discharge tests coupled with algorithms to calculate 

battery state of charge and (b) ohmic techniques 

including impedance, resistance and conductance 

measurements to calculate the state of health. 

However, the accuracy of these techniques largely 

depends on the depth of discharge for (a), and the way 

the contact is made between the battery terminals and 

the leads of the ohmic meter for (b) [9]. A different 

approach involves the intelligent inspection of ac 

impedance data and using the magnitude and phase 

angle at different frequencies as inputs to a fuzzy logic 

model to estimate battery SOH [8]. Another way of 

accurately estimating the state of health of a lead acid 

battery is measuring the coup de fouet voltage 

appearing in the early minutes of the battery discharge. 

The method involves measuring the trough voltage 

(low voltage point) in the coup de fouet region and 

using it in determining the battery state of health [9]. In 

[10], EKF is used to estimate the SOH. Although the 

EKF is a widely used filtering strategy, it is difficult to 

implement, difficult to tune, and only reliable for 

systems which are almost linear on the time scale of 

theupdateintervals  

Amin Rezaei Pish Robat et al, International Journal of Computer Science & Communication Networks,Vol 2(1), 117-122

117

ISSN:2249-5789



In this paper a dynamical model of the battery is 

used. Because of nonlinearity of the model, steepest 

descent method is applied to it to determine the 

optimal charging current and then Unscented 

Kalman Filter (UKF), a new technique for estimating 

the states in nonlinear systems, is used to estimate 

the SOH of the battery in order to verify the results.  

The paper is organized as followed: in section 2, a 

dynamical model of the battery is described. Steepest 

descent method for charging current control is 

applied to the model in section 3 and in section 4, 

UKF is used to estimate the SOH. 

 

2. Battery model 
There exist several battery models with different 

degrees of complexity for different applications. For 

our purpose, we need a dynamical battery model in 

the form of state variable equations. 

 In this study, the model described in [10] is used- 

see Fig.1. This model consists of a bulk capacitor 

Cbulk to characterize the ability of the battery to store 

charge, a capacitor to model surface capacitance and 

diffusion effects within the cell Csurface, a terminal 

resistance Rt, surface resistance Rs and end resistance 

Re. 
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Figure 1.Battery RC model 

 

State variable description of the network is as (for 

more details see [10]): 
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In these equations, Cbulk is assumed to be 

constant, but in practice this is not the case. The 

ability of the battery to store energy decreases with 

cell usage. We model this, by reduction of Cbulk in 

the model. Also experiments show that this reduction 

will be more serious if the charging current is high. 

To consider the effect of both time and charging 

current, Cbulk is modeled as: 

0bulkC k I t C   (2) 

where k is a constant to be determined. To determine 

k, Cbulk should be estimated in different times and 

with different charging currents. This is done in 

section 4. Here we use the results and the following 

values are considered for k and C0: k=-0.002, 

C0=1000 so 

Cbulk=-0.002 It + 1000 (3) 

The obtained equation for Cbulk causes the state 

equations to be nonlinear. Also we will have an extra 

state equation, Cbulk, which was assumed to be 

constant in the described model. New state variable 

description of the system is as: 

( , )x f x u  (4) 

1 2 3

[ , , , ]

( ) ( ) ( )

1
( , )

( ) ( ) ( )

. . .

0.002

T

Cb Cs o bulk

Cb Cs s

bulk e s bulk e s bulk e s

Cb Cs e

surface e s e s e s

Cb o

x V V V C

V V IR

C R R C R R C R R

V V IR
f x u

C R R R R R R

V f V f I f

I



 
     
 
  

    
    

 
  

  

 

1 2 2

2

2 2

( ) ( )

1

( ) ( )

s e

bulk e s syrface e s

s

bulk e e s surface e s

R R
f

C R R C R R

R

C R R R C R R

  
 

 
 

  

2

1

( ) ( )

s

bulk e e s surface e s

R
f

C R R R C R R
 

 
 

2

3 2

2

( )( )

( ) ( )

e s t

bulk e e ssurface e s

t e s

surface e s surface e s

R R R
f

C R R RC R R

R R R

C R R C R R

 


 
 

 

3. Charging current optimization 
Because of nonlinearity of the described battery 

model, we should use a nonlinear optimization 

method in order to design the charging current. In 

this study, the method of steepest descent is applied 

to the model. 

 

3.1. Steepest Descent method 
Steepest descent is an iterative numerical
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technique for determining optimal controls and 

trajectories [12]. It determines an open-loop optimal 

control, which is the optimal control history 

associated with a specified set of initial conditions. 

The Hamiltonian is used in this technique, which is 

defined as: 

( ) ( ( ), ( ), )x t a x t u t t  (5) 

   
0

( , ( ), ( ),

ft

t f

t

J h x t t g x t u t t dt    (6) 

   ( ), ( ), ( ), ( ), ( ),

( )[ ( ( ), ( ), )]T

H x t u t p t t g x t u t t

p t a x t u t t

 
 (7) 

where p(t) is the costate and the necessary conditions 

for optimization are: 

 * * *( ) ( ), ( ), ( ),
H

p t x t u t p t t
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
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
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H
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u


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
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As these equations are nonlinear, they can not be 

solved analytically to obtain the optimal control law. 

For solving this problem, the following iterative 

method is used. First a discrete approximation to the 

nominal control history, (0) ( )u t ,
0[ , ]ft t t  is 

selected. Using the nominal control history, ( )iu , the 

state equations from t0 to tf are integrated with initial 

conditions x(t0)=x0. Then ( ) ( )i

fp t  is calculated from 

( ) ( )i

fx t . Using this value of ( ) ( )i

fp t  as the initial 

condition and ( )ix , the costate equations from tf to t0 

are integrated and 
( ) ( )iH t

u




 ,

0[ , ]ft t t  is evaluated. if  

( )iH

u






 (10) 

the iterative procedure is terminated, unless we 

should generate a new control function given by: 
( )

( 1) ( )

0( ) ( ) ( ) [ , ]
i

i i

f

H
u t u t t t t t

u
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  


 (11) 

where   is the step size. ( ) ( )iu t is replaced with 

( 1) ( )iu t  and the above procedure will be repeated 

until (10) is satisfied. When (11) is used to 

generate the new control function, it is 

guaranteed that in every stage, the cost function 

is smaller than the previous stage (for more 

details see [12]) and finally reaches it’s 

minimum value.  

3.2. Simulation Results 
The following cost function is considered for 

designing the optimized charging current in order to 

reduce the charging time, improve the battery 

lifetime and limit the input current.  

   
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where Vcb,max is the voltage at the end of the charging 

process, and Cb,max is the maximum battery capacity 

at the beginning of the charging process. The values 

of parameters given in table 1 are used to solve the 

optimization problem.  

Q1, Q2 and R are selected due to the importance of 

the charging time, battery lifetime and input current 

for the specified application. In this study the 

following values are used: Q1=100, Q2=1 and R=0.1. 

Simulation results are shown in Fig (2). Fig (3) 

shows the results if Q1 and Q2 are increased, 

respectively. Increasing Q1 results in higher voltage 

in the same time and increasing Q2 results in lower 

voltage, but improved capacity, as will be shown in 

the next section. 

 

Table 1. Parameters for the Cell Model 

Cb,max VCbmax Csurface Rt Rs Re 

1000F 2V 82.11F 0.002745Ω 0.00375Ω 0.00375Ω 

 

4. Battery SOH Estimation 
In this paper, UKF, a new method for estimation 

of nonlinear dynamical systems models, is used to 

estimate the battery SOH.  

The Extended Kalman Filter has been one of the 

most widely used methods for estimation of non-

linear systems through linearization non-linear 

models. In recent several decades people have 

realized that there are a lot of constraints in 

application of the EKF for its hard implementation 

and intractability. The UKF addresses the 

approximation issues of the EKF. The state 

distribution is again represented by a Gussian 

Random Variable
 (
GRV

),
 but is now specified using a 

minimal set of carefully chosen sample points. These 

sample points completely capture the true mean and 

covariance of the GRV, and when propagated 

through the true nonlinear system, captures the 

posterior mean and covariance accurately to the 3rd 

order (Taylor series expansion) for any nonlinearity. 

To elaborate on this, we start by first explaining the 

unscented transformation.[14] 
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Figure 2. Simulation results: battery charging 

current, battery voltage and cost function 

 

4.1. Unscented transformation 
The unscented transformation (UT) is a method 

for calculating the statistics of a random variable 

which undergoes a nonlinear transformation [13]. 

Consider propagating a random variable (dimension � 

) through a nonlinear function, ( )y g x . Assume x � 

has mean x  and covariance Px . To calculate the 

statistics of y, we form a matrix   of 2L+1 sigma 

vectors 
i

  (with corresponding weights Wi__), 

according to the following: 
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Where 
2 ( )L L      is a scaling parameter.   

determines the spread of the sigma points around x  .  
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Figure 3. Battery charging current and voltage for 

different weighting matrices 

and is usually set to a small positive value (e.g., 1e-

3).  is a secondary scaling parameter which is 

usually set to 0, and  is used to incorporate prior 

knowledge of the distribution of x (for Gaussian 

distributions, 2  ' is optimal). ( ( ) )x iL P is the 

i’th row of the matrix square root. These sigma 

vectors are propagated through the nonlinear 

function, ( ) 1,...,2i iy g i L   and the mean and 

covariance for y are approximated using a weighted 

sample mean and covariance of the posterior sigma 

points, 
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 (14) 

Note that this method differs substantially from 

general “sampling" methods (e.g., Monte-Carlo 

methods such as particle filters [14]) which require 

orders of magnitude more sample points in an 

attempt to propagate an accurate (possibly non- 

Gaussian) distribution of the state. The deceptively 

simple approach taken with the UT results in 

approximations that are accurate to the third order 

for Gaussian inputs for all nonlinearities. For non-

Gaussian inputs, approximations are accurate to at 

least the second-order, with the accuracy of third and 

higher order moments determined by the choice of 

 $ and  ' (See [13] for a detailed discussion of the 

UT).
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The basic framework for the EKF involves 

estimation of the state of a discrete-time nonlinear 

dynamic system, 

 

 

1 ,

,

k k k

k k k

x F x v

y H x n

 


 (15) 

Where kx represent the unobserved state of the 

system and ky is the only observed signal. The 

process noise kv drives the dynamic system, and the 

observation noise is given by kn . A recursive 

estimation for kx  can be expressed in the form  

ˆ ( ) .[ ( )]k k k k kx prediction of x y prediction of y    (16) 

 

The Unscented Kalman Filter (UKF) is a 

straightforward extension of the UT to the recursive 

estimation in Equation 16, where the state RV is 

redefined as the concatenation of the original state 

and noise variables: [ ]a T T T T

k k k kx x v n . The UT sigma 

point selection scheme (Equation 15) is applied to 

this new augmented state RV to calculate the 

corresponding sigma matrix, a

k . The UKF 

equations are given in the Algorithm1. Note that no 

explicit calculations of Jacobians or Hessians are 

necessary to implement this algorithm. Furthermore, 

the overall numbers of computations are the same 

order as the EKF. 

 

4.2. Simulation Results 
Using the model described in section 2 and the 

parameters given in table 1, UKF is applied to 

estimate the SOH of the battery. Simulation result for 

the current profile obtained in section 3 is shown in 

Fig (4). 

Fig (5) shows the estimated capacity with increased 

Q1 and Q2. According to the estimated curves, 

increasing Q2 will improve the capacity (as was 

mentioned in the previous section).  

To compare the results with constant current 

charging and multilevel current charging methods, 

battery capacity is estimated using these current 

profiles. The results are shown in Fig. 6. 

 

5. Conclusion 
In this paper, steepest descent technique is applied to 

a dynamical model of a battery to obtain the 

optimum charging current. The values of weighting 

matrices in the cost function can be chosen due to the 

importance of charging time and battery life time for 

the user. A new approach for battery SOH 

estimation, using UKF is also employed to verify the 

results. Simulations results show that battery lifetime 

will be improved using the obtained optimum current 

profile 
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Measurement update equation: 
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Where, 

[ ]a T T T T

k k k kx x v n  

[( ) ( ) ( ) ]a x T v T n T T     

  composite scaling parameter 

L= dimension of augmented state 

Pv= process noise cov. 

Pn= measurement noise cov 

Wi= weight as calculated  in Eq.13 

Algorithm1. UKF Algorithm for Implementation 
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Fig4. The estimated capacity for optimal current 
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Fig5. Estimated capacity for different weighting matrices 
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Figure 6. The estimated capacity for (a) constant current 

charging, (b) multilevel current charging 
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