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Abstract  
 

In all speech communication settings the quality and 

intelligibility of speech is of utmost importance for ease 

and accuracy of information exchange. Kalman filter is 

an adaptive least square error filter that provides an 

efficient computational recursive solution for 

estimating a signal in presence of noises. Beamforming 

is another possible method of speech enhancement, 

because, the beamformer minimizes the output signal 

power but maintains signals from the desired direction. 

Hence, an optimized cascaded scheme is implemented 

using the advantages of Kalman filter and 

Beamforming where the Kalman filter technique 

followed by Beamforming reduces stationary as well as 

residual noise. The proposed hybrid method gives 

better SNR and PESQ values as compared to that of 

individual techniques, thereby improving the quality of 

the speech.  

Keywords: Kalman filter, Beamforming, Cascaded 

scheme 

 

1. Introduction  
 

When using hands-free speech communication 

systems, the speech signal acquisition is usually 

corrupted by reverberation and background noise which 

lead to a significant decrease in communication quality. 

For this reason, techniques for enhancing the desired 

speech signal are required which reduce the 

environmental noise. The objectives of speech 

enhancement are high quality and intelligibility of the  

 

 

 

output speech signal. Therefore, a noise reduction 

system is required which significantly attenuates the 

environmental noise without affecting the speech signal 

by additional distortions.  

The scheme uses a linear microphone array to 

capture a speech signal that has been corrupted by 

babble noise, car noise and interference signals. 

Beamforming by itself, however, does not appear to 

provide enough improvement. Further, the performance 

of beamforming becomes worse if the noise source 

comes from many directions or the speech has strong 

reverberation. Kalman Filter [1] is an adaptive least 

square error filter that provides an efficient 

computational recursive solution for estimating a signal 

in presence of noises. It is an algorithm which makes 

optimal use of imprecise data on a linear (or nearly 

linear) system with errors to continuously update the 

best estimate of the system's current state. The present 

paper shows a combined technique using the 

advantages of Kalman filter and beamforming where 

the beamforming followed by Kalman filter reduces 

stationary as well as residual noise. Hence, the best 

performance is obtained when they work together 

rather than individually.  

 

 

2. Multichannel speech enhancement 

system 
 

Multi-channel enhancement algorithms [2], [3] 

and [4] exploit the spatial diversity. This diversity can 

be taken advantage of e.g., by steering a null towards 

the noise source and a beam towards the signal source. 

In this paper, a brief overview of one common multi-
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channel noise reduction technique known as 

beamforming technique is provided. 

 

2.1 Beamforming 

 
Beamforming is a means of performing spatial 

filtering [5]. In the frequency domain, beamforming 

can be viewed as a linear combination of the sensor 

outputs: 

 
bi(k) is the beamformer weight corresponding to the i

th
 

sensor, and M is the total number of sensors. In vector 

notation, we have   

              Z(k) = b
T
 (k)Y(k)                                          (2) 

where   b(k) = [ (k) . . . bM (k)]
T
   

Beamforming can be classified into two categories - 

fixed, where the weights are fixed across time, and 

adaptive, where the weights vary in response to 

changes in the acoustic environment. 

 

2.1. Fixed beamforming 
 

In fixed beamforming, the weights (k) are 

fixed over time, and are determined by minimizing the 

power of the signal at the output of the beam former 

subject to a constraint that ensures that the desired 

signal is undistorted, i.e., the optimal weights are the 

solution to  

  min b*(k)Φyy(k) b(k) subject to b*(k)1 = 1             (3) 

  b(k) 

where * refers to complex conjugate transpose and 

Φyy(k) is the M X M  PSD matrix of the noisy input 

signals whose (i, j)
th
 entry is E[Yi(k)Yj *(k)]. Note that 

the constraint of zero distortion in the look direction is 

written using a vector of ones since we assume that the 

array shown in the fig. 1 has been presteered towards 

the desired signal direction. The solution to the 

constrained optimization problem is the well-known 

minimum variance distortionless response (MVDR) 

beamformer: 

                                          (4)                                         

                           

where Φww (k) is the M X M noise PSD matrix whose 

(i; j)
th
 entry is E[Wi(k)Wj*(k)]. Assuming a 

homogeneous noise field, the solution can be written in 

terms of the coherence matrix 

                                   (5) 

where the (i; j)
th
 entry of the M X M coherence matrix 

is given by 

                                           (6) 

                                                                    (7) 

where is the cross spectral density between 

the noise signals at the i
th
 and j

th
 sensors, and from the 

assumption of a homogeneous noise field, (k) = 

Φww (k) for all i.  

For incoherent (or spatially white) noise fields, 

Гww = I, b =  1 and the MVDR beam former reduces 

to a delay-and-sum beamformer (DSB),where the 

sensor signals are delayed and then averaged. The pre-

steering corresponds to the delay and is such that the 

signal components at the different sensors sum up 

constructively while the noise components cancel each 

other. Incoherent noise fields are not common. An 

example of incoherent noise is electrical noise at the 

sensors, which is uncorrelated at the different sensors. 

In a DSB, the amplitude weights are fixed 

across frequency (often equal) and the phase weights 

introduce the delay. A more general form is a filter-

and-sum beam former (FSB), where both the amplitude 

and phase weights vary across frequency. FSBs are 

useful in designing beam formers with a specified 

directivity pattern for arbitrary microphone array 

configurations. 

Many of the noise fields encountered in 

practice fall into the category of diffuse noise fields, 

whose coherence function has the form: 

                     Гij (k) = sinc( )              (8) 

where sinc(x) = sin(x)/x, dij is the distance (in meters) 

between the i
th
 and j

th
 sensors, c = 340 m/s is the speed 

of sound in air and K is the frame length. If we use the 

corresponding expression for the coherence matrix, the 

resulting beamformer is called a super directive 

beamformer (SDB). While the SDB is useful in diffuse 

noise fields, its main disadvantage is an amplification 

of uncorrelated noise (e.g., sensor noise) at low 

frequencies. This problem is handled by incorporating a 

white noise gain constraint in the design. 

 

2.2. Adaptive beamforming 
 

In adaptive beamforming, the beamformer 

weights adapt to changes in the acoustic environment 

over time. The optimal weights are obtained by 

minimizing the variance of the output signal.  
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Figure 2. Frequency domain implementation of the 

Generalized Side lobe Canceller. The ANC is 

implemented by the adaptive filters w1. . . .wM-1 

 

To ensure that the speech signal is not cancelled out or 

distorted, a distortion less constraint is imposed on the 

desired signal. This results in the linearly constrained 

minimum variance (LCMV) beamformer, where the 

adaptive beamformer weights are obtained through a 

constrained minimization procedure.The generalized 

side lobe canceller (GSC) [6], is an efficient alternative 

implementation of Frost's LCMV approach, that 

converts the constrained optimization problem into an 

unconstrained one. This leads to an efficient 

implementation for the update of the beamformer 

weights. 

The GSC consists of three parts - a fixed 

beamformer (FBF), a blocking matrix (BM) and an 

adaptive noise canceller (ANC) as shown in Fig.2. The 

FBF includes a pre-steering module and its weights are 

designed to produce a speech reference YBF with a 

specified gain and phase response. The FBF could 

either be a simple delay-and-sum beamformer, or a 

more advanced filter-and-sum or super directive 

beamformer. The BM is generally orthogonal to the 

FBF and produces M-1 outputs, called the noise 

references, by steering zeros towards the desired signal 

direction. One way to create the noise references is to 

take the difference between adjacent sensor signals. 

The ANC (implemented by the adaptive filters w1. . . 

.wm-1) in Fig. 2 removes any remaining correlation 

between the speech reference YBF and the noise 

references. Thus, any residual noise in the speech 

reference that is correlated to the noise references is 

removed. In practice, the noise references are not 

completely free of speech. As a consequence, the ANC 

results in some of the speech signal being cancelled. To 

minimize the effect of the speech leakage on the ANC, 

the noise-cancelling filters are adapted only during 

periods of speech absence. To reduce the amount of 

speech leakage, some variants of the GSC employ an 

adaptive blocking matrix.  

 

3. Kalman filter 
 
The speech signal s(n) is modeled as a P

th
 -order AR 

process  

where

                                   

1

( ) ( ) ( )
p

i

i

s n a s n i u n


                                     (9)                  

     
( ) ( ) ( )y n s n v n                                          (10) 

Where, s(n) is the nth sample of the speech signal, y(n) 

is the nth sample of the observation, and  is the i
th

 

AR parameter. This system can be represented by the 

following state-space Model. Where, the sequences 

u(n) & v(n) are uncorrelated Gaussian white noise 

sequences  with the mean  and  and the variances  

and .x(n) is the P x 1 state vector. 

  X(n)=[s(n-p+1),….,s(n),v(n-q+1),….,v(n)]
T
          (11) 

F(n) is the P x P transition matrix                   

    F(n)=  

1 2 1

0 1 0 ... 0

0 0 1 ... 1

. . . ... .

. . . ... .

. . . ... .

0 0 0 ... 1

...p p pa a a a 

 
 
 
 
 
 
 
 
 
 
 

        

G and H are, respectively, the P x 1 input vector and 1 

x p observation row vector which is defined as follows  

                H = = [0 0   0 1]                       (12) 

The standard Kalman filter [2] provides the updating 

state vector estimator equations 

             
ˆ( ) ( ) ( / 1)e n y n Hx n n                      (13) 

                

( ) ( /( 1))k n p n n H 
1[ ( /( 1)) ]THP n n H     

(14) 
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 x ̂(n/n)=x ̂(n/(n-1))+K(n)e(n)                  (15) 

P(n/n) = [I – K(n)H] P(n/n-1)                       (16) 

x ̂(n+1/n)=F(n)x ̂(n/n)+Gǖ                                          (17)                                  

P(n+1/n)=F(n)P(n/n) (n)+G

               (18) 

Where, x ̂(n+1/n)  is the minimum mean square 

estimation of the state vector X(n)  given the past n-1 

observations y(1), ……. , y(n-1) 

(n/n-1) = x(n) – x ̂(n/n-1) is the predicted state  error  

vector. 

P(n/n-1) = E[ (n/n-1) (n/n-1)] is predicted state error 

correlation matrix. 

x ̂(n/n) is the filtered estimation of the state vector. 

(n/n) = x(n) – x ̂(n/n) is the filtered state error vector. 

P(n/n) = E[ (n/n-1) (n/n)] is the filtered state error 

correlation vector. 

e(n) is the innovation sequence. 

K(n) is the Kalman gain. 

The estimated speech signal can be retrieved from the 

state-vector estimator 

                                                         (19)    

4. Experimental Results  

The experiment is carried by corrupting the 

speech signals using babble noise at various input 

SNRs 0 dB, 5 dB, 10 dB and 15 dB and performance 

was evaluated by cascading Beamform and Kalman 

filter (BEAM-KAL).  

 

Figure 3. Comparison of PESQ scores for the 

proposed BEAM-KAL filter 

 

Figure 4. Time domain comparison of  (a) Noisy 

input signal at 15 dB (blue colour) (b) Enhanced 

BEAMFORM signal at 15 dB (red colour) (c) 

Enhanced KALMAN signal at 15 dB (yellow colour) 

(d) Enhanced signal of the proposed BEAM-KAL at 

15 dB (green colour) and the black circle shows how 

the noise was removed. 
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Figure 5. Spectrogram analysis of speech sample 

‘sp01’ from NOIZEUS database corrupted with 

babble noise at 15 dB SNR.  (a) Noisy signal at 15 

dB (b) Enhanced BEAMFORM signal at 15 dB  

(c)Enhanced KALMAN signal at 15 dB (d) 

Enhanced signal of the proposed BEAM-KAL at  15 

dB. 

Perceptual Evaluation of Speech Quality 

(PESQ) scores [7] for the proposed BEAM-KAL was 

studied to be consistently good from low to high input 

SNR except at 5 dB where beamform was slightly 

better than this as shown in fig. 3. Fig. 4 & 5 shows the 

time domain and spectrogram comparison of noisy, 

Beamform, Kalman and BEAM-KAL enhanced speech 

signals at 15 dB. From this, it is clear that BEAM-KAL 

combination is superior to the others which can also be 

seen in the subjective A-B test shown in the table 1. 

 

4.1. A-B Results for BEAM-KAL 
 

In the same way second set of tests was 

conducted using a speech file corrupted with babble 

noise at 0 dB. The file was enhanced with the BEAM, 

KAL and BEAM-KAL. These tests show an almost 

unanimous preference for the proposed algorithm over 

all the others. 

 

Table 1. Listener preferences for tests in babble 

noise at 0 dB    

 
 

5. Conclusion 

The method presented here is based on a 

generalized side lobe canceller (GSC) adaptive 

beamformer combined with an Kalman filter. The 

objective test is conducted and the results of the above 

proposed system are compared to the beamformer and 

Kalman filter individually at various input SNRs. The 

enhanced signals of the proposed cascade BEAM-KAL 

and the individuals are compared to the unenhanced 

signal. It is worth mentioning that the improved system 

shows good performance. Because, the beamformer 

minimizes the output signal power but maintains 

signals from the desired direction. 
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