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Abstract

We consider a class of linear discrete-time systems con-
trolled by a continuous time input. Given a desired final
state x4, we investigate the optimal control which steers
the system, with a minimal cost, from an initial state o
to x4. We consider both discrete distributed systems and
finite dimensional ones. We use a method similar to the
Hilbert Uniqueness Method (HUM) to determine the con-
trol and the Galerkin method to approximate it, we also
give an example to illustrate our approach.
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1 Introduction

This paper is devoted to the study of the con-
trollability problem corresponding to the discrete
-time varying distributed systems described by
{ T = i+ [, Bi(0)u(0)do, (s)
zo given in X

for i = 0,..,N — 1, where z; € X, u € L?(0,T,U),
6 € L(X), Bi(B) € LU, X), (X, | ) and (U, ||) are
Hilbert spaces and (t;); is a subdivision of the interval
[0, T such that to = 0 and ¢t = T. Moreover, we sup-
pose that the applications § — B;(0),i=0,...,N—1
are continuous.
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In other words, given a desired final state x4, we in-
vestigate the optimal control which steers the system
(S) from g to x4 with a minimal cost J(u) = [Ju]l.
As an example of systems described by (S), we con-
sider the linear continuous system given by

x(t) = S(t)zo Jr/o S(t —r)Bu(r)dr, t>0 (1)

where S(t) is a strongly continuous semi group on
the Hilbert space X and B € L(U,X). In order to
make the system accessible by a computer we proceed
to a sampling of time ( see for example [8, 12, 13]),
this means, we put

N-1

0,7 = |J [tir ti41]
i=0
where
to = 0
t7;+1 = tl + 6,

withéz%andNEﬂV*.

If we take z; = x(t;) then
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Tip1 = x(tit1) .
i1
= S(tiJrl)xO + S(ti+l — r)Bu(r)dr
0
t;
= S(ti+0)xo+ / S(t; + 6 — r)Bu(r)dr
0
tit1
+ / S(tio1—)Bu(r)dr
t; SN————
B;(r) N
= S(9)[S(t;)xo —|—/ S(t; — r)Bu(r)dr]
0

tit1
+ B;(r)u(r)dr

t;

then

xit1 = S(0)x(t;) —|—/ HlBi(T)u(r)dr
¥

and consequently

tita
Tiy1 = ¢z + Bi(r)u(r)dr
t;

which is a system described by (S).
In many works (see [6, 8, 13]) and under the hypothesis

w(t) = u; Yt € [ti, tita], (2)

( the hypothesis (2) means that, u(t) is assumed to
be constant in the interval [t;,¢;+1] ), the sampling of
system (S) leads to the difference equation

Tit+1 = Lﬂjz + MUZ

tiv1

where L = ¢ and M = B;(r)dr.

t;
This last discrete version has been used by several au-

thors ([5, 3, 7, 11, 15, 16]). In some situations, the con-
trol law could have fast variations during time. Con-
sequently the hypothesis (2) becomes inappropriate,
this shows the importance of our system (S).

In this chapter, we use a technique similar to the
Hilbert Uniqueness Method, introduced by Lions J.L.
(see [9, 10]), in order to treat the controllability prob-
lem. The section 4 contain a method for approximat-
ing the optimal control and an example that illustrate
the developed results. In the section 5, we study this
problem in finite dimensional case.

2 Preliminary results

The final state of system (5) can be written as follows

zn = N zg+ Hu
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where
H : L*0,T.U) — X
N t; )
u - Z/ N TIB;_1(0)u(6)df.
j=1"%i-1
(3)

Definition 2.1 We say that (S) is weakly controllable
on {0,...,N} if ImH = X. (Im H means the range

of H).

Remark 1 (S) is weakly controllable if and only if
Ker H* = {0}.

Lemma 1 The operator H is bounded and its adjoint
operator H* is given by , for allz € X

H*x(0) = By_1(0) (") 7, (4)
forall 0 €]t;_1,t;[ and all j=1,...,N.

Proof
Let u € L%(0,T,U), z€ X

N t;
< Hu,x >=< Z/ N TIB;_1(0)u(0)do, x >
N t; ! o
=3 [ <ul0). By @)@ e > ao

j=1vti-1

N T )
_ Z/O <u(8), B, (0)(6") Iy, . ((6) > dB

N
<u(8), 3 By ()@Y Xy, 0, ((6) > df

N
H*z(0) = ZBf_l(9)(¢*)N*jx~?€]tj,1,tj[(9) ()

which implies (4). [ |
Consider on X x X the bilinear form given by
<z, y>p=< H'x,H*y >, Vr,ye X (6)

clearly, if (S) is weakly controllable, then < .,. >p
describes an inner product on X. Let ||.|p be the
corresponding norm and F' the completion of X with
respect to the norm ||.|| .
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Remark 2
lzllr < [H*[l[[2], Yz e X.

In the following, we suppose that (S) is weakly con-
trollable.
Define the operator A by

A X — X
r — HH*x

then
Ker A = Ker H*

moreover
| <Aw,y>[<|zlpllylr, Vr,yeF

then, it is classical that A can be extended, in a single
way by an isomorphism, denoted also A, defined from
F onto F’ (see [10, 14]). Moreover, F is a Hilbert
space with respect to the inner product

<z,y>p=<Az,y >prp Vr,y€eF (7)

where < Az,y >p/ r means the range of y by the
operator Az. From (6) we deduce that

[H 2| = ||zllF, VoeX

hence H* is a bounded operator from (X, ||.||#) onto
(L?(0,T,U),||-I), so it has a bounded extension,
denoted H,, defined from F onto L?(0,T,U).

Lemma 2 ImH can be identified to a subset of F'.

Proof
Let z € Im H, and consider the map

pr: X — R
Yy = <x,y>

there exists u € L?(0,T,U) such that x = Hu, hence
forall y € X we have

lp(y)] = | <zy>|=|<Huy>|
= | <u,H*y>|<|ullllylr

Consequently, ¢, has a bounded extension, denoted
by %, which belongs to F’. Let j be the map defined
by
j :ImH — F
T = Pz
clearly j is linear and injective [ |
The operator HH, is defined from F onto Im H,

using lemma, (2) we can consider that H H, is defined
from F onto F”.
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Proposition 2.1 The operators A and HH, are
equal.

Proof
Let T € F be arbitrary, we have

| < HH.T,y >p' F | | < HH.Z,y > |, Vye X

= | < H.7T H*y>|
< | Hz||[[Hyll
< Hzllllyllr

by density of X on F, we deduce that
| <HH.Z,y >pr | < |HZ|[[Y]r, VyeF
hence
|HH.z||p < ||Hozl| < [|Ho|[[I7] 7

which implies that HH, is bounded. On the other
hand
HH.x=HH'x=Azx, Vze X

by density of X and continuity of both HH, and A
from F onto F’, we deduce that

HH,7 =Az, Vx €F.

Lemma 3 The inner product corresponding to ||.|| r is
<z,y >p=< Hyx,H,y >, Yo,y e F
Proof
From (7) and Proposition 2.1, we deduce
<z,y >p=< HH,z,y >p' p, Vx,y € F
but

<HH,z,y>pr = <HH,z,y>, VyecX
= < H.,z,H"y>
= < H,z,H.y>.

ify € F, 3(y,) C X such that ||y, —y| — 0. We have,
< HH,z,yp, > r=< H,x,H,y, >, Y/neN
when n — 400, we obtain

< HH,z,y >p p=< Hyx,H,y >, Vyec F

Remark 3
From lemma 3, we deduce that if (S) is weakly control-
lable then Ker H, = {0}.

1JCSI
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3  The optimal control

We first characterize the set of all reachable states at
time NV from a given initial state xg.

Proposition 3.1 The reachable set at time N, from
a given initial state xg, 1S given by

R(N) = ¢Nao+ F'.

Proof
If z € ¢Nag + F', then z — ¢y € F', hence there
exists f € F such that z — ¢Vxg = Af, which implies
that

z2=¢Naxg+ HH, f = ¢ azo + Hu

where u = H, f, thus z is reachable.
Conversely, if z is reachable, say that z = ¢Nao + Hu,
then

z—¢Nwg=Hu
that is 2 — ¢™Vwg € Im H C F’ hence z € ¢Nag + F'.
|

Theorem 3.1 If x4 — ¢Nxy € F’, then the control
u* = H,f, where f is the unique solution of the alge-
braic equation

or
<v—u*Hy.fn, >=0, VYn

when n — 400, we deduce that
<v—u" H,f>=0

or
<v—u*,u">=0

thus

<v,u* >= |lu*|?

which implies that
lu* (1> < flolllu*]|

[[a” ]| < flv]l.

4 A numerical approach

In order to determine the optimal control ©*, we need
to resolve the algebraic equation

N
Af =2a=¢7 0 ®) Af =x4—¢Nag on F'. (9)
steers the system from the initial state xq to the final
state x4 at time N with a minimal cost J(u) = ||ull, In this section, we propose a numerical approach to
moreover ||[u*|| = ||fllF. approximate f. Suppose that z4 — ¢VNxg € F’ and

Proof
Let u* = H, f, where f verify (8), f exists since x4 —
Nz € F'. We have,

oNaog+ Hu* = ¢Nag + Af = a4

hence u* steers (S) from zg to x4 at time N. Suppose
that v steers () from zg to x4 at time N, then

oNro+ Ho=12q=¢"axo+ Hu*

hence,
Hv = Hu"

which implies that
<Hw-—u"), fn>=0; Vn

where (f,)n is a sequence, of elements in X, which
converges towards f with respect to the norm |.||r.
Consequently,

<v—u*H*f, >=0, Vn

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

that X is a separable space. Let (w;);>1 be a basis of
X.
Equation (9) is equivalent to

<Af,y >p p=<zq4— 20,y >pr 5, VyeX
(10)

Remark 4 Since the bilinear form
(u,v) =< Au,v >pr p
is coercive on F' X F' and the map
y =< zq— ¢ 0,y >p¢

belongs to F', one can think to apply the Galerkin
method to approximate f. But this involves some dif-
ficulties because the map y —< x4 — N g,y >prF 1S
known on X but almost unknown on F, also (u,v) —<
u,v > 18 known on X x X but almost unknown on
FxF.
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Equation (10) is equivalent to
< fy>p=<za—o¢Vm,y> WyeX (1)

Remark that in equation (11), the solution f belongs
to F' and the variable y is in X. In the following, we
will prove that by applying the Galerkin method to
equation (11), we can construct a sequence (f,,) which
converges strongly on F' towards f.

Let X, be the subspace of X spanned by the vector
w1, Wa, - . ., Wy and fp, € X, the solution of

< fmvy >p=< 14— ¢Nx07y >, Yy e Xn (12)

Since ||.|| and ||.||r are equivalent on X,,, the bilinear
form (u,v) —< u,v >p is continuous and coercive on
X, X X, moreover, y —< x4 — ¢~ xg,y > is bounded
on X,,. From the Lax-Milgram theorem, see( [1, 2]),
we deduce that f,, exists and is unique. Using (12) we
have

<fm7fm >p=< zd_¢Nw07fm> (13)

Since x4 — ¢Nxy € F’, there exists a constant ¢ such
that

| <a—¢Nao,y >pop | <clyllr, VyeF
hence,

| <za—¢Nwo,y> | <clyllr, YyeX (14)
from (13) and (14), we deduce that

Il << fins fin >< el finll

ie.
[fmllr < ¢, Vm.
Consequently, (f,,) admits a subsequence (f)m/

which converges weakly to a certain f, € F, we will
denote this weak convergence by

Let C denote the set of all finite combinations of
w;, & > 1. Suppose that v € C, then v belong to
X, for m’ sufficiently large, hence

< fmr,v >p=<1Tq — (bNxo,v > .
From (15), we deduce that

lim < f,v>p = < fy,v>p

m’—4o00

= <xzg—¢Nzg,v>, vEC
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let x € X, since C is dense on (X, ||.||), then there
exists a sequence (zp,), such that ||z, — x| — 0, which
implies that ||z, — z||r — 0, using Remark (2). On
the other hand,

<f*,$n >p=< xd_¢Nx07xn >, vn
when n — 400, we obtain
< fox>p=<xq—¢Nao, x>, VreX

hence f, is solution of (11), by uniqueness we de-
duce that f. = f. Hence (fm)m has a subsequence
(fm/)ms which converges weakly on (F, ||.|r) towards
f- Suppose that (f,,)m doesn’t converges weakly, on
(F,||.|lF), towards f, then there exists v € F such that
< fm,v > doesn’t converges towards < f,v >p, i.e.,

3, VN In>N | < fp,o>p —< f,o>p|>¢€

From this we deduce that, forall N € N, there exists
©(N) > N such that

|<f<p(N)7'U>F_<f,’U>F|>6 (16)

but (f,(n))n is bounded on F, hence (f,(n))n has
a subsequence (f,(n/)) N’ Which converges weakly to-
wards f, hence

< fw(N/),U >p—< f7’l) >F
which contradicts (16) thus
Jm = f.

To prove that f,, — f strongly on F', we consider

<fm_f7fm_f>F:
< frs fm >F — < fo, f >F — < fi fm >F
+<faf>F

recall that

< fmafm >=<Tq— ¢Nx0afm >

hence

im < fo, fn >=< xq — ¢ x0, f > F.

m——+oo

On the other hand,

m < fmf> = <fif>r
lim < f fmn> = <f f>F
m——+00

1JCSI
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consequently,

Iim < fo—fifm—f>

m——+oo
= <za—"wo,f > p— <[ f>F
=<zq—"wo, f > — <Af, f >pF
=<zq—¢Nxo— Af, f>pF
=0

thus f,,, — f strongly on F.

Remark 5 To determine (fn,), we don’t need the ex-
pression of H, nor the completion space F.

Remark 6 The sequence of inputs u, = H*f, con-
verges strongly, on L?(0,T,U), towards the optimal
control u* = H, f.

4.1 Example

Consider the system

i=Ax+ bu (17)
i=1

where z(t) € X = L?(0,1), b; € X, u; € L*(0,7T),
A = 2, and D(A) = {z € L*0,1), 2z ¢
L?(0,1), x(0) = x(1) = 0}. A is self-adjoint and
has respectively eigenvalues and eigenvectors given by
An = —n?7? and ®;(t) = V2sin(jnt), t € [0,1] and
ji=12 ...

We suppose for example that fol b1 (o) sin(nma)da #
0, Vn > 1, this implies that the system (17) is weakly
controllable, (see [4]). If we introduce the operator B

B: IR™ — X
(U1, ey Up) Zbiui
i=1

then the system (17) becomes
& = Az + Bu. (18)

Now, consider the discrete version of (18) obtained by
a similar way as presented in the introduction of this

paper,

tit1
t

i

where t; = iA,i = 0,..., N with A is a sampling of
[O,T], xTr; = Z(tz), Bl(9) = T(ti_._l — Q)B, b = T(A)
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where T'(t) is the strongly continuous semi group, gen-
erated by A, given by

THz=Y e ™™ <28, >, , VzeX.

n=1

Since the system (18) is weakly controllable on
[0,T],¥T > 0 we deduce that

Vag € X,3u e L*(0,T,U) : ||2(T) — z4|| < €
which implies that

Vag € X,3u e L*(0,T,U) : ||z(ty) — zd4l| < €
which implies that

Vrg € X,3u € L*(0,T,U) : |jlzny —zd4|| <€

hence (19) is also weakly controllable on [0,ty], VN.

Since X is reflexive, then T%(A) is generated by
A* = A, ie. T*(A) = T(A), which gives ¢* = ¢,
and ¢! = ¢** = T(iA).

Let’s denote Tﬁfj =T((N—j5)A), then for any z € X,
it follows from equations (3) and (4) that

HH*z = H(H*z)

N ot 4 .
= Z NI B;_1(0)B;_,(0)¢" N T ado
j=1 tj—1
N
=> /t Ty ;T(t; — 0)BB*T(t; — 0)Tx_;xdf
; J—
= Z/ 0)BB*W;()zd6.

where W;(0) = T((N — j)A +t; — ). On the other
hand, the adjoint operator B* of B is given by
B*: X —» R™
x = (<bn,z>,...,<bp,x>).
If we define
(n, j,0) = e=* 7t =0+(N=a]
¢ =<z,®;>,z€X,jEN

then
B*T((N — j)A +t; — 0)z
= an,j, 050, ... a(n,j,0)85 00
n=1 n=1

1JCSI
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We have
o0
= e FT 0 (N=DAl < BB, (0)x, B > Py

hence
HH
N t; o©
=Y > a(k,j,0) < hy(x), ®) > pdf
j=1"t-1 k=1
t; oo
=> > a(k,j,0)g;(x)®ydo.
j=17%ti-1 k=1
where
R
i=1 n=1
m o0
S D) RTI L
i=1 n=1
Therefore
<HH*®,., ¢, >
N tj m oo
- Z/ (5,5,0)> ) a(n,j,0) 5 @b dbido
tj—1 i=1n=1

a(r, j,0) 0% dbi do

Ms

z [ ateio
_ Z/ (s> +r2)m2[t; —0+(N— J)A]de Z(I)b (I)b
j=1 —1

tj =1

Let vy = Z

N o= (s*+r*)m* (N—j)A

i=1

o (s 24?7t —0+(N— J)A]da hence

tjl

Vsr = 1- 67(82+r2)ﬂ2A)

= (s +r2)m2
N
(242 e—(s2+r?)m2NA 2422 .
= (1—e &+ QA)WZ( (s*+r)m* Ay
Jj=1
(e(s2+r2)7r2A _ 1)(6—(s2+r Y2 NA 1)

(82 + 7”‘2)’/T2(1 _ 6(52+T2)ﬂ'2A)
1— e—(52+r2)ﬂ'2NA

(s2 + r2)m2

It follows from Theorem 3.1 and Remark 6 that the

optimal control can be approximated by v, = H*f;
l

Z 2!®; is the unique solution of the alge-
i=1
braic system

<HH f;,®; >=< x4 — ¢ a0, ®; >, Vi=1,...,1,

where f; =
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or equivalently

Az =

where Z; = (21,...,2)!, Xq= (< xq— Nz, 1 >
< xqg— ¢V, ®; >)" and A; the matrix

A

(K HH*®5, @, >)1< 5 <1

= (’YST Z < bia(pr >< biaq)s >)1§ s,r <l-
i=1

On the other hand, from lemma 1, it follows that

w(®) = Bi0)(e )N S, VO €lti_1,t4]
= B*T(t; - ) (N =9)A)fi
= BT(t; —0+ (N —7)A)fi
— BT(N A 0)f,

for simplicity, if we take m = 1 then,

w(0) = <b,T(NA-0)f >
= Ze‘"2”2(NA‘9) < f1, 8, >< by, B, >

n=1

l
= Ze‘"2”2(NA‘9) < fr, By >< by, B, > .

n=1

hence, the optimal control can be approximated by
forall 6 € [0, T,

l
= Ze‘”z”z(NA“g) < fi, @, >< by, @, > .

(20)

Numerical simulation : We take m =1, b1(t) =
t2+1, N=10,¢ =i, § = 0.1, zg = 0, then ty = 1.
To have x4 reachable, we take 4 = Hu where u(f) =
1, V6 € [0,1], then x4 = (< x4, P; >)1<i<; Where
<2g,®; >= B> (1 TN,

An approximation of the optimal control is then
given by figure 1.

1JCSI
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Figure 1: Approximation of the optimal control

5 Finite dimensional case

In this section we take X = R™ and U = R. Since
Im H is finite dimensional, the weak controllability
of (S) is equivalent to ImH = X, i.e., the exact
controllability of (S). If (S) is controllable, then
Ker H* = {0} and ||.||r is a norm on X equivalent
to ||.||, so the completion of X with respect to ||.||F is
X, ie, F = X.

On the other hand, since A = HH* and Ker A\ =
Ker H* = {0}, then the controllability of (S) implies
that A is an isomorphism on X.

Proposition 5.1 If B;(0), i =0,...,N — 1, are con-
stant operators, say that B;(0) = By, then
By
B* 3 ¢*
KerH* = Ker N.Q
Bj(67)V !

proof.
If £ € Ker H*, then H*x = 0. From (5) it follows that

N
ZB‘;{—l((é*)N—j‘X‘]tj—l,tj[(g)x = 07 Vo € [OaT]
if we consider respectively 6 €ltg,t1],...,0 €

]151\[,1,151\{[7 then

Bi_ y(¢")N 9z =0, Vje1,2,...,N
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if we take respectively j=1, j=2,..
tain

.j=N, then we ob-

By_1z =0, By_s¢"x=0,...,

which means that
By

B* _ d)*
x € Ker N . 2 . (21)
Bi(6)N !
Conversely, suppose (21), then
* _ D* * _ onpx(gx\N—=1_, __
By_1x = By_9¢"x = ... = Bj(¢") =0,

which implies that
Z Xy, a(0)z =0, VO €0,T]

hence x € ker H*. ]
The operator A is given by

A X —- X
r +— HH*x

from (3) it follows that

o=

using (4) we deduce that

¢N—J’Bj,1(9)H*x(9)d9

tj—1

Ar = HH*x
N tj . .
= X[ OB O e,
j=1"%

Finally, from theorem 3.1 we deduce the expression of
the optimal control as follows.

Proposition 5.2 The control u* € L?(0,T,RP) given
by

w*(0) = Bi_1(0)(¢")V I f, VOElt; 1ty j=1,...N

where f € R™ is the unique solution of the algebraic
equation

Af =xq— ¢ o
steers the system from the initial state xo to the final
state x4 at time N with a minimal cost J(u) = |Ju]|.
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6 Conclusion

In this paper, we have studied an optimal control prob-
lem for systems having discrete state variables and
continuous-time control. We have shown that tech-
niques similar to Hilbert Uniqueness Method can be
used to resolve the problem. A numerical approach of
the solution have been also developped.
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