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Abstract

We consider a class of linear discrete-time systems con-

trolled by a continuous time input. Given a desired final

state xd, we investigate the optimal control which steers

the system, with a minimal cost, from an initial state x0

to xd. We consider both discrete distributed systems and

finite dimensional ones. We use a method similar to the

Hilbert Uniqueness Method (HUM) to determine the con-

trol and the Galerkin method to approximate it, we also

give an example to illustrate our approach.

Keywords: Discrete linear systems, Hilbert Uniqueness

Method, Optimal Control, Galerkin Method.

1 Introduction

This paper is devoted to the study of the con-
trollability problem corresponding to the discrete
-time varying distributed systems described by{

xi+1 = ϕxi +
∫ ti+1

ti
Bi(θ)u(θ)dθ,

x0 given in X
(S)

for i = 0, .., N − 1, where xi ∈ X, u ∈ L2(0, T, U),
ϕ ∈ L(X), Bi(θ) ∈ L(U,X), (X, ∥ ∥) and (U, ∥ ∥) are
Hilbert spaces and (ti)i is a subdivision of the interval
[0, T ] such that t0 = 0 and tN = T . Moreover, we sup-
pose that the applications θ → Bi(θ), i = 0, . . . , N − 1
are continuous.

In other words, given a desired final state xd, we in-
vestigate the optimal control which steers the system
(S) from x0 to xd with a minimal cost J(u) = ∥u∥.
As an example of systems described by (S), we con-
sider the linear continuous system given by

x(t) = S(t)x0 +

∫ t

0

S(t− r)Bu(r)dr, t ≥ 0 (1)

where S(t) is a strongly continuous semi group on
the Hilbert space X and B ∈ L(U,X). In order to
make the system accessible by a computer we proceed
to a sampling of time ( see for example [8, 12, 13]),
this means, we put

[0, T ] =
N−1∪
i=0

[ti, ti+1]

where {
t0 = 0
ti+1 = ti + δ,

with δ = T
N and N ∈ IN∗.

If we take xi = x(ti) then
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xi+1 = x(ti+1)

= S(ti+1)x0 +

∫ ti+1

0

S(ti+1 − r)Bu(r)dr

= S(ti + δ)x0 +

∫ ti

0

S(ti + δ − r)Bu(r)dr

+

∫ ti+1

ti

S(ti+1−)B︸ ︷︷ ︸
Bi(r)

u(r)dr

= S(δ)[S(ti)x0 +

∫ ti

0

S(ti − r)Bu(r)dr]

+

∫ ti+1

ti

Bi(r)u(r)dr

then

xi+1 = S(δ)︸︷︷︸
ϕ

x(ti) +

∫ ti+1

ti

Bi(r)u(r)dr

and consequently

xi+1 = ϕxi +

∫ ti+1

ti

Bi(r)u(r)dr

which is a system described by (S).
In many works (see [6, 8, 13]) and under the hypothesis

u(t) = ui ∀t ∈ [ti, ti+1[, (2)

( the hypothesis (2) means that, u(t) is assumed to
be constant in the interval [ti, ti+1[ ), the sampling of
system (S) leads to the difference equation

xi+1 = Lxi +Mui

where L = ϕ and M =

∫ ti+1

ti

Bi(r)dr.

This last discrete version has been used by several au-
thors ([5, 3, 7, 11, 15, 16]). In some situations, the con-
trol law could have fast variations during time. Con-
sequently the hypothesis (2) becomes inappropriate,
this shows the importance of our system (S).

In this chapter, we use a technique similar to the
Hilbert Uniqueness Method, introduced by Lions J.L.
(see [9, 10]), in order to treat the controllability prob-
lem. The section 4 contain a method for approximat-
ing the optimal control and an example that illustrate
the developed results. In the section 5, we study this
problem in finite dimensional case.

2 Preliminary results

The final state of system (S) can be written as follows

xN = ϕNx0 +Hu

where

H : L2(0, T, U) → X

u 7→
N∑
j=1

∫ tj

tj−1

ϕN−jBj−1(θ)u(θ)dθ.

(3)

Definition 2.1 We say that (S) is weakly controllable
on {0, . . . , N} if ImH = X. (ImH means the range
of H).

Remark 1 (S) is weakly controllable if and only if
KerH∗ = {0}.

Lemma 1 The operator H is bounded and its adjoint
operator H∗ is given by , for all x ∈ X

H∗x(θ) = B∗
j−1(θ)(ϕ

∗)N−jx, (4)

forall θ ∈]tj−1, tj [ and all j = 1, . . . , N .

Proof
Let u ∈ L2(0, T, U), x ∈ X

< Hu, x >= <
N∑
j=1

∫ tj

tj−1

ϕN−jBj−1(θ)u(θ)dθ, x >

=
N∑
j=1

∫ tj

tj−1

< u(θ), B∗
j−1(θ)(ϕ

∗)N−jx > dθ

=

N∑
j=1

∫ T

0

< u(θ), B∗
j−1(θ)(ϕ

∗)N−jx.X]tj−1,tj [(θ) > dθ

=

∫ T

0

< u(θ),

N∑
j=1

B∗
j−1(θ)(ϕ

∗)N−jx.X]tj−1,tj [(θ) > dθ

=

∫ T

0

< u(θ),H∗x(θ) > dθ

hence

H∗x(θ) =

N∑
j=1

B∗
j−1(θ)(ϕ

∗)N−jx.X]tj−1,tj [(θ) (5)

which implies (4).

Consider on X ×X the bilinear form given by

< x, y >F=< H∗x,H∗y >, ∀x, y ∈ X (6)

clearly, if (S) is weakly controllable, then < ., . >F

describes an inner product on X. Let ∥.∥F be the
corresponding norm and F the completion of X with
respect to the norm ∥.∥F .
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Remark 2

∥x∥F ≤ ∥H∗∥∥x∥, ∀x ∈ X.

In the following, we suppose that (S) is weakly con-
trollable.
Define the operator Λ by

Λ : X → X
x 7→ HH∗x

then
KerΛ = KerH∗

moreover

| < Λ x, y > | ≤ ∥x∥F ∥y∥F , ∀x, y ∈ F

then, it is classical that Λ can be extended, in a single
way by an isomorphism, denoted also Λ, defined from
F onto F ′ (see [10, 14]). Moreover, F is a Hilbert
space with respect to the inner product

< x, y >F=< Λx, y >F ′,F ∀x, y ∈ F (7)

where < Λx, y >F ′,F means the range of y by the
operator Λx. From (6) we deduce that

∥H∗x∥ = ∥x∥F , ∀x ∈ X

hence H∗ is a bounded operator from (X, ∥.∥F ) onto
(L2(0, T, U), ∥.∥), so it has a bounded extension,
denoted H∗, defined from F onto L2(0, T, U).

Lemma 2 ImH can be identified to a subset of F ′.

Proof
Let x ∈ ImH, and consider the map

φx : X → R
y 7→ < x, y >

there exists u ∈ L2(0, T, U) such that x = Hu, hence
forall y ∈ X we have

|φx(y)| = | < x, y > | = | < Hu, y > |
= | < u,H∗y > | ≤ ∥u∥∥y∥F .

Consequently, φx has a bounded extension, denoted
by φx, which belongs to F ′. Let j be the map defined
by

j : ImH → F ′

x 7→ φx

clearly j is linear and injective

The operator HH∗ is defined from F onto Im H,
using lemma, (2) we can consider that HH∗ is defined
from F onto F ′.

Proposition 2.1 The operators Λ and HH∗ are
equal.

Proof
Let x ∈ F be arbitrary, we have

| < HH∗x, y >F ′,F | = | < HH∗x, y > |, ∀y ∈ X
= | < H∗x,H

∗y > |
≤ ∥H∗x∥∥H∗y∥
≤ ∥H∗x∥∥y∥F

by density of X on F , we deduce that

| < HH∗x, y >F ′,F | ≤ ∥H∗x∥∥y∥F , ∀y ∈ F

hence

∥HH∗x∥F ′ ≤ ∥H∗x∥ ≤ ∥H∗∥∥x∥F

which implies that HH∗ is bounded. On the other
hand

HH∗x = HH∗x = Λx, ∀x ∈ X

by density of X and continuity of both HH∗ and Λ
from F onto F ′, we deduce that

HH∗x = Λx, ∀x ∈ F.

Lemma 3 The inner product corresponding to ∥.∥F is

< x, y >F=< H∗x,H∗y >, ∀x, y ∈ F

Proof
From (7) and Proposition 2.1, we deduce

< x, y >F=< HH∗x, y >F ′,F , ∀x, y ∈ F

but

< HH∗x, y >F ′,F = < HH∗x, y >, ∀y ∈ X
= < H∗x,H

∗y >
= < H∗x,H∗y > .

if y ∈ F, ∃(yn) ⊂ X such that ∥yn−y∥ → 0. We have,

< HH∗x, yn >F ′,F=< H∗x,H∗yn >, ∀n ∈ N

when n → +∞, we obtain

< HH∗x, y >F ′,F=< H∗x,H∗y >, ∀y ∈ F

Remark 3
From lemma 3, we deduce that if (S) is weakly control-
lable then KerH∗ = {0}.
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3 The optimal control

We first characterize the set of all reachable states at
time N from a given initial state x0.

Proposition 3.1 The reachable set at time N , from
a given initial state x0, is given by

R(N) = ϕNx0 + F ′.

Proof
If z ∈ ϕNx0 + F ′, then z − ϕNx0 ∈ F ′, hence there
exists f ∈ F such that z − ϕNx0 = Λf , which implies
that

z = ϕNx0 +HH∗f = ϕNx0 +Hu

where u = H∗f , thus z is reachable.
Conversely, if z is reachable, say that z = ϕNx0+Hu,
then

z − ϕNx0 = Hu

that is z − ϕNx0 ∈ ImH ⊂ F ′ hence z ∈ ϕNx0 + F ′.

Theorem 3.1 If xd − ϕNx0 ∈ F ′, then the control
u∗ = H∗f , where f is the unique solution of the alge-
braic equation

Λf = xd − ϕNx0 (8)

steers the system from the initial state x0 to the final
state xd at time N with a minimal cost J(u) = ∥u∥,
moreover ∥u∗∥ = ∥f∥F .

Proof
Let u∗ = H∗f , where f verify (8), f exists since xd −
ϕNx0 ∈ F ′. We have,

ϕNx0 +Hu∗ = ϕNx0 + Λf = xd

hence u∗ steers (S) from x0 to xd at time N . Suppose
that v steers (S) from x0 to xd at time N , then

ϕNx0 +Hv = xd = ϕNx0 +Hu∗

hence,
Hv = Hu∗

which implies that

< H(v − u∗), fn >= 0; ∀n

where (fn)n is a sequence, of elements in X, which
converges towards f with respect to the norm ∥.∥F .
Consequently,

< v − u∗,H∗fn >= 0, ∀n

or

< v − u∗,H∗fn >= 0, ∀n

when n → +∞, we deduce that

< v − u∗,H∗f >= 0

or

< v − u∗, u∗ >= 0

thus

< v, u∗ >= ∥u∗∥2

which implies that

∥u∗∥2 ≤ ∥v∥∥u∗∥

∥u∗∥ ≤ ∥v∥.

4 A numerical approach

In order to determine the optimal control u∗, we need
to resolve the algebraic equation

Λf = xd − ϕNx0 on F ′. (9)

In this section, we propose a numerical approach to
approximate f . Suppose that xd − ϕNx0 ∈ F ′ and
that X is a separable space. Let (wi)i≥1 be a basis of
X.
Equation (9) is equivalent to

< Λf, y >F ′,F=< xd − ϕNx0, y >F ′,F , ∀y ∈ X
(10)

Remark 4 Since the bilinear form

(u, v) →< Λu, v >F ′,F

is coercive on F × F and the map

y →< xd − ϕNx0, y >F ′,F

belongs to F ′, one can think to apply the Galerkin
method to approximate f . But this involves some dif-
ficulties because the map y 7→< xd − ϕNx0, y >F ′,F is
known on X but almost unknown on F , also (u, v) 7→<
u, v >F is known on X × X but almost unknown on
F × F .
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Equation (10) is equivalent to

< f, y >F=< xd − ϕNx0, y >, ∀y ∈ X (11)

Remark that in equation (11), the solution f belongs
to F and the variable y is in X. In the following, we
will prove that by applying the Galerkin method to
equation (11), we can construct a sequence (fn) which
converges strongly on F towards f .
Let Xm be the subspace of X spanned by the vector
w1, w2, . . . , wm and fm ∈ X, the solution of

< fm, y >F=< xd − ϕNx0, y >, ∀y ∈ Xm (12)

Since ∥.∥ and ∥.∥F are equivalent on Xm, the bilinear
form (u, v) 7→< u, v >F is continuous and coercive on
Xm×Xm, moreover, y 7→< xd−ϕNx0, y > is bounded
on Xm. From the Lax-Milgram theorem, see( [1, 2]),
we deduce that fm exists and is unique. Using (12) we
have

< fm, fm >F=< xd − ϕNx0, fm > (13)

Since xd − ϕNx0 ∈ F ′, there exists a constant c such
that

| < xd − ϕNx0, y >F ′,F | ≤ c∥y∥F , ∀y ∈ F

hence,

| < xd − ϕNx0, y > | ≤ c∥y∥F , ∀y ∈ X (14)

from (13) and (14), we deduce that

∥fm∥2F ≤< fm, fm >≤ c∥fm∥F

i.e.
∥fm∥F ≤ c, ∀m.

Consequently, (fm) admits a subsequence (fm′)m′

which converges weakly to a certain f∗ ∈ F , we will
denote this weak convergence by

fm′ ⇀ f∗. (15)

Let C denote the set of all finite combinations of
wi, i ≥ 1. Suppose that v ∈ C, then v belong to
Xm′ for m′ sufficiently large, hence

< fm′ , v >F=< xd − ϕNx0, v > .

From (15), we deduce that

lim
m′→+∞

< fm′ , v >F = < f∗, v >F

= < xd − ϕNx0, v >, v ∈ C

let x ∈ X, since C is dense on (X, ∥.∥), then there
exists a sequence (xn)n such that ∥xn−x∥ → 0, which
implies that ∥xn − x∥F → 0, using Remark (2). On
the other hand,

< f∗, xn >F=< xd − ϕNx0, xn >, ∀n

when n → +∞, we obtain

< f∗, x >F=< xd − ϕNx0, x >, ∀x ∈ X

hence f∗ is solution of (11), by uniqueness we de-
duce that f∗ = f . Hence (fm)m has a subsequence
(fm′)m′ which converges weakly on (F, ∥.∥F ) towards
f . Suppose that (fm)m doesn’t converges weakly, on
(F, ∥.∥F ), towards f , then there exists v ∈ F such that
< fm, v >F doesn’t converges towards < f, v >F , i.e.,

∃ϵ,∀N ∃n > N | < fn, v >F − < f, v >F | > ϵ

From this we deduce that, forall N ∈ N, there exists
φ(N) > N such that

| < fφ(N), v >F − < f, v >F | > ϵ (16)

but (fφ(N))N is bounded on F, hence (fφ(N))N has
a subsequence (fφ(N ′))N ′ which converges weakly to-
wards f , hence

< fφ(N ′), v >F→< f, v >F

which contradicts (16) thus

fm ⇀ f.

To prove that fm → f strongly on F , we consider

< fm − f, fm − f >F=

< fm, fm >F − < fm, f >F − < f, fm >F

+ < f, f >F

recall that

< fm, fm >=< xd − ϕNx0, fm >

hence

lim
m→+∞

< fm, fm >=< xd − ϕNx0, f >F ′,F .

On the other hand,

lim
m→+∞

< fm, f > = < f, f >F

lim
m→+∞

< f, fm > = < f, f >F

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 320

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



consequently,

lim
m→+∞

< fm − f, fm − f >

= < xd − ϕNx0, f >F ′,F − < f, f >F

=< xd − ϕNx0, f > − < Λf, f >F ′,F

=< xd − ϕNx0 − Λf, f >F ′,F

= 0

thus fm → f strongly on F .

Remark 5 To determine (fm), we don’t need the ex-
pression of H∗ nor the completion space F .

Remark 6 The sequence of inputs un = H∗fn con-
verges strongly, on L2(0, T, U), towards the optimal
control u∗ = H∗f .

4.1 Example

Consider the system

ẋ = Ax+
m∑
i=1

biui (17)

where x(t) ∈ X = L2(0, 1), bi ∈ X, ui ∈ L2(0, T ),

A = ∂2

∂α2 and D(A) = {x ∈ L2(0, 1), ∂2x
∂α2 ∈

L2(0, 1), x(0) = x(1) = 0}. A is self-adjoint and
has respectively eigenvalues and eigenvectors given by
λn = −n2π2 and Φj(t) =

√
2 sin(jπt), t ∈ [0, 1] and

j = 1, 2, . . ..

We suppose for example that
∫ 1

0
b1(α) sin(nπα)dα ̸=

0, ∀n ≥ 1, this implies that the system (17) is weakly
controllable, (see [4]). If we introduce the operator B

B : IRm → X

(u1, . . . , um) ↪→
m∑
i=1

biui

then the system (17) becomes

ẋ = Ax+Bu. (18)

Now, consider the discrete version of (18) obtained by
a similar way as presented in the introduction of this
paper,

xi+1 = Φxi +

∫ ti+1

ti

Bi(θ)u(θ)dθ (19)

where ti = i∆, i = 0, . . . , N with ∆ is a sampling of
[0, T ], xi = x(ti), Bi(θ) = T (ti+1 − θ)B, Φ = T (∆)

where T (t) is the strongly continuous semi group, gen-
erated by A, given by

T (t)z =
∞∑

n=1

e−n2π2t < z,Φn > Φn , ∀z ∈ X.

Since the system (18) is weakly controllable on
[0, T ],∀T > 0 we deduce that

∀xd ∈ X, ∃u ∈ L2(0, T, U) : ||x(T )− xd|| < ϵ

which implies that

∀xd ∈ X,∃u ∈ L2(0, T, U) : ||x(tN )− xd|| < ϵ

which implies that

∀xd ∈ X, ∃u ∈ L2(0, T, U) : ||xN − xd|| < ϵ

hence (19) is also weakly controllable on [0, tN ], ∀N .

Since X is reflexive, then T ∗(∆) is generated by
A∗ = A, i.e. T ∗(∆) = T (∆), which gives ϕ∗ = ϕ,
and ϕi = ϕ∗ i = T (i∆).
Let’s denote T∆

N−j = T ((N−j)∆), then for any x ∈ X,
it follows from equations (3) and (4) that

HH∗x = H(H∗x)

=
N∑
j=1

∫ tj

tj−1

ϕN−jBj−1(θ)B
∗
j−1(θ)ϕ

∗N−jxdθ

=
N∑
j=1

∫ tj

tj−1

T∆
N−jT (tj − θ)BB∗T (tj − θ)T∆

N−jxdθ

=
N∑
j=1

∫ tj

tj−1

Wj(θ)BB∗Wj(θ)xdθ.

where Wj(θ) = T ((N − j)∆ + tj − θ). On the other
hand, the adjoint operator B∗ of B is given by

B∗ : X → IRm

x ↪→ (< b1, x >, . . . , < bm, x >).

If we define

α(n, j, θ) = e−n2π2[tj−θ+(N−j)∆]

Φx
j =< x,Φj > , x ∈ X , j ∈ N

then

B∗T ((N − j)∆ + tj − θ)x

= (
∞∑

n=1

α(n, j, θ)Φx
nΦ

b1
n , . . . ,

∞∑
n=1

α(n, j, θ)Φx
nΦ

bm
n )

thus

BB∗Wj(θ)x =
m∑
i=1

∞∑
n=1

e−n2π2[tj−θ+(N−j)∆]Φx
nΦ

bi
n bi.
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We have

Wj(θ)BB∗Wj(θ)x

=
∞∑
k=1

e−k2π2[tj−θ+(N−j)∆] < BB∗Wj(θ)x,Φk > Φk

hence

HH∗x

=

N∑
j=1

∫ tj

tj−1

∞∑
k=1

α(k, j, θ) < hj(x),Φk > Φkdθ

=
N∑
j=1

∫ tj

tj−1

∞∑
k=1

α(k, j, θ)gj(x)Φkdθ.

where

hj(x) =
m∑
i=1

∞∑
n=1

α(n, j, θ)Φx
nΦ

bi
n bi

gj(x) =

m∑
i=1

∞∑
n=1

α(n, j, θ)Φx
nΦ

bi
n Φbi

k

Therefore

< HH∗Φr,Φs >

=
N∑
j=1

∫ tj

tj−1

α(s, j, θ)
m∑
i=1

∞∑
n=1

α(n, j, θ)ΦΦr
n Φbi

n Φbi
s dθ

=
N∑
j=1

∫ tj

tj−1

α(s, j, θ)
m∑
i=1

α(r, j, θ)Φbi
r Φbi

s dθ

= (

N∑
j=1

∫ tj

tj−1

e−(s2+r2)π2[tj−θ+(N−j)∆]dθ)

m∑
i=1

Φbi
r Φbi

s .

Let γsr =
N∑
j=1

∫ tj

tj−1

e−(s2+r2)π2[tj−θ+(N−j)∆]dθ, hence

γsr =
N∑
j=1

e−(s2+r2)π2(N−j)∆

(s2 + r2)π2
(1− e−(s2+r2)π2∆)

= (1− e−(s2+r2)π2∆) e
−(s2+r2)π2N∆

(s2+r2)π2

N∑
j=1

(e(s
2+r2)π2∆)j

=
(e(s

2+r2)π2∆ − 1)(e−(s2+r2)π2N∆ − 1)

(s2 + r2)π2(1− e(s2+r2)π2∆)

=
1− e−(s2+r2)π2N∆

(s2 + r2)π2
.

It follows from Theorem 3.1 and Remark 6 that the
optimal control can be approximated by ul = H∗fl

where fl =

l∑
i=1

zliΦi is the unique solution of the alge-

braic system

< HH∗fl,Φi >=< xd − ϕNx0,Φi > , ∀i = 1, . . . , l,

or equivalently

AlZl = Xd

where Zl = (z1, . . . , zl)
t, Xd = (< xd − ϕNx0,Φ1 >

, . . . , < xd − ϕNx0,Φl >)t and Al the matrix

Al = (< HH∗Φs,Φr >)1≤ s,r≤l

= (γsr

m∑
i=1

< bi,Φr >< bi,Φs >)1≤ s,r≤l.

On the other hand, from lemma 1, it follows that

ul(θ) = B∗
j (θ)(ϕ

∗)N−jfl , ∀θ ∈]tj−1, tj [
= B∗T (tj − θ)T ((N − j)∆)fl
= B∗T (tj − θ + (N − j)∆)fl
= B∗T (N∆− θ)fl

for simplicity, if we take m = 1 then,

ul(θ) = < b1, T (N∆− θ)fl >

=
∞∑

n=1

e−n2π2(N∆−θ) < fl,Φn >< b1,Φn >

=

l∑
n=1

e−n2π2(N∆−θ) < fl,Φn >< b1,Φn > .

hence, the optimal control can be approximated by
forall θ ∈ [0, T ],

ul(θ) =
l∑

n=1

e−n2π2(N∆−θ) < fl,Φn >< b1,Φn > .

(20)

Numerical simulation : We take m = 1, b1(t) =
t2 + 1, N = 10, ti = iδ, δ = 0.1, x0 = 0, then tN = 1.
To have xd reachable, we take xd = Hu where u(θ) =
1, ∀θ ∈ [0, 1], then xd = (< xd,Φi >)1≤i≤l where

< xd,Φi >= <b1,Φi>
i2π2 (1− e−i2π2Nδ).

An approximation of the optimal control is then
given by figure 1.
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Figure 1: Approximation of the optimal control

5 Finite dimensional case

In this section we take X = Rn and U = R. Since
ImH is finite dimensional, the weak controllability
of (S) is equivalent to ImH = X, i.e., the exact
controllability of (S). If (S) is controllable, then
KerH∗ = {0} and ∥.∥F is a norm on X equivalent
to ∥.∥, so the completion of X with respect to ∥.∥F is
X, i.e., F = X.
On the other hand, since Λ = HH∗ and Ker∧ =
KerH∗ = {0}, then the controllability of (S) implies
that Λ is an isomorphism on X.

Proposition 5.1 If Bi(θ), i = 0, . . . , N − 1, are con-
stant operators, say that Bi(θ) = Bi, then

KerH∗ = Ker


B∗

N−1

B∗
N−2ϕ

∗

...
B∗

0(ϕ
∗)N−1


proof.
If x ∈ KerH∗, then H∗x = 0. From (5) it follows that

N∑
j=1

B∗
j−1(ϕ

∗)N−jX]tj−1,tj [(θ)x = 0, ∀θ ∈ [0, T ]

if we consider respectively θ ∈]t0, t1[, . . . , θ ∈
]tN−1, tN [, then

B∗
j−1(ϕ

∗)N−jx = 0, ∀j ∈ 1, 2, . . . , N

if we take respectively j=1, j=2,. . . j=N, then we ob-
tain

B∗
N−1x = 0, B∗

N−2ϕ
∗x = 0, . . . , B∗

0(ϕ
∗)N−1x = 0,

which means that

x ∈ Ker


B∗

N−1

B∗
N−2ϕ

∗

...
B∗

0(ϕ
∗)N−1

 . (21)

Conversely, suppose (21), then

B∗
N−1x = B∗

N−2ϕ
∗x = . . . = B∗

0(ϕ
∗)N−1x = 0,

which implies that

N∑
j=1

B∗
j−1(ϕ

∗)N−jX]tj−1,tj [(θ)x = 0, ∀θ ∈ [0, T ]

hence x ∈ kerH∗.

The operator Λ is given by

Λ : X → X
x 7→ HH∗x

from (3) it follows that

HH∗x =
N∑
j=1

∫ tj

tj−1

ϕN−jBj−1(θ)H
∗x(θ)dθ

using (4) we deduce that

Λx = HH∗x

=

N∑
j=1

∫ tj

tj−1

ϕN−jBj−1(θ)B
⋆
j−1(θ)(ϕ

⋆)N−jxdθ.

Finally, from theorem 3.1 we deduce the expression of
the optimal control as follows.

Proposition 5.2 The control u∗ ∈ L2(0, T,Rp) given
by

u∗(θ) = B∗
j−1(θ)(ϕ

∗)N−jf, ∀θ ∈]tj−1, tj [, j = 1, ..., N

where f ∈ Rn is the unique solution of the algebraic
equation

Λf = xd − ϕNx0

steers the system from the initial state x0 to the final
state xd at time N with a minimal cost J(u) = ∥u∥.
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6 Conclusion

In this paper, we have studied an optimal control prob-
lem for systems having discrete state variables and
continuous-time control. We have shown that tech-
niques similar to Hilbert Uniqueness Method can be
used to resolve the problem. A numerical approach of
the solution have been also developped.
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