
New Approaches for Modeling Radiopharmaceutical
Pharmacokinetics Using Continuous Distributions of Rates

Igor Shuryak1 and Ekaterina Dadachova2,3

1Center for Radiological Research, Columbia University Medical Center, New York, New York; 2Department of Radiology, Albert
Einstein College of Medicine, Bronx, New York; and 3Department of Microbiology and Immunology, Albert Einstein College of
Medicine, Bronx, New York

Radiopharmaceutical pharmacokinetics are usually approximated by

sums of discrete first-order rates, using 3 or more parameters. We
hypothesized that pharmacokinetic processes can be modeled even

better by continuous probability distributions (CPD) of rates, using only

1–2 parameters. Methods: To test this hypothesis, we used biodistri-

bution data for 188Re-labeled melanin-specific antibody in blood, kid-
neys, liver, bone marrow, and lungs of melanoma xenograft–bearing

mice. We used 3 discrete-rate models (monoexponential, monoex-

ponential with constant, and biexponential) and 4 CPD models

(stretched-exponential, modified stretched-exponential, simplified ver-
sions of stretched-exponential, and modified stretched-exponential).

They were compared by sample-size-corrected Akaike information

criterion. Total time integrals of radioactivity were computed for each
model and averaged across all models. Results: The ratio of weights

of evidence for CPD versus discrete-rate models was high for blood

(12.2) and lungs (2.7), almost unity (0.99) for bone marrow, and slightly

lower for kidneys (0.81) and liver (0.73). In all organs or tissues except
lungs, model-averaged time integrals were 12.7%–54.0% higher than

biexponential model estimates. Conclusion: Simple CPD models of-

ten outperformmore complex discrete-rate models on pharmacokinetic

data. Radioactivity time integrals are more robustly estimated by
multimodel inference than using any single model.
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Pharmacokinetics of radiopharmaceuticals (e.g., radioimmu-
notherapy agents) are assumed to follow first-order kinetics and
are, therefore, approximated by the sum of discrete rates (1–3).
However, the existence of first-order kinetics does not necessarily
imply the existence of only a few discrete rates. Instead, complex
decay patterns may result from a continuous probability distribu-
tion (CPD) of first-order rates (4,5). “Depending on the level of
precision, a decay can be fitted with a sum of 2 or 3 exponentials
with satisfactory x2 values and weighted residuals despite the
existence of an underlying distribution” (5).

We hypothesized that pharmacokinetic processes can be modeled
even better by CPDs of rates using only 1–2 parameters than by
sums of discrete rates using 3 or more parameters. To test this
hypothesis, we used data on biodistribution of 188Re-labeled anti-
body to melanin in athymic melanoma xenograft–bearing mice (6,7).
We used 7 models to fit the data. Three of them assumed discrete

pharmacokinetic rates, and 4 assumed CPDs. We compared the
performances of these models, and their predictions for the total
time integral of radioactivity (which is needed for radiopharma-
ceutical dosimetry), using information theoretic methods. Our
results provide new insight into modeling of radiopharmaceutical
pharmacokinetics.

MATERIALS AND METHODS

Datasets

The biodistribution studies analyzed here were published (6) and

are described in the supplemental data (supplemental materials are
available at http://jnm.snmjournals.org). Briefly, athymic mice (main-

tained in accordance with regulations of the Albert Einstein College of
Medicine Institute for Animal Studies) bearing human A2058 cell–

derived melanomas were given 188Re-labeled melanin-specific anti-

bodies. Pharmacokinetic data for the blood and other organs/tissues
were obtained by counting the g activity in each organ/tissue. The

radioactivity concentrations were expressed as percentage injected
dose per gram, calculated by dividing the radioactivity counts in the

whole organ/tissue by the counts in the total administered dose, and by
the weight of the organ/tissue. The resulting datasets (one set for each

organ/tissue) were sufficiently large (23–106 data points, collected
over 5 min to 48 h after radioactivity administration) to support a sta-

tistical analysis using mathematical models.

Data Analysis

Radioactivity pharmacokinetics can be approximated by 2 phases.

The first is distribution, during which the radioactive material spreads
throughout various organs/tissues, reaching organ-specific concentra-

tions. The second is elimination, during which the material is eliminated
by biochemical processes and by physical radioisotope decay. Ideally,

both phases should be described by suitable mathematical models.
However, the main focus of the current paper was on the second

(elimination) phase—namely to investigate whether this phase can be

reasonably described by formalisms that assume CPDs of first-order
rates and to compare the performance of such formalisms to that of

the commonly used sum of 2 discrete rates. Consequently, the distribu-
tion phase was left beyond the scope of the paper. We intend to include

it in future research.
To focus on the elimination phase, we selected 5 organs/tissues (blood,

kidneys, liver, bone marrow, lungs) with clinical relevance regarding
radiation-induced toxicity, in which the distribution phase is rapid and
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maximum radioactivity concentrations are reached within 5 min after

radioactivity administration. To avoid modeling these organ-specific
concentrations, we normalized the data as follows:

Fið j; tÞ 5 Cið j;TÞ=Cið j; 5Þ: Eq. 1

Here, Ci(j,T) is the radioactivity concentration, in the i-th organ/tissue of

the j-th mouse, measured T minutes after radioactivity administration.
t is the decay time defined as t 5 T – 5 min; and Fi(j,t) are the normal-

ized (unitless) radioactivity data, which were fitted by the mathematical

formalisms described below. The variability of radioactivity concentra-
tions at 5 min after administration Ci(j, 5) was substantial but not

dramatic (supplemental data).
The normalized data Fi(j, t) were not corrected for physical decay of

188Re, and instead this decay was incorporated explicitly into each
model as the function g(t) 5 exp[–(ln(2)/t0)t], where t0 is the known
188Re half-life (t0 5 1,014 min). This approach was previously shown
to produce more accurate results (8).

The data normalization allows 1 adjustable parameter (organ-specific
maximal radioactivity concentration) to be removed from all models.

We believe that this is a reasonable and useful simplification,
appropriate for organs/tissues in which the radioactivity distribution

phase is rapid. For completeness, we also performed data analysis
without normalization, using Ci(j, T) instead of Fi(j, t) and adding an

extra parameter representing the organ-specific maximal radioactivity
concentration to all models. This extra parameter was inserted into

model equations as a multiplicative factor, and the time variable t
was replaced by T.

Mathematical Models

Because the organs/tissues differ from each other by size, blood

perfusion, and other factors, the data from each organ/tissue were
fitted separately, producing organ-specific model parameter values.

We used the following 7 mechanistically plausible pharmacokinetic
models, described in detail in the supplemental data and summarized

in Table 1. The first 3 are monoexponential (ME) and monoexponen-
tial with added constant (MEC), both with a single first-order rate, and

biexponential (BE), with 2 first-order rates.
The fourth formalism is the stretched exponential (SE), which

assumes a CPD of pharmacokinetic rates. The first use of this model is
credited to Rudolph Kohlrausch in the 19th century (9), and it is

used in physics and chemistry to describe complex decay patterns
(4,5). This model predicts that pharmacokinetics have faster-than-

exponential behavior at short times but slower-than-exponential
behavior at long times. The CPD shape is determined by an expo-

nent parameter g1 (5).
The fifth model is modified SE, which we call MSE, in which nearly

exponential behavior replaces faster-than-exponential behavior at short
times (5). The last 2 models are the simplified SE and MSE (called SSE

and SMSE, respectively), in which the exponent parameters in SE and
MSE models equal 1/2, thereby reducing the number of adjustable

parameters. The situation when the exponent parameter equals 1/2 is
a special case for which the rate distribution can be expressed using

elementary functions (supplemental data) (5).

TABLE 1
Summary of Mathematical Models

Model name* Model acronym Mathematical expression Parameter

Monoexponential ME g(t) exp[–t/τ1] τ1
Monoexponential with added constant MEC g(t) (w1 exp[–t/τ2] 1 1 – w1) w1, τ2
Biexponential BE g(t) (w2 exp[–t/τ3] 1 (1 – w2) exp[–t/τ4]) w2, τ3, τ4
Stretched exponential SE g(t) exp[–(t/τ5)γ1] τ5, γ1
Modified stretched exponential MSE g(t) exp[1 – (1 1 t/τ6)γ2] τ6, γ2
Simplified stretched exponential SSE g(t) exp[–(t/τ7)1/2] τ7
Simplified modified stretched exponential SMSE g(t) exp[1 – (1 1 t/τ8)1/2] τ8

*These models were used to analyze antimelanin 188Re-labeled antibody pharmacokinetics in each organ/tissue. Physical decay of
188Re is represented by function g(t) 5 exp[ –(ln(2)/τ0)t], where τ0 is half-life. All model parameters labeled τ have units of minutes, and all

parameters labeled w or γ are unitless.

FIGURE 1. Data and best-fit model predictions for pharmacokinetics

of 188Re-labeled antibody to melanin in mouse blood, kidneys, and liver.

Model abbreviations are described in Table 1 and in main text. Data and

curves in left and right panels are same, and panels differ only by linear

or logarithmic scaling of t-axis.
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Model-Fitting Procedure

The mathematical models were fitted to normalized data Fi(j, t) for

each organ/tissue separately by maximizing the log likelihood using
Maple 17 software (Maplesoft). Details of the procedure are described

in the supplemental data.

Information Theoretic Model Selection

Support for each model from the data was assessed using the
sample-size-corrected Akaike information criterion (AICc) (10,11).

For comparing nonlinear models, AICc is preferable to reduced x2

or R2 (12–15). AICc is rooted in information theory and assesses how

much Kullback–Leibler information is lost when each model is used
to approximate the data. The model that loses the least amount of

information, relative to other compared models, has the lowest AICc
and is considered the best. AICc values can also be converted to

Akaike weights, which quantify the weight of evidence supporting
each model within the set of tested models. Larger Akaike weights

correspond to lower AICc scores and represent more parsimonious

TABLE 2
Comparisons of Model Performance

Organ Model DAICc*

Akaike

weight R2

Best-fit parameter

value (95% CI)

Blood ME 54.67 0.000 0.678 τ1 5 119 (107–133)

MEC 15.10 0.000 0.712 w1 5 0.73 (0.68–0.78) τ2 5 55.8 (44.0–69.8)

BE 3.48 0.076 0.743 w2 5 0.50 (0.42–0.56) τ3 5 29.5 (16.3–41.4) τ4 5 442 (285–817)

SE 0.99 0.263 0.743 τ5 5 143 (121–171) γ1 5 0.44 (0.34–0.55)

MSE 1.25 0.231 0.742 τ6 5 6.8 (2.4–14.7) γ2 5 0.23 (0.17–0.30)

SSE 0.00 0.431† 0.742 τ7 5 138 (120–158)

SMSE 22.73 0.000 0.715 τ8 5 40.5 (36.2–45.1)

Kidneys ME 7.62 0.009 0.963 τ1 5 509 (410–652)

MEC 0.00 0.421† 0.970 w1 5 0.79 (0.70–0.91) τ2 5 354 (271–468)

BE 2.46 0.123 0.970 w2 5 0.72 (0.55–0.83) τ3 5 323 (225–432) τ4 5 6091 (1,366–∞)

SE 4.64 0.041 0.963 τ5 5 754 (533–1141) γ1 5 0.70 (0.54–0.93)

MSE 2.20 0.140 0.966 τ6 5 140 (58–313) γ2 5 0.38 (0.26–0.65)

SSE 7.86 0.008 0.958 τ7 5 1,143 (826–1,615)

SMSE 0.99 0.256 0.966 τ8 5 210 (172–261)

Liver ME 16.27 0.000 0.976 τ1 5 406 (352–480)

MEC 0.00 0.386† 0.983 w1 5 0.80 (0.73–0.87) τ2 5 289 (243–344)

BE 1.41 0.191 0.983 w2 5 0.64 (0.53–0.76) τ3 5 227 (163–291) τ4 5 2,844 (1,346– 8,175)

SE 3.37 0.071 0.980 τ5 5 660 (523–883) γ1 5 0.61 (0.51–0.75)

MSE 0.65 0.279 0.982 τ6 5 81 (43–140) γ2 5 0.32 (0.25–0.45)

SSE 5.02 0.031 0.978 τ7 5 821 (673–1,011)

SMSE 4.45 0.042 0.981 τ8 5 165 (144–190)

Bone marrow ME 0.00 0.363† 0.929 τ1 5 1,354 (879–2435)

MEC 2.37 0.111 0.929 w1 5 0.93 (0.55–1.00) τ2 5 1,205 (477–2,115)

BE 5.07 0.029 0.929 w2 5 1.00 (0.93–1.00) τ3 5 1,354 (879–2,435) τ4 5 ∞ (460–∞)

SE 2.39 0.110 0.929 τ5 5 1,332 (907–2,511) γ1 5 1.03 (0.64–1.62)

MSE 2.41 0.109 0.929 τ6 5 1241 (96–4,118) γ2 5 0.94 (0.27–1.61)

SSE 7.93 0.007 0.923 τ7 5 3,729 (1,737–9,804)

SMSE 0.59 0.271 0.929 τ8 5 525 (339–888)

Lungs ME 35.49 0.000 0.948 τ1 5 202 (61–890)

MEC 30.90 0.000 0.953 w1 5 0.88 (0.79–0.97) τ2 5 158 (123–196)

BE 1.28 0.274 0.987 w2 5 0.46 (0.42–0.51) τ3 5 40.8 (0.0–62.2) τ4 5 730 (546–980)

SE 2.07 0.184 0.985 τ5 5 247 (222–276) γ1 5 0.48 (0.41–0.76)

MSE 6.18 0.024 0.983 τ6 5 19.4 (10.0–33.8) γ2 5 0.27 (0.22–0.34)

SSE 0.00 0.518† 0.985 τ7 5 244 (220–269)

SMSE 20.29 0.000 0.970 τ8 5 70.6 (63.9–78.0)

*Low DAICc and high Akaike weight indicate high support for model from data. R2 is coefficient of determination.
†Best-supported model.
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fits; the weights sum to 1 across models. Details about the calculation

and application of AICc and Akaike weights are provided in the
supplemental data.

Multimodel Inference for Time Integral of Radioactivity

The time integral for radioactivity over all decay times is needed

to calculate the cumulative radiation dose to each organ/tissue
(1,2). This calculation is usually done by choosing a model (e.g.,

BE formalism), fitting it to data, and integrating over time from
zero to infinity (1,2). Here we focused on investigating whether

alternative models can describe the data as well as (or better than)
the BE model. We expected substantial model selection uncer-

tainty, such that several models have substantial support from
the data, with none of them favored overwhelmingly. This ex-

pected pattern was indeed found, as described below. In such
situations, multimodel inference, which involves averaging predic-

tions from all models weighted by the Akaike weight for each
model, is a useful extension of information theoretic model selec-

tion (2,11). Here, we used multimodel inference (described in
more detail in the supplemental data) to produce model-averaged

time integrals.

RESULTS

Visual inspection of model fits to blood data (Fig. 1) suggests
that the SE and SSE models described the pharmacokinetics
better than other tested formalisms. Information theoretic anal-
ysis supported this conclusion (Table 2): the SSE model had the
highest Akaike weight, followed by the SE model, indicating that
these models had the strongest support from the data. The worst-
fitting formalisms were the ME, SMSE, and MEC models, which
had virtually zero support from the data (Fig. 1; Table 2). These
model selection results were not affected by excluding the low-
outlier data point at 2,880 min. The combined weight of evidence

for CPD models (the sum of Akaike weights for SE, MSE, SSE,
and SMSE formalisms) was 12.2-fold higher than the combined
weight of evidence for discrete-rate models (ME, MEC, and BE).
The commonly used BE model described the blood data

reasonably at short decay times but underestimated them at long
times (Fig. 1). This behavior resulted in reduced fit quality for
the BE model relative to the SSE model (DAICc of 3.5, Table 2).
Because the BE model assumes 2 discrete rates (fast and slow),
its predictions at long times are dominated by the slow rate. In
contrast, the SSE model assumes a CPD. Consequently, its pre-
dictions at long times are more flexible, even though the SSE
model has only 1 adjustable parameter, whereas the BE model
has 3 (Table 1).
A visual comparison of the best-fit rate distributions from the

SSE and BE models for blood data is shown in Figure 2. The rate
distribution underlying the SSE model in this case resembles the
lognormal distribution, with a somewhat enlarged tail toward
larger rates. The distribution underlying the BE model in this
case is almost a 50:50 combination of 2 discrete peaks, which
represent rates roughly an order of magnitude apart (Fig. 2;
Table 2).
For kidney, liver, bone marrow, and lung data, the ratios of

combined weight of evidence for CPD versus discrete-rate models
were 0.81, 0.73, 0.99, and 2.7, respectively. Visual inspection of
the model fits and the data (Figs. 1 and 3) supported these findings.
This pattern may imply that for some organs/tissues (e.g., kidneys,
liver, bone marrow) pharmacokinetics were simple and hence well
described by ME or MEC models, whereas for others (e.g., blood,
lungs) pharmacokinetics were complex and well described by only
CPD models.
The commonly used BE model did not have the best AICc

ranking in any of the 5 analyzed organs/tissues (Table 2) and
sometimes clearly underestimated the data at long decay times
(for blood and lung data, Figs. 1 and 3). Nevertheless, the BE
model never had a DAICc greater than 6, so it always remained
among the set of reasonably fitting models.
R2 values (Table 2) were not informative for determining the best-

supported model and often changed only in the third digit from

FIGURE 2. Distributions of pharmacokinetic rates predicted for

blood data by BE and SSE models, using best-fit parameter values

(Table 2). For BE model, heights of both peaks sum to 1. For SSE

model, probability density function was normalized (divided by its

maximum value) to facilitate visual comparison with BE model on

same scale.

FIGURE 3. Data and best-fit model predictions for pharmacokinetics

of 188Re-labeled antibody to melanin in mouse bone marrow and lungs.
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model to model, merely suggesting that several models described the
data without gross inaccuracy. This result confirms previous inves-
tigations, which suggested that R2 (or its adjusted form) is not useful
for selecting among nonlinear (13), or even linear, models (15).
Alternative models often predicted substantially larger (by

$30%) time integrals than the BE model (Table 3). If only the
best-ranking model (with the smallest AICc score) was used for
each organ/tissue, then the time integral for blood from the best-

ranking SSE model was 2.2% higher than estimated by the BE
model. For the kidneys and liver, the best-ranking models pre-
dicted 1.9% and 38.5% higher time integrals than the BE model
(Table 3). For the lungs, the best-ranking model produced a 1.2%
smaller time integral than the BE model. For the bone marrow, the
best-ranking model was the ME formalism (a simplified form of
the BE model), so the time integrals for the BE model and for the
best-ranking model were naturally identical.

TABLE 3
Comparison of the Total Time Integrals

Organ Model

Normalized time

integral (NTIM,i)*

Akaike-weighted normalized

time integral (WNTIM,i)

Multimodel-averaged normalized

time integral (MNTIi)

Blood ME 0.597 0.000 1.127

MEC 2.365 0.001

BE 1.000 0.076

SE 1.161 0.305

MSE 1.326 0.306

SSE 1.022 0.440

SMSE 0.877 0.000

Kidneys ME 0.726 0.007 1.162

MEC 1.019 0.429

BE 1.000 0.123

SE 0.966 0.040

MSE 0.984 0.138

SSE 1.168 0.010

SMSE 1.619 0.415

Liver ME 0.907 0.000 1.328

MEC 1.385 0.535

BE 1.000 0.191

SE 1.345 0.096

MSE 1.364 0.380

SSE 1.514 0.048

SMSE 1.888 0.079

Bone marrow ME 1.000 0.363 1.540

MEC 1.017 0.113

BE 1.000 0.029

SE 0.994 0.109

MSE 1.003 0.109

SSE 1.242 0.009

SMSE 2.983 0.808

Lungs ME 0.631 0.000 0.999

MEC 1.077 0.000

BE 1.000 0.274

SE 1.019 0.188

MSE 1.065 0.025

SSE 0.988 0.512

SMSE 1.004 0.000

*NTIM,i 5 time integral for each (M-th) model and i-th organ/tissue, divided by time integral for BE model. WNTIM,i 5 NTIM,i
multiplied by model’s Akaike weight. MNTIi is sum of WNTIM,i across all models and represents model-averaged estimate for time
integral.
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These results showed that variations in predicted time integrals
were considerable even among models, with substantial support
from the data. This model-dependent variability implies that
estimates from any single model should be treated with caution,
particularly because model selection uncertainty was large and no
clear-cut decision could be made via AICc. Consequently, one is
compelled to use multimodel inference to obtain a conservative
estimation of the time integral.
Multimodel averaged time integral values were substantially

higher than those estimated by the BE model for most analyzed
organs/tissues: by 12.7% for blood, 16.2% for kidneys, 32.8%
for liver, and 54.0% for bone marrow (Table 3). For lungs,
the time integrals estimated from all models or just from the
BE model were essentially the same. These findings suggest
that because CPD models can predict slower pharmacokinetics
at long times than the BE model, they tend to predict larger
time integrals. Consequently, accounting for the data support
for these models by multimodel averaging often increases the
time integral estimates, compared with using the BE model
alone.

DISCUSSION

To the best of our knowledge, this is the first study in which
radiopharmaceutical pharmacokinetics were analyzed using mod-
els with CPDs of first-order rates, and the performances of these
models were rigorously compared with the performances of
discrete-rate models. The study strengths include relatively large
datasets, with 23–106 data points for each of 5 clinically relevant
organs/tissues (blood, kidneys, liver, bone marrow, lungs), and
information theoretic methods (10,11), which allow weights of
evidence for each model to be quantified and inferences to be
drawn from all models simultaneously, rather than from a best-
supported model alone.
The main weakness involves the lack of explicit modeling for

the initial distribution phase for the radioactivity shortly after
administration. For the organs/tissues analyzed here, in which the
radioactivity concentration peaked at the shortest investigated time
of 5 min after administration, the distribution phase was effec-
tively instantaneous compared with subsequent decay processes.
However, for some other organs the distribution phase is likely to
be slower and would need to be modeled explicitly, as we intend to
do in subsequent research.
Importantly, the commonly used BE formalism was never

the best-supported model by AICc for the data at hand (Table
2). The MEC model was the best-supported formalism for kid-
ney and liver data but performed poorly for blood and lung
data. The ME model did well for only bone marrow data.
CPD models (SE, MSE, SSE, or SMSE) outperformed the dis-
crete-rate formalisms (ME, MEC, and BE) for blood and lung
data and remained close competitors for all other organs/
tissues: at least one of these models always maintained an
DAICc less than 1, and all except SMSE always had an DAICc
less than 6. Consequently, CPD models could never be classi-
fied as poorly supported even when they were not the highest-
ranked models.
This pattern suggests that a single biochemical decay rate

(possibly with a small trapped component) may dominate in bone
marrow, kidneys, and liver, whereas multiple biochemical pro-
cesses acting simultaneously determine radioactivity pharmacokinetics
in blood and lungs. These processes can be better approximated by

a CPD of first-order rates summarized by 1–2 parameters, rather
than by the 3-parameter discrete-rate BE model.
These conclusions remained unchanged regardless of whether

the data were normalized using the radioactivity concentrations at
5 min after administration or left unnormalized, adding an extra
parameter to all models to represent the radioactivity concentra-
tion at time zero. For example, in the analysis of unnormalized
blood data, the Akaike weights for the ME, MEC, BE, SE, MSE,
SSE, and SMSE models were 0.000, 0.000, 0.116, 0.350, 0.338,
0.193, and 0.003, respectively. Although these values differed
somewhat from the results of the analysis using normalized data
(Table 2), they were within the model selection uncertainty range.
Notably, the cumulated Akaike weight for the last 4 models (0.88)
was not very different from the value (0.92) found with normal-
ized blood data.
When the best-fit pharmacokinetic curves for each model were

integrated over time (to infinity), the results differed substantially
(by . 1.5-fold) between models. Therefore, using the time inte-
gral from any single model to estimate the cumulative radiation
dose can be prone to large fluctuations. Instead, more robust esti-
mates, which account for model selection uncertainty, can be con-
structed by multimodel inference (2).

CONCLUSION

Pharmacokinetic data are essential for translating pharma-
ceutical agents from the bench to the clinic. For radiopharma-
ceuticals, pharmacokinetic data are also essential for dosimetry
calculations to predict radiation doses to tumors and healthy
tissues. In this study, we applied simple mechanistically plau-
sible models, which assume CPDs of pharmacokinetic rates
to data on biodistribution of 188Re-labeled melanin-specific
antibodies in melanoma-bearing mice, and observed that these
models described the data better than the more complex biex-
ponential model. Therefore, such models should be taken
into consideration for describing radiopharmaceutical pharma-
cokinetics.
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