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This review describes the application of 2 nuclear imaging tech-
niques for assessment of hepatic function in the setting of liver
surgery and transplantation. The biochemical and technical
background, as well as the clinical applications, of 99mTc-labeled
diethylenetriaminepentaacetic acid galactosyl human serum al-
bumin (GSA) scintigraphy and hepatobiliary scintigraphy (HBS)
with 99mTc-labeled iminodiacetic acid derivates is discussed.
99mTc-mebrofenin is considered the most suitable iminodiacetic
acid agent for 99mTc-HBS. 99mTc-GSA scintigraphy and 99mTc-
mebrofenin HBS are based on 2 different principles. 99mTc-
GSA scintigraphy is a receptor-mediated technique whereas
HBS represents hepatic uptake and excretion function. Both
techniques are noninvasive and provide visual and quantitative
information on both total and regional liver function. They can
be used for preoperative assessment of future remnant liver
function, follow-up after preoperative portal vein embolization,
and evaluation of postoperative liver regeneration. In liver trans-
plantation, these methods are used to assess graft function and
biliary complications.
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Surgical resection is still the most effective treatment for
patients with hepatic malignancies. Because of improved

surgical techniques and perioperative care, extended re-
sections are performed with greater frequency. Extended
resections can, however, result in a small postoperative
remnant liver with increased risk of postoperative liver
failure, especially in patients whose liver parenchyma is
compromised because of steatosis, cholestasis, or fibrosis
(1,2). Treatment of posthepatectomy liver failure remains
difficult, and mortality is substantial. Preoperative evalua-
tion of future remnant liver (FRL) function is therefore
important to determine whether a patient can safely undergo
an extended liver resection. The availability of preoperative
portal vein embolization (PVE) has increased the impor-
tance of preoperative assessment of regional hepatic
function (3). PVE induces atrophy of the embolized,
tumor-bearing liver segments with compensatory hypertro-
phy of the nonembolized lobe, thereby increasing FRL
volume and function. PVE reduces the risk of postoperative
liver insufficiency in patients with a marginal FRL (4). The
individual hypertrophic response is variable (4,5), indicating
the need to quantify the increase in FRL function after PVE.

The unique capacity of the liver to regenerate is important
for the clinical outcome of donor and recipient after living
donor liver transplantation, as well as for patients undergoing
partial liver resection. Liver regeneration is influenced by
many factors, including the presence of coexisting paren-
chymal liver diseases (6). Impaired liver regeneration can
cause serious clinical problems such as delayed recovery of
postoperative liver function and increased risk of postoper-
ative liver failure. It is consequently imperative to evaluate
the recovery of liver function after liver surgery.

The liver encompasses multiple functions, including
metabolic, synthetic, and detoxifying functions. In recent
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decades, several liver function tests have been developed,
each reflecting a separate component of the broad spectrum
of liver function. 99mTc-labeled diethylenetriaminepenta-
acetic acid galactosyl human serum albumin (GSA)
scintigraphy and hepatobiliary scintigraphy (HBS) with
99mTc-labeled iminodiacetic acid (IDA) derivates are 2
nuclear imaging techniques used for noninvasive evaluation
of liver function. This review discusses the biochemical and
technical background, as well as the clinical applications,
of 99mTc-GSA scintigraphy and HBS for the assessment of
hepatic function in liver surgery and transplantation.

THE DEVELOPMENT OF NEW TECHNIQUES FOR
ASSESSMENT OF LIVER FUNCTION

The Child–Pugh score is a widely used clinical scoring
system that includes biochemical parameters (plasma bil-
irubin albumin and prothrombin time) together with clinical
parameters (presence of encephalopathy and ascites). The
Child–Pugh scoring system is conventionally used in
selecting patients with hepatocellular carcinoma and cir-
rhosis for resection or transplantation. It provides merely
indirect information on FRL function and can be unreliable
for predicting clinical outcome after liver resection, espe-
cially in noncirrhotic patients (7,8).

Indocyanine green (ICG) clearance and galactose elimi-
nation capacity are dynamic quantitative liver function tests.
ICG is cleared from plasma by hepatocyte transporters
located on the basolateral membrane and subsequently
excreted into the bile (9). Galactose elimination capacity
measures the rate of galactose elimination from the blood—a
rate that depends mainly on phosphorylation of galactose by
galactokinase (10). Although the ICG clearance test (11,12)
and galactose elimination capacity (13) have the ability to
preoperatively predict morbidity and mortality after partial
hepatectomy, they can be unreliable (7,14) because they
measure global liver function and not specific FRL function.
The ICG clearance test is the most frequently used quanti-
tative liver function test in liver surgery and transplantation
(15). Other clinically applied liver function tests include the
monoethylglycinexylidide test, which measures hepatic me-
tabolism of lidocaine through the cytochrome p450 pathway
(16,17), the caffeine clearance test, and the aminopyrine
breath test (7), all of which provide information on total liver
function only.

CT volumetry, in which liver volume is used as an indirect
measurement of liver function, is currently the established
method to determine whether a patient can safely undergo
liver resection (15,18). Although there are no official
guidelines, an FRL volume larger than 25% (15%–40%) of
total liver volume is considered sufficient for a safe resection
in patients with normal liver parenchyma, whereas in patients
with a compromised liver (e.g., fibrosis, steatosis, or chole-
stasis), more than 40%–50% is preferred (15,19). These
separate ranges of what is considered sufficient FRL volume
necessitate the preoperative assessment of liver parenchyma
quality by liver biopsy to identify patients with increased

surgical risk. Preoperative liver biopsy is not routinely
performed, because of the potentially unequal distribution
of parenchymal damage (20) and the risk of complications
(21,22). As a result, the quality of the liver parenchyma
remains frequently uncertain, rendering preoperative risk
analysis by CT volumetry unreliable.

In recent decades, several nuclear imaging techniques
have been developed as noninvasive methods for evaluat-
ing liver function. 131I-rose bengal was one of the first
agents used for HBS. 131I-rose bengal is taken up from the
circulation by hepatocytes and excreted into the biliary
system. Rose bengal fell in disfavor because of several
disadvantages, including its slow hepatic clearance and
significant b-radiation, which limits the dose that can safely
be administered, thereby resulting in poor imaging char-
acteristics. 99mTc proved a more suitable isotope for
scintigraphy because of its excellent physical characteris-
tics. Several 99mTc-labeled agents have been developed,
including 99mTc-sulfur colloid, 99mTc-GSA, and 99mTc-
IDA. The latter 2 radiopharmaceuticals can be used for
assessment of hepatocyte function, whereas 99mTc-sulfur
colloid scintigraphy is based on the principle of phagocy-
tosis by the reticuloendothelial cells of the liver, thereby
visualizing RE activity.

99MTC-GSA SCINTIGRAPHY

Background

The asialoglycoprotein receptor is present only in mam-
malian hepatocytes and is specific for asialoglycoproteins,
which are formed after the removal of sialic acid from
endogenous glycoproteins by sialidases. The asialoglyco-
protein receptor consists of 2 subunits (human hepatic lectins
1 and 2) and is expressed on the hepatocyte sinusoidal surface
adjoining the extracellular space of Disse (23). Asialoglyco-
proteins bind to asialoglycoprotein receptors and are sub-
sequently taken up by receptor-mediated endocytosis and
delivered to lysosomes for degradation. A significant de-
crease in asialoglycoprotein receptors together with accu-
mulation of plasma asialoglycoproteins is seen in patients
with chronic liver diseases (24,25). At first, 99mTc-labeled
galactosylneoglycoalbumin was developed as a synthetic
asialoglycoprotein to visualize and quantify its hepatic
binding to the asialoglycoprotein receptor (26). For clinical
use, 99mTc-GSA, which is commercially available in an
instant labeling kit in Japan, was developed (27). The liver is
the only uptake site for 99mTc-GSA, which is therefore an
ideal agent for functional liver scintigraphy. The parameters
obtained from planar 99mTc-GSA scintigraphy proved valu-
able for the assessment of liver function in cirrhotic patients
and demonstrated a strong correlation with conventional liver
function tests (i.e., antithrombin III, bilirubin, prothrombin
time, ICG clearance, Child–Pugh classification, and histol-
ogy [hepatic activity index score]) (28,29). A discrepancy
between the ICG clearance test and 99mTc-GSA scintigraphy
is described in 9%–20% of the patients in whom the
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histologic severity of disease is better reflected by 99mTc-
GSA scintigraphy (30,31). 99mTc-GSA scintigraphy is also
effective in assessing hepatic function in patients with
hyperbilirubinemia (32–34).

Kinetics and Quantitative Measurement of Liver
Function

After an intravenous bolus of 99mTc-GSA, dynamic 99mTc-
GSA scintigraphy images are obtained by a g-camera
positioned over the heart and liver region. The blood
clearance and hepatic uptake are obtained by generating
regions of interest (ROIs) of the heart and liver, respectively.
For actual kinetics of 99mTc-GSA receptor binding, 3 models
are commonly applied.

Vera et al. developed a 3-compartment model of a bi-
molecular chemical reaction (35). Required for calculations
in this model are time–activity curves of liver and heart; the
patient’s height, weight, and hematocrit level; and a portion
of the injected dose from a blood sample. Five independent
parameters are calculated: receptor concentration, receptor
affinity (forward binding rate), hepatic plasma volume,
extrahepatic plasma volume, and hepatic plasma flow. The
receptor concentration is the most accurate index for
hepatic function (36,37).

A 5-compartment model based on a Michaelis–Menten
type of kinetics for receptor–ligand binding was introduced
as a noninvasive approach, requiring no blood samples (38).
Blood flow and maximal removal rate (Rmax) of 99mTc-GSA
(mg/min) from plasma are calculated from time–activity
curves of heart, liver, and lung (background). Miki et al.
introduced a 7-compartment model that included receptor-

mediated endocytosis and receptor recycling (39). The model
permits quantitative measurement of total receptor amount
(Rtot) and hepatic blood flow, without blood samples. Rtot

correlates with the number of viable hepatocytes and can be
used to assess functional liver mass (40).

Although many different parameters can be calculated
from the different kinetic models, they are highly complex
and therefore not widely used in the context of liver surgery.
Tables 1 and 2 provide an overview of frequently used
parameters in this field. Hepatic uptake ratio and blood
clearance ratio of 99mTc-GSA are the most commonly used
parameters determined from planar dynamic 99mTc-GSA
scintigraphy (Fig. 1). Blood clearance ratio is calculated by
dividing the radioactivity of the heart ROI at 15 min after
99mTc-GSA injection by that at 3 min after injection (HH15).
Hepatic uptake ratio is calculated by dividing the radioac-
tivity of the liver ROI by the radioactivity of the liver-plus-
heart ROIs at 15 min after injection (LHL15) (27,29,41). The
modified receptor index is determined by dividing LHL15 by
HH15 (29).

Static 99mTc-GSA SPECT has been introduced to improve
the assessment of segmental liver function and to measure
functional liver volume (33,42–44). The outline extraction
method is a simple technique to calculate functional liver
volume using a specific cutoff value to automatically outline
the liver (33). However, it does not incorporate regional
functional differences within the included volume. There-
fore, Satoh et al. described a more precise method for
calculating functional liver volume depending on the degree
of 99mTc-GSA radioactivity in each voxel (43). First, the
voxel with maximal counts was determined. Voxels with

TABLE 1. Commonly Used Parameters from Dynamic Planar 99mTc-GSA Scintigraphy

Abbreviation Parameter Description Mathematic formula Application

LHL15 Hepatic uptake ratio

of 99mTc-GSA

Liver counts at 15 min (L15)

divided by heart counts

(H15) plus L15

LHL 15 5 L15
L151H15

Total liver function

and regional liver

function

HH15 Blood clearance
ratio

Heart counts at 15 min
(H15) divided by heart

counts at 3 min (H3)

HH15 5 H15
H3

Total liver function

MRI Modified receptor

index

LHL15 divided by HH15 MRI 5 LHL15
HH15

Total liver function

KL Blood clearance
constant

Calculated from liver uptake
curve, with clearance

half-time (T1/2) (Fig.1)

Liver uptake ðtÞ 5 C0 ð12eKLtÞ Total liver function

KL 5
Ln 2
T1=2

LU15 Liver uptake Cumulative liver uptake

15–16 min after injection

from liver time–activity

curve (L(t))

LU15 5

R 16

15
LðtÞdt

total injected dose · 100

Total liver function

LHL15-V Ratio of liver uptake to
liver volume (mL)

Liver uptake ratio (LHL15)
divided by total liver

volume
LHL152V 5 LHL15

preoperative liver volume · 1; 000
Total liver function

Rmax Maximal removal rate

of 99mTc-GSA

Calculated with kinetic model

of Ha-Kawa et al. (36)

Requires multiple equations Total liver function

R0 Asialoglycoprotein

receptor

concentration

Calculated with kinetic model

of Vera et al. (37)

Requires multiple equations Total liver function
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counts below 54% of the maximal counts were regarded as
background. Voxels with counts above 80% of the maximum
were considered fully functional, and their voxel thickness
was counted as the maximal voxel thickness for the calcu-
lation of liver functional volume. For each voxel with counts
between 54% and 80%, the voxel thickness was estimated
according to the accumulated counts in that voxel.

In addition to static SPECT, dynamic SPECT has been
applied. It requires a fast rotating multidetector g-camera,
which is not widely available. Liver uptake ratio and liver
uptake density are calculated from dynamic SPECT acqui-
sitions (45,46). Liver uptake ratio reflects the percentage of
hepatic SPECT counts relative to the injected counts mea-
sured in the syringe, thereby calculating the dose that is
incorporated in the liver. Liver uptake density is the liver
uptake ratio divided by functional liver volume. In addition,
the hepatic 99mTc-GSA clearance (Ku, mL/min) can be
calculated using a Patlak plot analysis (42).

99mTc-GSA Liver Scintigraphy in Experimental
Surgical Research

Small-animal models are commonly used to study the
complex recovery mechanisms of liver function during liver
regeneration. Recently, we studied the application of 99mTc-
GSA scintigraphy with SPECT for the assessment of liver
function and functional volume during liver regeneration in
a rat model (47). In normal rat livers, as well as in
regenerating livers, a strong correlation was found between
functional liver volume and conventional liver volume,
indicating the usefulness of 99mTc-GSA SPECT to measure
functional liver volume in a noninvasive manner. The hepatic
99mTc-GSA uptake measured by dynamic scintigraphy,
however, seemed to underestimate hepatic regeneration in
comparison to liver volume.

Unlike ICG, 99mTc-GSA uptake is not directly inhibited
by hyperbilirubinemia and can therefore be used to evaluate
liver function during cholestasis. In a rat model of obstruc-

TABLE 2. Commonly Used Parameters Derived from 99mTc-GSA SPECT

Abbreviation Parameter Description Mathematic formula Application

FLV Functional liver
volume

Outline extraction method with
specific cutoff level; sum of

product of liver surface in

each slice and slice thickness

+ðliver surface · slice thicknessÞ Total liver function;
regional liver function

Ku Hepatic 99mTc-GSA
clearance

Patlak plot analysis: L(t) is liver
activity, B(t) is blood activity,

Vh is hepatic blood volume

LðtÞ=BðtÞ 5 KU ·
R t

0 BðtÞdt=BðtÞ1Vh Total liver function;
regional liver function

LUR Liver uptake ratio Hepatic SPECT counts divided

by injected syringe counts
LUR 5 total SPECT counts

counts syringe preinjection · 100 Total liver function;

regional liver function

LUD Liver uptake density Liver uptake ratio divided by
liver functional volume

LUD 5 LUR
functional liver volume

Total liver function;
regional liver function

PRI Predictive residual

index

Sum of product of blood

clearance constant (ki-value)

and functional liver volume
(FLVi) in FRL in each slide

divided by product of

normal k-value (healthy

volunteers) and total FLV

PRI 5
+ki · FLVi
Kn · FLV

Regional liver function

FRR Functional resection

ratio

Counts in expected resection

volume divided by counts

in total liver volume

FRR 5 resection volume counts
total liver volume counts · 100 Regional liver function

FIGURE 1. Planar dynamic 99mTc-
GSA scintigraphy. (A) LHL15 and HH15
are calculated from 99mTc-GSA time–
activity curves from heart (gray) and
liver (black). (B) Blood clearance con-
stant (KL) is calculated from liver uptake
curve using clearance half-time (T1/2).
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tive jaundice, hepatic 99mTc-GSA uptake decreased as the
period of jaundice was prolonged, as is explained by a
decrease in affinity of the asialoglycoprotein receptor for
99mTc-GSA (34).

Clinical Use of 99mTc-GSA Liver Scintigraphy in
Liver Surgery

Preoperative Assessment of Liver Function. Multiple
studies have described the application of preoperative planar
dynamic 99mTc-GSA scintigraphy for predicting postopera-
tive complications (31,48–50). Preoperative GSA Rmax and
LHL15 proved to be reliable indicators for predicting post-
operative complications in patients with hepatocellular
carcinoma and chronic liver disease, because significantly
lower values were found in patients with major postoperative
complications (30,50). Specific cutoff values for LHL15 (i.e.,
0.90 (48) and 0.875 (31)) have been described to select
patients with a high risk for complications. Other cutoff
values include LHL15/preoperative liver volume of 0.76 (32)
and total asialoglycoprotein receptor concentration in the
FRL of 0.05 mmol (31,49). Cutoff values, however, usually
are not based on accurate risk analysis but rather are set
arbitrarily. In patients with a discrepancy between ICG15 and
LHL15, 99mTc-GSA scintigraphy was better in predicting
postoperative complications (31). Multivariate analysis re-
vealed that LHL15 was an independent preoperative pre-
dictor of postoperative complications in patients with chronic
liver disease, whereas the ICG clearance test was not (48).
Postoperative liver failure, however, was also observed in
patients with relatively normal liver function (LHL15 .

0.875), as can be explained by the fact that LHL15 measures
only preoperative total liver function and not FRL function.

Static 99mTc-GSA SPECT was introduced for measure-
ment of functional volume and more accurate assessment of
segmental liver function (33,42–44). Whereas functional
volume measured by 99mTc-GSA SPECT reflects the func-
tional hepatocyte mass (43,51), CT volumetry cannot distin-
guish between functional and nonfunctional liver tissue. This
is especially of interest in cirrhotic patients, in whom
advanced fibrosis is accompanied by a reduction of func-
tional hepatocytes. In addition, tumor compression on
surrounding liver tissue, bile ducts (33), or blood vessels
(52) can affect regional liver function, whereas liver volume
is maintained over a longer period. Preoperative functional
volume measured by 99mTc-GSA SPECT proved more suit-
able for predicting remnant liver function than did CT
volumetry in a study group with predominantly cirrhotic
patients (33,44). Although the outline extraction method is
regularly used to calculate functional hepatic volume
(33,44,52–54), that method is based on the assumption that
liver function is uniformly distributed in the tissue included
within the cutoff value. Especially in tumor-bearing and
compromised livers, function is not distributed homoge-
neously. Therefore, functional volume does not necessarily
correlate with intrinsic liver function measured by dynamic
planar 99mTc-GSA scintigraphy (41,43).

To overcome this problem, dynamic SPECT was intro-
duced. A study by Sugahara et al. demonstrated the advan-
tage of dynamic SPECT for assessment of regional liver
function (55). Liver functional volume (by outline extraction
method), liver uptake ratio, and liver uptake density were
calculated in patients with different severities of parenchy-
mal liver disease. Both liver uptake ratio and liver uptake
density decreased with the severity of liver disease, whereas
functional liver volume was significantly decreased only in
patients classified as Child–Pugh C. The ratio of liver uptake
(and liver uptake density) between the left liver lobe and right
lobe changed with the progression of liver disease, confirm-
ing that liver function is not distributed homogeneously in
patients with compromised livers. Dynamic SPECTwas used
to measure FRL function and preoperatively predict post-
operative complications (42,43). Patients with postoperative
liver insufficiency had significantly lower hepatic FRL
99mTc-GSA clearance (Ku, in mL/min) than did patients
without complications (42). The predictive residual index
was able to predict postoperative complications with a pos-
itive predictive value of 71% and negative predictive value of
100%, using a cutoff value of 0.38 (43). The conclusions in
these studies, however, were based on a relatively small
number of complications.

Increase of Liver Function After PVE. Several studies
evaluated increased FRL function after PVE using 99mTc-
GSA scintigraphy (46,53–57). In 2 studies, the increase in
FRL function after PVE was measured by dynamic 99mTc-
GSA SPECT and was compared with an increase in FRL
volume, measured by CT volumetry, in cirrhotic and non-
cirrhotic patients (53,57). The increase in FRL function
(expressed as liver uptake ratio, liver uptake density, residual
functional liver volume, and predictive residual index) was
more extensive than the increase in FRL volume, indicating
that 99mTc-GSA scintigraphy has additional value over CT
volumetry for evaluating the functional increase in FRL after
PVE.

So far, no studies have been published on the use of
99mTc-GSA scintigraphy in selecting candidates for PVE.
Therefore, further research in this field is recommended.

Postoperative Liver Regeneration. Postoperative liver
regeneration is currently evaluated by CT volumetry. A
discrepancy has been described between postoperative
liver functional recovery and volumetric liver regeneration.
Tanaka et al. reported that functional recovery was impaired
after large resections, in comparison to volumetric regener-
ation (41). However, data presented in this study demon-
strated that 4 wk after a resection, the average LHL15
recovered to 95% of the preoperatively measured value,
whereas volume recovered to approximately 70% of initial
values. This finding suggests that functional recovery was
greater then volumetric recovery, indicating the opposite of
the conclusions drawn by the authors. Kwon et al. described
in 2 almost identical studies that functional regeneration was
more rapid than volumetric regeneration measured by CT
volumetry (44,54). Functional and volumetric liver regener-
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ation was delayed in patients with underlying liver disease.
Although no direct comparison was made between 99mTc-
GSA SPECT and CT volumetry, it was concluded that
functional recovery was more rapid in patients with injured
livers. Again, in our view, the data presented in these studies
do not support this conclusion. Although 99mTc-GSA scin-
tigraphy is useful to assess liver regeneration, it is difficult to
draw conclusions on the difference between functional and
volumetric regeneration from the present evidence.

99mTc-GSA scintigraphy has also been used to preoper-
atively predict the rate of liver regeneration after partial
hepatectomy in patients with liver fibrosis (58). 99mTc-GSA
scintigraphy correlates with the severity of liver fibrosis,
and impaired liver regeneration is also described in patients
with an increased severity of liver fibrosis (59). Patients
with a high preoperative HH15 (.0.52) that was due to
fibrosis exhibited a worse regeneration of the remnant liver
(58).

Clinical Use of 99mTc-GSA Scintigraphy in Liver
Transplantation

After liver transplantation, graft function is affected by
many factors, including acute and chronic rejection, in-
dicating the necessity to evaluate posttransplantation graft
function. In a study comprising 7 liver transplant patients, the
total amount of asialoglycoprotein receptors (Rtot by the
kinetic model of Miki et al. (39,40)) was used to evaluate
liver allograft function (60). Histologic liver damage was
evaluated from a biopsy sample and correlated with Rtot.
Although cohort size was small, this study shows the po-
tential of 99mTc-GSA scintigraphy to noninvasively evaluate
graft function after transplantation.

In an auxiliary partial orthotopic liver transplantation, the
native liver is left partially in place and the donor (partial)
liver graft is positioned orthotopically. 99mTc-GSA scintig-
raphy can be used to monitor both graft and native liver
function after auxiliary partial orthotopic liver transplanta-
tion (61). The uptake of 99mTc-GSA (calculated by Patlak
plot analysis) proved a better predictor of actual graft
function than did liver volume assessed by CT volumetry.
Especially in patients with severely damaged liver grafts,
99mTc-GSA uptake corresponded better with histopatho-
logic evaluation of liver biopsy than did CT volumetry.

In 2004, Kwon et al. addressed the need to accurately
measure FRL function in donors participating in living donor
liver transplantation (62). The authors concluded that the
FRL function estimated by 99mTc-GSA SPECT is useful for
selecting the hepatectomy procedure in the setting of living
donor liver transplantation. However, that study was per-
formed on 152 patients resected predominantly for malignant
tumors and not for living donor liver transplantation. Eighty-
three percent of the patients were resected for hepatocellular
carcinoma, which is frequently associated with liver cirrho-
sis. Therefore, it is highly questionable if the patients
included in this study are representative of living donors.

HBS WITH IDA DERIVATES

Background
99mTc-IDA agents were introduced in 1976 by Loberg

et al. (63). These lidocaine analogs are transported to the liver
predominantly bound to albumin (64). Dissociation between
albumin and the 99mTc-IDA agents occurs in the hepatic
space of Disse, after which the 99mTc-IDA agents is taken up
by the hepatocytes. Although IDA agents are not metabo-
lized, they follow the path of intracellular transit similar to
various endogenous and foreign substances, including bili-
rubin, hormones, drugs, and toxins, thus representing an
important function of the liver (64,65). Organic anion trans-
porter polypeptides, expressed in the basolateral plasma
membrane of hepatocytes, are involved in the uptake of
organic anions. Organic anion transporter polypeptides 1B1
and 1B3 are able to transport 99mTc-mebrofenin, which is an
IDA derivate (66). IDA agents are excreted in the bile
canaliculi similarly to ICG without undergoing biotransfor-
mation during their transport through the hepatocyte and,
therefore, are ideal tracers for the biliary tract (63,67). The
suggested bile canalicular transporters include multidrug
resistance protein 2 (66,68).

99mTc-labeled IDA agents were first used in cholescintig-
raphy for the diagnosis of various biliary diseases (64,69).
More recently, the application of HBS has been proposed
for assessment of liver function (70). Liver uptake of IDA
agents can be affected by high plasma levels of bilirubin (69).
Of all IDA analogs, 99mTc-mebrofenin shows the highest
hepatic uptake, minimal urinary excretion, and strong re-
sistance to displacement by high plasma bilirubin concen-
trations (69,71). Therefore, 99mTc-mebrofenin is considered
the most suitable agent for hepatic and biliary diagnostic
procedures. 99mTc-mebrofenin uptake can be hindered by
hypoalbuminemia, as albumin is the main plasma carrier of
99mTc-mebrofenin (69). Hypoalbuminemia consequently de-
creases hepatic delivery of 99mTc-mebrofenin and increases
renal excretion. Conversely, hypoalbuminemia in liver dis-
ease is a sign of impaired liver function and therefore
decreased mebrofenin uptake in patients with hypoalbumi-
nemia still reflects liver function.

The Kinetics and Quantitative Measurement of
Liver Function

Measurement of hepatic uptake function by the clearance
rate of iodide (an IDA analog) was first described by
Ekman et al. (72). The hepatic uptake of 99mTc-mebrofenin
is calculated similarly to iodide (73). After intravenous
injection of 99mTc-mebrofenin, dynamic scintigraphy is
performed with a g-camera. The hepatic uptake of 99mTc-
mebrofenin is determined by drawing an ROI around the
liver, the heart (serving as blood pool), and the total field
of view (Fig. 2). Three different time–activity curves based
on these ROIs are generated. With these 3 parameters, the
hepatic 99mTc-mebrofenin uptake rate (%/min) can be
calculated. Radioactivity values acquired between 150 and
350 s after injection are used to ensure that the calculations
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are made during a phase of homogeneous distribution of the
agent in the blood pool, before biliary excretion takes place
(73,74). To compensate for differences in individual meta-
bolic requirements, hepatic 99mTc-mebrofenin uptake rate
(%/min) is divided by body surface area and expressed as
%/min/m2. ROIs can be drawn around specific parts of the
liver to calculate regional differences in 99mTc-mebrofenin
uptake (Fig. 2). FRL uptake function is calculated by dividing
counts within the ROI of the FRL by the total liver counts and
multiplying this factor by total liver 99mTc-mebrofenin
uptake and is expressed as %/min/m2. Regional uptake and
FRL uptake of 99mTc-mebrofenin can be assessed with little
intra- and interobserver variation (74,75). Single-head
g-cameras permit anterior or posterior projections of the
liver only. Dual-head g-cameras enable simultaneous data
acquisition of the anterior and posterior projections, from
which a geometric mean dataset can be calculated, thereby
reducing the attenuation bias (76).

Alternative methods for determining liver function in-
clude hepatic extraction fraction, the time at which max-
imal hepatic radioactivity occurs (Tpeak), and the time
required for peak activity to decrease by 50% (T1/2 peak)
(77–79). The hepatic extraction fraction is calculated from
the time–activity curves of the heart and liver by a decon-
vulsion analysis using a (modified) Fourier transform
method (80).

Recently, application of 99mTc-mebrofenin SPECT for the
assessment of regional liver function and functional liver
volume has been described (76). The timing of the SPECT is
a challenge when a dynamic tracer is used, which is taken up
by the liver and subsequently excreted in the bile. The SPECT
acquisition is therefore centered on the peak of the hepatic
time–activity curve, when the amount of radioactivity within
the liver is relatively stable. In patients with fast hepatic
uptake, biliary excretion is already visible during the SPECT
phase, disturbing the calculation of total and regional liver
function and volume. Activity within the extrahepatic bile
ducts is therefore removed, and activity in the intrahepatic

bile ducts is replaced by the average count density of normal
liver tissue. Functional liver volume is calculated by the
outline extraction method (with a threshold of 30% of the
maximal voxel count value). The FRL can be outlined
manually on a low-dose CT scan linked to the SPECT
images, with a contrast-enhanced CT scan used as a refer-
ence. The percentage of counts within the FRL is calculated
by dividing counts within the FRL by the total counts within
the entire liver. For calculation of actual FRL function, this
percentage is multiplied by the total liver 99mTc-mebrofenin
uptake rate as measured by the geometric mean dataset of the
dynamic HBS.

HBS in Experimental Surgical Research

Measurement of liver function in small animals remains
a challenge because many quantitative liver function tests
require repetitive blood samples. Hepatic extraction fraction
and T1/2 peak, measured by HBS, were used as a noninvasive
method of evaluating hepatic function after ischemia–reper-
fusion injury to quantify the protective effect of new in-
terventions on ischemia–reperfusion injury (81–83).

For the evaluation of functional regeneration in small
animals, serial measurements over a relatively long time
period are preferred. The use of the hepatic 99mTc-mebro-
fenin uptake rate measured by dedicated pinhole HBS has
recently been validated in different rat models of liver
regeneration (77). 99mTc-mebrofenin HBS proved to be an
accurate, noninvasive tool for the measurement of liver
function in the rat and enabled serial measurements within
the same animal (77).

Clinical Use of HBS in Liver Surgery

Preoperative Assessment of Liver Function. The use of
99mTc-mebrofenin HBS for preoperative assessment of liver
function in patients undergoing liver surgery was first de-
scribed by Erdogan et al. (73). In 54 patients scheduled for
liver resection, 99mTc-mebrofenin uptake measured by HBS
strongly correlated with the ICG clearance test. Besides
quantitative information, HBS provides visual information
about the localization of liver segments with inferior func-
tion. Biliary excretion of 99mTc-mebrofenin is useful for
preoperatively determining segmental cholestasis and for
diagnosing postoperative biliary complications, such as bile
leakage and biliary obstructions. Because of the possibility of
determining regional liver function, HBS was validated as
a preoperative method for estimating FRL function (74). In
this relatively small patient study, preoperatively estimated
FRL function correlated well with actual remnant liver
function 1 d after resection.

Dinant et al. investigated the value of preoperative FRL
function, measured by 99mTc-mebrofenin HBS, in predicting
short-term outcome after partial liver resection (75). Forty-six
patients with and without parenchymal disease were included
in this study. Preoperative measurement of FRL function was
more accurate than liver volume in predicting postoperative
liver failure and liver failure–related mortality. A safe re-
section could be performed in patients with FRL uptake

FIGURE 2. Dynamic image of planar HBS. (A) Example of
summed HBS images from 150 to 350 s after intravenous
injection of 99mTc-mebrofenin. ROI is drawn around entire
liver (red line), mediastinum (blood pool; yellow line), and
FRL (green line). (B) Blood-pool–corrected liver uptake time–
activity curve. Liver uptake of mebrofenin is calculated as
increase of blood-pool–corrected 99mTc-mebrofenin uptake
(y-axis) per minute over a period of 200 s.
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above 2.5%/min/m2 of body surface area, with a 3% chance
of developing postoperative liver failure and liver failure–
related mortality. However, in patients with FRL uptake
below 2.5%/min/m2, the risk of postoperative liver failure
increased to 56%. In high-risk patients undergoing major
liver resection, receiver-operating-characteristic curve anal-
ysis yielded a similar FRL function cutoff of 2.69%/min/m2

(84). HBS takes into account the presence of underlying
parenchymal liver disease, with compromised livers having
significantly less liver function. Therefore, a single cutoff
value for the prediction of liver failure suffices for both
patients with a compromised liver and patients with a normal
liver. In patients with an unknown quality of liver paren-
chyma, preoperative dynamic HBS proved more valuable
then CT volumetry for the prediction of postoperative liver
failure (75, 84).

In the 2 abovementioned studies published by Erdogan
and Dinant, HBS parameters have been derived from
a single-head g-camera using only the anterior projection
(75,84). Because of the anatomic position of the liver, the
left hemiliver is situated more anteriorly, leading to an
overestimation of segmental left liver function in the
anterior projection. The increasing availability of dual-head
rotating g-cameras enables the calculation of a geometric
mean dataset of the anterior and posterior projections,
which is recommended for dynamic HBS in the future.

Although dynamic 99mTc-mebrofenin HBS has the pos-
sibility of measuring regional liver function, the 2-dimen-
sional planar images lack the ability to assess detailed liver
function on a segmental level. Modern SPECT/CT cameras
combine dynamic 99mTc-mebrofenin HBS with additional
SPECT and the anatomic information of the CT scan,
thereby enabling measurement of segmental liver function
and functional liver volume. A recent study including 36
patients demonstrated that 99mTc-mebrofenin SPECT pro-
vided valuable visible information on the distribution of
liver function (Fig. 3.) (76) The results of functional liver
volume measured by SPECT and morphologic volume
measured by CT volumetry indicated that SPECT was an
accurate method of measuring hepatic volume. FRL func-
tion measured by the combination of SPECT and dynamic
HBS was able to accurately predict the actual function of
the postoperative remnant liver.

Increase of Liver Function After PVE. The application of
99mTc-mebrofenin HBS after PVE is currently under in-
vestigation. HBS is one of the few quantitative liver function
tests that has the ability to measure regional liver function and
is therefore ideal for evaluating the functional increase in
FRL after PVE. In addition, HBS could potentially be used to
decide on candidates for PVE because of the ability to select
patients with an increased risk of postoperative liver failure
(75).

Postoperative Liver Regeneration. Bennink et al. com-
pared the volumetric regeneration 3 mo after partial liver
resection with the functional regeneration measured by
HBS and ICG15 (74). There was a significant correlation

between the ICG clearance and HBS. However, a weak
association between functional recovery (HBS and ICG)
and volumetric regeneration (CT volumetry) was observed.
This discrepancy confirms that the mechanisms of func-
tional recovery may be independent of those controlling
volumetric regeneration.

Clinical Use of HBS in Liver Transplantation

Biliary complications and hepatic dysfunction due to graft
rejection are major causes of postoperative morbidity and
mortality in liver transplant recipients. Many studies have
shown that HBS is an accurate, noninvasive technique for the
diagnosis of biliary complications, including segmental and
total biliary obstruction, as well as bile leakage in adult and
pediatric transplantation patients (85–88). The efficacy of
HBS for detection of graft dysfunction because of rejection is
unclear. Graft rejection is usually diagnosed by liver biopsy.
Brunot et al. demonstrated a close relation between early
biopsy results and liver uptake function measured by HBS,
implying that HBS is valuable in distinguishing graft re-
jection from cholestasis (89). In contrast, others reported that
HBS can distinguish between normal grafts and those
experiencing rejection or cholestasis but not between biliary
complications and rejection (85,90).

In heterotopic auxiliary liver transplantation, the native
liver is left in situ and a partial liver graft is transplanted
elsewhere in the abdominal cavity. It has occasionally been

FIGURE 3. Two examples of 99mTc-mebrofenin SPECT,
with CT scans on left and matching SPECT images on right.
(A and B) Patient with large colorectal metastasis in left liver
segments, visible on CT scan. SPECT image shows in-
homogeneous distribution of mebrofenin, with decreased
uptake in liver segments 2–4. (C and D) Patient with
colorectal metastasis (not visible on this CT slide) in which
tumor is compressing surrounding vessels and bile ducts,
resulting in impaired liver function in segments 5–8.
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applied in patients with fulminant liver failure, in whom the
native liver is expected to recover and regain function.
Individual assessment of graft and native liver is difficult
because most function tests measure total liver function.
HBS has the unique ability to perform functional assess-
ment of graft and native liver separately (91,92).

Because of an increased shortage of cadaveric liver grafts,
living donor liver transplantation is used to expand the organ
pool. In living donor liver transplantation, a left or right
hepatectomy is performed on a living donor. The regenera-
tion capacity in donors after living donor liver transplantation
was investigated using HBS (93). As described by others, that
study indicated that accelerated recovery of organ function is
an early compensatory mechanism after reduction of organ
volume (93). To date, no studies have been published using
HBS for the preoperative assessment of liver function in the
donor in living donor liver transplantation.

DISCUSSION

99mTc-GSA scintigraphy and 99mTc-mebrofenin HBS are
simple techniques that can be implemented in every hospital
with a nuclear medicine department. Both methods are
applicable in patients with parenchymal liver disease, which
is of increasing importance in view of the increasing number
of patients presenting with parenchymal liver disease due to
neoadjuvant chemotherapy or aspects of Western lifestyle
such as obesity, alcohol consumption, and sexually trans-
mitted diseases.

99mTc-GSA scintigraphy and 99mTc-mebrofenin HBS are
based on 2 different principles. 99mTc-GSA scintigraphy
measures the binding of 99mTc-GSA to its receptor expressed
on hepatocytes. A decreased hepatic 99mTc-GSA uptake can
be caused by a reduction in the 99mTc-GSA binding affinity
(as seen in cholestasis (34)), a reduction in the amount of
asialoglycoprotein receptors per hepatocyte, or a decrease
in the number of hepatocytes (as seen in cirrhosis (94)).
Because 99mTc-GSA is not excreted into the bile, 99mTc-GSA
scintigraphy cannot be used to diagnose biliary complica-
tions after liver surgery or transplantation. HBS measures
the hepatic uptake and excretion of 99mTc-mebrofenin and
therefore has the ability to also visualize the biliary system.
Uptake of 99mTc-mebrofenin can be influenced by hepatic
blood flow, hypoalbuminemia, and high concentrations of
bilirubin (69). Because the hepatic uptake of many sub-
stances is influenced by the same factors, it still reflects liver
function under these conditions.

Compared with other dynamic quantitative liver function
tests such as the ICG clearance test, 99mTc-GSA scintigra-
phy and 99mTc-mebrofenin HBS have the advantage of
being able to measure both total and regional liver function,
enabling functional assessment of specifically the FRL. For
this reason, preoperative 99mTc-GSA scintigraphy and HBS
are accurate methods for preoperative prediction of post-
operative complications (31,42,48,75,84) and for follow-up
of FRL function after PVE.

Although both nuclear imaging techniques are applicable
for the assessment of liver function in small laboratory
animals, 99mTc-GSA SPECT is preferred for the noninvasive
assessment of liver functional volume. Dynamic SPECT
acquisitions with 99mTc-mebrofenin are difficult using ded-
icated animal pinhole g-cameras because of the longer
acquisition time per frame and faster hepatic uptake of
99mTc-mebrofenin in rats.

Although many studies have proven the value of nuclear
imaging in liver surgery and transplantation, these tech-
niques are not widely used. 99mTc-GSA scintigraphy is
mainly used in Japan, whereas its use is not approved in
Europe and the United States. In addition, 99mTc-GSA
scintigraphy uses many different, sometimes complex,
parameters (Tables 1 and 2), making comparison of studies
difficult. The application of 99mTc-mebrofenin HBS in liver
surgery is relatively new, and only a few clinical trials have
been performed. Clinical trials on larger patient populations
are required to confirm the value of 99mTc-mebrofenin HBS
for the preoperative assessment of liver function and the
postoperative evaluation of complications and liver regen-
eration.

CONCLUSION

Both 99mTc-GSA scintigraphy and 99mTc-mebrofenin
HBS are noninvasive, reliable techniques that provide visual
and quantitative information on both total and regional liver
function. Both tests are applicable in patients with normal
livers and patients with compromised livers. These features
render both 99mTc-GSA scintigraphy and 99mTc-mebrofenin
HBS useful tests for the assessment of liver function in liver
surgery and liver transplantation.
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