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Cardiac sympathetic function plays an important role in the reg-
ulation of left ventricular (LV) function and the pathophysiology of
LV dysfunction. 11C-CGP-12177 (11C-CGP) has been used to as-
sess myocardial b-adrenergic receptor (b-AR) density in vivo us-
ing PET. The aim of this study is to measure myocardial b-AR
density in patients with nonischemic cardiomyopathy and to
compare the measurements with various standard parameters
of heart failure (HF), particularly with presynaptic function as-
sessed by 123I- metaiodobenzylguanidine (123I-MIBG) imaging.
Methods: 11C-CGP PET was performed on 16 patients with non-
ischemic cardiomyopathy and 8 age-matched healthy volun-
teers using a double injection method. A 11C-CGP dynamic
scan for 75 min was performed after the injection of 11C-CGP
with a high specific activity. After 30 min, 11C-CGP with a low
specific activity was injected. The b-AR density of the whole LV
was calculated on the basis of the graphical analysis method.
Additionally, b-AR density was compared with LV ejection frac-
tion (LVEF), sympathetic presynaptic function assessed using
123I-MIBG kinetics, and neurohormonal parameters. Results:
The b-AR density of patients was significantly lower than that
of healthy volunteers (3.80 6 0.96 vs. 7.70 6 1.92 pmol/mL;
P , 0.0001). In the patients, b-AR density correlated significantly
with LVEF (r 5 0.62, P , 0.05). Furthermore, b-AR density corre-
lated significantly with the 123I-MIBG washout rate (r 5 20.68,
P , 0.01) and delayed heart-to-mediastinum ratio (H/M ratio)
(r 5 0.61, P , 0.05). On the other hand, the correlation between
b-AR density and early H/M ratio was not significant (r 5 0.40,
P 5 0.13). The b-AR density of patients with severe HF (New
York Heart Association functional [NYHA] class III) was signifi-
cantly lower than that of those with NYHA functional class I
or class II HF (3.24 6 0.96 vs. 4.24 6 0.73 pmol/mL; P , 0.05).
Conclusion: A reduction in b-AR density measured by
11C-CGP PET was observed in patients with nonischemic cardio-

myopathy. This downregulation may be due to the increased pre-
synaptic sympathetic tone as assessed by 123I-MIBG imaging.
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Heart failure (HF) is a major cause of mortality and rep-
resents a growing health problem, despite major therapeutic
advances (1–3). The severity of HF is evaluated primarily by
symptoms, clinical findings, hemodynamic measurements,
left ventricular ejection fraction (LVEF), or exercise toler-
ance (4–7). In addition, the assessment of neurohormonal
system disorders related to HF has proven to be valuable for
risk stratification (8–11). Despite these indices, the accurate
evaluation of the risk of mortality remains difficult.

Cardiac sympathetic function plays an important role in the
regulation of heart function and has been studied extensively in
recent decades (12,13). In a failing heart, the myocardial
responsiveness to b-agonist stimulation is suppressed, primar-
ily because of the downregulation of b1-adrenergic receptor
(AR) (14,15). This b-AR downregulation has been induced
by an enhanced sympathetic activity to the heart and an
enhanced release of endogenous cardiac-derived catechol-
amines (16). The degree of downregulation is related to the
severity of HF (15). Furthermore, these patients have higher
levels of circulating catecholamines, which are inversely
related to prognosis (8). On the basis of these findings, a
beneficial effect of b-adrenergic blocker therapy has been
hypothesized. In fact, many trials have shown the beneficial
effect of b-blocker therapy in heart failure patients (3).

However, this in vitro measurement is invasive and does
not allow longitudinal and regional assessment in humans.
PET is an excellent noninvasive tool for investigating the
distribution of myocardial b-AR in vivo and provides the
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possibility of repeated measurements. Studies using PET and
the radioligand 11C-CGP-12177 (11C-CGP) have shown
promising results that are in agreement with those of in
vitro studies (17). CGP appears to be the most suitable ligand
because it is very potent and is a hydrophilic nonselective
b-AR antagonist with low nonspecific binding on mem-
branes and slight cellular uptake (18). CGP enables the inves-
tigation of plasma membrane receptors. However, CGP has
not been studied extensively in vivo because of difficulty
in the synthesis of 11C-CGP. We developed a method for
producing 11C-CGP with very high yield and specific activ-
ity, which provides high-quality images and the clinical ap-
plication for myocardial b-AR density (19,20).

Merlet et al. demonstrated the downregulation of b-AR
in patients with HF caused by idiopathic dilated cardiomy-
opathy (17). We hypothesized that this downregulation may
be related to the adrenergic presynaptic dysfunction. How-
ever, there is little information about the relationship be-
tween presynaptic function and b-AR density in HF. The aim
of this study was to measure myocardial b-AR density in
patients with nonischemic left ventricular (LV) dysfunction
using 11C-CGP PET and to compare the measured values
with various standard parameters of HF and presynaptic
function. Adrenergic presynaptic function was assessed by
123I-metaiodobenzylguanidine (123I-MIBG) imaging. 123I-
MIBG, a norepinephrine (NE) analog, is accumulated in
sympathetic nerve endings through the uptake-1 mechanism
and can be used to delineate cardiac sympathetic nerve dis-
tribution and function (21–23).

MATERIALS AND METHODS

Study Patients
In this study, we enrolled 16 patients diagnosed as having non-

ischemic cardiomyopathy (8 men, 8 women; mean age 6 SD,
62.8 6 11.1 y). All patients had LV dysfunction (LVEF , 45%)
but showed normal coronary angiography. All patients underwent
11C-CGP PET and 123I-MIBG imaging within 1 mo (mean time,
15 d) during the stable stage of HF. No clinical events or changes
in medication occurred during these 2 studies. Because treatment
with a b-blocker is known to affect myocardial b-AR density,
patients with a history of b-blocker treatment were excluded from
the study.

Control Subjects
Eight age-matched healthy volunteers (6 men, 2 women; mean

age 6 SD, 57.6 6 13.0 y; P 5 not significant vs. patients) served
as control subjects for the measurements of b-AR density. They
showed no sign of cardiac disease and each had a normal resting
electrocardiogram. This study was approved by the Ethics Com-
mittee of Hokkaido University Hospital. All subjects gave their
written informed consent for the study.

PET Data Acquisition
All PET scans were obtained using an ECAT EXACT HR1

(Siemens Medical Solutions, Inc.). A transmission scan was per-
formed to correct photon attenuation for 8 min with a 68Ge source.
11C-CGP was prepared as reported previously (21,22). The mea-
surement of myocardial b-AR density using 11C-CGP PET was

performed according to a modified double-injection protocol
reported previously (24,25). During a 75-min dynamic emission
scan, the first dose of 11C-CGP with a high specific activity
(169 6 65 MBq, 0.19 6 0.13 mg) was infused intravenously over
a 2-min period. Thirty minutes later, the second dose of 11C-CGP
with a low specific activity (312 6 145 MBq, 22.0 6 1.8 mg) was
again infused over a 2-min period. A 54-frame dynamic emission
scan was used for measurement of the sequential distributions of
the tracer in vivo. During the 30-min period after the start of the
first infusion, 24 time frames (8 · 15-s, 4 · 30-s, 2 · 60-s, 2 ·
120-s, and 8 · 150-s frames) were acquired. After the second
infusion, the scan was completed with 30 frames (8 · 15-s, 4 ·
30-s, 2 · 60-s, 2 · 120-s, and 14 · 150-s frames).

PET Data Analysis
All emission sinograms were reconstructed with filtered back-

projection using a Hann filter (cutoff frequency, 0.3 cycle/pixel).
The in-plane resolution was 4.5-mm full width at half maximum
in the images reconstructed into a 128 · 128 matrix. All data were
corrected for dead time, decay, and measured photon attenuation.
A whole-heart region of interest (ROI) was set manually in each
transaxial view. Myocardial time–activity curves in the ROIs were
corrected for radioactive decay and for vascular activity using the
regional values of blood volume. The sections of the curve
corresponding to the 2 slow clearance phases, which represent
the dissociation of 11C-CGP bound to b-AR, were extrapolated
back to the start of the infusions. b-AR density was then deter-
mined as the maximum number of available specific 11C-CGP2

binding sites per gram of tissue (Bmax) in the ROIs using a mod-
ified equation described by Delforge et al. (24,25).

123I-MIBG Data Acquisition and Analysis
123I-MIBG (111 MBq) (Dai-ichi Radioisotope Laboratories,

LTD.) was injected intravenously into the patients under resting
and fasting conditions. Fifteen minutes and 4 h after the injection,
static planar images were acquired in the anterior view using a
dual-head g-camera (ADAC Vertex Plus; Phillips) equipped with
low-energy, general-purpose collimators. Static images on 512 ·
512 matrices were collected for 5 min with a 20% window
centered at 159 keV. Subsequently, SPECT of the heart was per-
formed in 64 · 64 matrices using a filtered backprojection method
for reconstruction. A ramp filter and a Butterworth filter with an
order of 5.0 and a cutoff frequency of 0.50 cycle per pixel were
used for reconstruction. No attenuation or scatter correction was
performed. LV uptake was assessed by quantitative analysis per-
formed manually drawing the ROI over the LV in the anterior
view. The rectangular ROIs of 9 · 9 pixels were placed over the
upper mediastinum. Counts per pixel were calculated from each
ROI located in the heart and the mediastinum. The heart-to-
mediastinum count ratios (H/M ratios) of early and delayed planar
images were computed to quantify the cardiac uptake of 123I-
MIBG. The washout rate (WR) was calculated using the following
formula:

WR ð%Þ 5 ðH at 15 min 2 H at 4 hÞ=ðH at 15 min · 100Þ;

where H 5 mean counts per pixel in the LV.

Echocardiography
Echocardiography was performed in all patients at about the same

time as 11C-CGP PET. LVEF was measured from apical 2-chamber
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and 4-chamber images using the biplane disk-summation method
based on the standards of the American Society of Echocardiography
(26).

Measurement of Neurohormonal Parameters
Before the PET study was started, venous blood samples were

drawn after a 20-min resting period in the supine position. Plasma
NE levels were measured using high-performance liquid chroma-
tography. Plasma brain natriuretic peptide (BNP) levels were mea-
sured by chemiluminescent enzyme immunoassay.

Statistical Analysis
All data were expressed as mean 6 SD. Regression analysis

was performed using a linear regression method. A Student t test
was performed to test differences between patients and control
subjects. A P value , 0.05 was considered statistically significant.
In addition, multivariate stepwise regression analyses were per-
formed to investigate whether the b-AR density was associated
independently with LVEF or NYHA class or whether it was depen-
dent on presynaptic changes of plasma neurohumoral levels.

RESULTS

11C-CGP was produced with a very high yield (1,964 6

1,105 MBq) and specific activity (485 6 370 GBq/mmol).
The characteristics of the patients are shown in Table 1.
Four patients were classified as New York Heart Associa-
tion (NYHA) functional class I, 5 patients as class II, and 7
patients as class III at the time of the PET scan. Although
the BNP levels of the patients were significantly higher
than those of the control subjects (183 6 143 vs. 26 6 24
pg/mL; P , 0.05), there was no significant difference in the
NE levels between the 2 groups (367 6 235 vs. 249 6 116
pg/mL; P 5 0.20).

The calculated b-AR densities are shown in Figure 1.
The b-AR density of the patients was significantly reduced
by 51% in comparison with that of the control subjects
(3.80 6 0.96 vs. 7.70 6 1.92 pmol/mL; P , 0.0001). In the

patients, b-AR density correlated significantly with LVEF
(r 5 0.62, P , 0.05; Fig. 2). Furthermore, b-AR density
showed good correlations with 123I-MIBG WR (r 5 20.68,
P , 0.01; Fig. 3A) and delayed H/M ratio (r 5 0.61, P ,

0.05; Fig. 3B). The correlation between b-AR density and
early H/M ratio was not significant (r 5 0.40, P 5 0.13; Fig.
3C). b-AR density showed no correlation with BNP levels
(r 5 20.26, P 5 0.33) or NE levels (r 5 20.44, P 5 0.09).

b-AR density of the patients with severe HF (NYHA
class III) was significantly lower than that of those with
mild HF (NYHA class I or II) (3.24 6 0.96 vs. 4.24 6 0.73
pmol/mL, P , 0.05; Table 2). There were no significant
differences in early H/M ratios (1.76 6 0.41 vs. 2.01 6

0.35; P 5 0.22) and delayed H/M ratios (1.49 6 0.40 vs.
1.88 6 0.38; P 5 0.07), WR (41.4% 6 6.1% vs. 37.2% 6

7.7%; P 5 0.26), and BNP levels (201 6 129 vs. 169 6

159 pg/mL; P 5 0.66) between these 2 groups. The LVEF
(24.6% 6 11.0% vs. 36.0% 6 5.9%; P , 0.05) and NE
levels (584 6 188 vs. 198 6 60 pg/mL; P , 0.0001) of the
severe HF group were significantly lower than those of the
mild HF group (Table 2).

b-AR density significantly correlated with NYHA class
(r 5 20.61, P , 0.05), LVEF, 123I-MIBG WR, and delayed

TABLE 1
Clinical Characteristics of 16 Patients

Characteristic Value

Age (y) 62.8 6 11.1

Sex (M/F) 8/8

LVEF (%) 31.0 6 10.1
BNP level (pg/mL) 183 6 143

NE level (pg/mL) 367 6 235

NYHA class*
I 4 (25)

II 5 (31)

III 7 (44)

Medication*
ACEI or ARB 14 (88)

Diuretics 12 (75)

Spironolactone 7 (44)

Digitalis 5 (31)

*Values are expressed as no. (%).

NYHA 5 New York Heart Association; ACEI 5 angiotensin-
converting enzyme inhibitor; ARB 5 angiotensin II receptor blocker.

FIGURE 1. Comparison of b-AR density between patients
with HF and control subjects.

FIGURE 2. Relationship between LVEF and b-AR density.
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H/M ratio. In multivariate analysis, delayed H/M ratio was
excluded, because there was a significant correlation be-
tween 123I-MIBG WR and delayed H/M ratio (r 5 20.62,
P , 0.05). 123I-MIBG WR (r 5 20.70) and NYHA class
(r 5 20.50) were the determinants of myocardial b-AR
density by multivariate stepwise analysis. By multivariate
stepwise analysis, b-AR density was the only significant
determinant of LVEF (r 5 0.58) among b-AR density, 123I-
MIBG WR, BNP level, and NE level. In contrast, NE level
was the only determinant of NYHA class (r 5 0.73).

DISCUSSION

This study showed that the myocardial b-AR density of the
patients with nonischemic cardiomyopathy was significantly
reduced by 51% in comparison with that of the age-matched
control subjects. Myocardial b-AR density showed good

correlations with LVEF, 123I-MIBG WR, and delayed H/M
ratio but not with plasma BNP level or NE level.

b-AR density was reduced with decreasing LVEF. Severe
HF patients showed a greater reduction in b-AR density
than mild HF patients, indicating that a decrease in b-AR
density reflects the severity of HF. On the other hand, b-AR
density showed no correlation with plasma BNP level or
NE level. These neurohormonal levels may change rapidly
depending on the condition of HF. Because this study was
performed at the stable stage of HF, these neurohormonal
levels might have already returned to near-normal levels. In
contrast, it is not clear whether b-AR density may change
so rapidly. Therefore, such chronological differences might
possibly cause little or no significant correlation between
b-AR density and these neurohormonal parameters.

Bristow et al. showed a reduction in b-AR density in a
failing human heart using an in vitro ligand-binding tech-
nique (14). They reported 50%–56% reductions in b-AR
density. In 1993 Merlet et al. reported in vivo measure-
ments of b-AR density using PET and 11C-CGP (17). They
showed downregulation of b-AR by 53% with correlation
with LVEF in the patients with idiopathic dilated cardio-
myopathy. Our current results are in agreement with these
previous reports.

Increased presynaptic activity in the failing human heart
(8,16) and a decrease of postsynaptic b-AR density in
failing heart (14,15,17) have been reported. In our study,
the degree of b-AR downregulation corresponded to the
increase in 123I-MIBG WR and a decrease in delayed H/M
ratio. Because MIBG is a NE analog, WR and delayed H/M
ratio may directly reflect NE release from the nerve ter-
minal and its reuptake into the nerve terminal (uptake-1). In
addition, the 123I-MIBG WR may reflect presynaptic sym-
pathetic tone. The local NE concentration in the synaptic
cleft increases when WR increases or delayed H/M ratio
decreases (21–23). Our results may confirm the hypothesis
that the increase in NE concentration in the synaptic cleft
contributes to myocardial b-AR downregulation (27–29).
Furthermore, the present study confirms pathophysiologic
conditions of failing heart, which have been proven clini-
cally over decades.

FIGURE 3. (A) Relationship between 123I-MIBG WR and b-AR
density. (B) Relationship between delayed 123I-MIBG H/M ratio
and b-AR density. (C) Relationship between early 123I-MIBG
H/M ratio and b-AR density.

TABLE 2
NYHA Classification and Parameters of HF

Parameter

Mild HF

(n 5 9):

NYHA

class I or II

Severe HF

(n 5 7):

NYHA

class III P value

b-AR density (pmol/mL) 4.24 6 0.73 3.24 6 0.96 ,0.05

Early H/M ratio 2.01 6 0.35 1.76 6 0.41 0.22

Delayed H/M ratio 1.88 6 0.38 1.49 6 0.40 0.07
123I-MIBG WR (%) 37.2 6 7.7 41.4 6 6.1 0.26
LVEF (%) 36.0 6 5.9 24.6 6 11.0 ,0.05

BNP level (pg/mL) 169 6 159 201 6 129 0.66

NE level (pg/mL) 198 6 60 584 6 188 ,0.0001
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On the other hand, the correlation between b-AR density
and early H/M ratio was not significant. It has been reported
that an early MIBG uptake reflects only the integrity of
presynaptic nerve terminals and their uptake-1 function,
whereas a delayed MIBG uptake represents overall infor-
mation with regard to neural function at the nerve terminal
(30).

Schafers et al. reported b-AR downregulation and an
impaired uptake-1 mechanism in patients with hypertrophic
cardiomyopathy using 11C-CGP and 11C-hydroxyephedrin
(11C-HED) PET (28). In their study, all patients had
preserved LV systolic function and no evidence of HF. To
our knowledge, there is no information with regard to the
relationship between presynaptic and postsynaptic functions
in HF in vivo. Our results show a precise correlation be-
tween b-AR density estimated by 11C-CGP PET and pre-
synaptic function determined by 123I-MIBG imaging in HF
patients.

123I-MIBG imaging has been widely used for the assess-
ment of cardiac sympathetic function in HF (22,23,31–34).
In many studies, it has been reported that impaired cardiac
adrenergic innervation as assessed by 123I-MIBG imaging
was closely associated with mortality in patients with HF
(35–37). Some studies demonstrated that 123I-MIBG imag-
ing was a good predictor of response to adrenergic b-blocker
therapy (38,39). Spyrou et al. reported that b-AR down-
regulation can be used as a predictor of LV remodeling in
patients after acute myocardial infarction (40). Further stud-
ies may be needed to evaluate the relationship between
b-AR density, prognosis, and response to therapy in a larger
patient population.

As a first limitation of this study, we used different methods
for assessment of presynaptic and postsynaptic function. 11C-
HED enables quantitative assessment of presynaptic function
using PET. Because presynaptic function was assessed using
123I-MIBG imaging instead of 11C-HED, an accurate quan-
tification of presynaptic function might be limited. The
resolution of 123I-MIBG imaging is inferior to PET. Atten-
uation and scatter correction were not performed in this
study. Myocardial 123I-MIBG imaging was analyzed semi-
quantitatively by using the H/M ratio on early and delayed
planar images and the myocardial WR. However, we do not
believe that attenuation and scatter may affect these param-
eters, because these parameters were relative values calcu-
lated from the counts in the anterior planar images. On the
other hand, MIBG has advantages for estimating the integrity
of presynaptic nerve terminals, their uptake-1 function, and
sympathetic tone. Although we applied commonly used pa-
rameters from MIBG imaging, a better quantitative mea-
surement may be needed for further analysis.

Because the number of patients in this study was small
(n 5 16) and the follow-up time was limited, cardiac events
were not observed in the patients. Thus, we did not evaluate
the prognostic value of b-AR density in this study. How-
ever, because this parameter was correlated with LVEF,
NYHA, and MIBG parameters, b-AR may have the poten-

tial for risk stratification in patients with HF. Further study
is warranted to confirm the prognostic value.

CONCLUSION

Decreased cardiac b-AR density measured by 11C-CGP
PET was observed in patients with nonischemic cardiomy-
opathy. In addition, b-AR density correlated with 123I-MIBG
WR and delayed H/M ratio. This downregulation may be
due to an accelerated presynaptic sympathetic tone.
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