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요 약. 윌렘스키-픽스만(Wilehemski-Fixmann)의 사슬고분자 내 화학반응동력학 이론을 반응 그룹들 간의 배제효과

를 고려하여 개선하였다. 가우스 체인 양극단 반응 모델의 반응 동력학에 대한 해석적인 표현을 얻어 이를 브라운 동력학

모의 실험결과와 비교하였다. 비교결과 본 이론의 예측이 기존 이론들의 예측 보다 모의실험 결과와 더 잘 일치하였다.

주제어: 사슬고분자, 반응동력학, 브라운운동, 최초만남시간

Abstract. We improve Wilehemski-Fixmann theory for intrachain reaction dynamics of a polymer chain by taking into

account excluded volume effects between reactive groups in the polymerchain. An approximate analytic expression for

the intra-chain reaction dynamics is obtained for Gaussian chain model and compared to Brownian dynamics simulation

results. The results of the present theory are in a better agreement to Brownian dynamics simulation results than those

calculated by previously reported theories.
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INTRODUCTION

A number of complex dynamical processes in

nature are stochastic processes, and it is often of our

concern to know the time when a particular event

occurs for the first time in a sequence of a stochas-

tic process. In the present paper we investigate the

first reaction time between highly reactive units in a

chain polymer undergoing Brownian motion, which

has been investigated for long times, but the exact

analytic solution for this problem has not been yet

found even for the simplest case where the chain

polymer is a Gaussian chain such as Rouse chain

and the reactive units complete the reaction on their

first encounter at a predefined contact distance, σ.

Recenlty, solokov reported a numerical approach

that can providethe first passage time (FPT) distri-

bution between two ends of Rouse chain with a

given initial separation by solving the integral equa-

tion satisfied by the FPT distribution. However, it is

notfeasible to make a straightforward application of

the latter method to the frequently encountered situ-

ation where the initial end-to-end (ETE) distance of

a chain polymer is distributedaccording to the Bolt-

zmann distribution. Up to now, analytic theories

that can handle the latter situation are the Wilemski

and Fixman theory (WF theory) and the Szabo,

Schulten, and Schulten theory (SSS theory). Pastor,

Zwanzig and Szabo (PZS) made a comparison between

predictions of these theories and results of Brown-

ian dynamics simulations for the ETE mean first

passage time (MFPT) of Rouse chain. Theyfound

that the WF theory gives a better agreement to the

BD simulation results than the SSS theory in gen-
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eral. This is because the non-Markov ETE dynam-

ics of Rouse chain is better approximated in the WF

theory.

However, in the extreme case where the number

of beads comprising Rouse chain is only two or

three, the ETE dynamics of the Rouse chain becomes

a Markov process and results of the SSS theory are

exact whereas those of the WF theory is not. What

is missing in the WF theory but taken into account

in the SSS theory is the excluded volume effects

between the ends of the Rouse chain. In the pres-

ence of the reaction at a predefined ETE distance,

σ, the chain polymer with the ETE distance smaller

than σ does not exist for the whole reaction time,

which should be taken into account both in the ini-

tial distribution and in the evolution dynamics of

the Rouse chain. 

In the present contribution, we enhance the WF

theory for an intrachain reaction in taking into account

the absorbing boundary between reactive beads.

For the short Rouse chain composed of two or three

beads, the result of the present theory is exact as

that of the SSS theory. For other cases, results of the

present theory are in a better agreement with the

accurate Brownian dynamics simulation results than

those of the previous WF or the SSS theories.

MODEL

In the present paper we will consider the first pas-

sage time between the ends in the Rouse chain

composed of N+1 beads sequentially connected by

N harmonic springs. If rj( j = 0,1,2,...,N) denotes the

position vector of the j-th bead, the potential of

mean force U of the Rouse chain is given by 

(1)

where β-1 and b2 denote the thermal energy and the

equilibrium mean squared length of a single bond

of the Rouse chain, respectively. Note that, in the

Rouse chain model, neither the excluded volume

interactions between beads nor the chain stiffness

existsso that the beads composing Rouse chain can

pass through each other and relative angles between

bonds can change freeof any change in the potential

of mean force. For Rouse Chain model the hydro-

dynamic interactions between beads are absent

either, so that the stochastic force exerted on a bead

in the Rouse chain responsible for the Brownian

motion of the bead is not correlated to that exerted

on another bead in the chain. For the Rouse chain

model, it is established that the probability density

 that the N+1 beads are located at rN+1≡

(r
0
, r

1
,...,rN) at time t satisfies the following Fokker-

Planck equation,

(2)

where D
1
 is the diffusion constant of a single bead.

For the purpose of comparison, we adopt the

reaction model considered by PZS in their Brown-

ian dynamics simulation, in which the Rouse chain

with its end-to-end separation R greater than a pre-

defined distance σ is initially distributed according

to the Boltzmann distribution and afterwards a fast

irreversible reaction occurs when distance R between

the ends of the Rouse chain becomes σ for the first time.

Although the above-mentioned model is very

simple, the mathematical method developed in the

present theory is straightforwardly applicable to

investigation of the first passage time between an

arbitrary pair of beads in a more complex Gaussian

chain model with the excluded volume interactions

between non-reactive beads, the chain stiffness, and

the hydrodynamic interactions taken into account.

THEORY

The FPT probability  that the Rouse

chain composed of N+1 beads with the initial end-

to-end separation being R
0
 has its ETE separation at

σ for the first time in time interval (t,t + dt) satis-

fies the following integral equation:4)

 (3)

Here  is the conditional probability

that the value of the ETE distance, R, of Rouse
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chain is σ at time t in the absence of any reaction,

provided that the initial value of R is R
0
 and

 is the multi-time conditional prob-

ability that the value of R is σ at time t in the absence

of any reaction, provided that the value of  R was at

σ at an earlier time t' and was initially R
0
. For a

Gaussian chain such as Rouse chain, the analytic

expressions for  and 

are available in case of free boundary, which will be

denoted by  and . 4

By solving Eq. (3) numerically with the latter con-

ditional probabilities, one can calculate 

of the Rouse chain with a given initial end-to-end

separation R
0
.4 However, it is not easy to apply this

method to calculate the FPT distribution 

between the ends of the Rouse chain initially pre-

pared in thermal equilibrium state, which is often of

interest in intrachain fluorescence quenching or

energy transfer experiments of an ensemble of chain

polymers. To calculate  by this method, one

has to solve Eq. (3) numerically for every value of

R
0
 to obtain the average of  over the ini-

tial equilibrium distribution  of R
0
, which is

not feasible.

One of the simple approximate methods to obtain

the analytic expression for  is to assume

the encounter dynamics of the ends of Rouse chain

is a Markov process, i.e.

(4)

With this approximation, Eq. (3) yields the result

of the WF theory, which reads as 

(5)

in Laplace domain,5) where u denotes the Laplace

variable. From Eq. (5) and the following property of the

conditional probability, ,

one can obtain the expression for  as fol-

lows:

(6)

In addition, the expression for the mean first

passage time, t
MFPT

(σ), defined by t
MFPT

(σ|eq) =

, can be obtained

from small u expansion of the R.H.S. of Eq. (6),

 as follows:

(7)

Note here that  is the same as  .

Comparison between  given in Eq. (7)

and Brownian dynamics simulation results was

made in Ref. 3, which shows Eq. (7) works better

for the case with smaller σ but the accuracy of Eq.

(7) decreases with the value of σ. This is because

Eq. (7) does not take into account the sizeeffects

between the reactive beads or the ends of the Rouse

chain. In the Brownian dynamics simulation reported

in Ref. 3, only those Rouse chain with its initial

ETE distance R
0
 greater than σ can contribute to the

simulation results, whereas, to Eq. (7), Rouse chain

with R
0
 smaller than σ contribute as well. For the

latter reason, even for the Rouse chain composed of

only two or three beads for which the approxima-

tion given in Eq. (4) happens to be correct, Eq. (7)

does not yield the correct result. 

To take into account the excluded volume effects

neglected in Eq. (7), one can replace the propagator

G0 for the case with free boundary by the propaga-

tor Gr in the presence of reflecting boundary at

R = σ. 

(8)

Although the exact expression of Gr for Rouse

chain is not yet available in general case, we man-

age to obtain an approximate expression for Gr as

follows: 

(9)
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where  and .  U is the

Kummer’s function of the second kind and the

eigenvalues.7) λ
n
 is determined by the following

equation:

(10)

Here, λ
0
= 0 and λ

1
 is the smallest positive root and

λ
2
 is the next smallest positive root and so on. In

Eq. (9), φ(t) is given by 

 (11)

with  being the k-th Rouse eigenvalue, i.e.

(12)

Substituting Eq. (9) into Eq. (8), we obtain the

mean first passage time as

(13)

DISCUSSION AND CONCLUSION

In the present section, we compare the values cal-

culated by our method with those by the computer

simulation. For this, we use the parameter set used

in Ref. 3. The detailed simulation method and sim-

ulation parameters also follow the paper. Thus, in

Table 1 we cite the values in the data table of the

paper without modifications. We also present our

results in Table 1. For the calculations, we use the

program Mathematica 4.0 and Compaq Visual For-

tran Compiler Version 6.6 with IMSL Library and

the Zhang and Zin’s Parabolic Cylinder Function

Routine To enumerate the sum of the infinite series

in Eq. (13), we directly calculate the sum of the first

5000 summands. The residual sum can be effi-

ciently estimated as the magnitude of the k-th term

in the series decreases with k following a power-

law at large k. If  Sk denotes the k-th summand in

the series, i.e. 

In Sk can be fitted excellently to −a ln k+c for k

greater than 5000. Given the fitted values of  a and c,

one can estimate  by exp(c) ,

which is approximately given by exp(c)5001-a+1/(a-1).

Table 1 shows that the predictions of the present

theory is in a better agreement with the computer

simulation results than those of the previous WF

theory. This is because the effects of excluded vol-

ume between reactive units is taken into account in

the present theory. 

CONCLUSION

In the present work, we improve the Wilemski-Fix-

man theory for intrachain reaciton dynamics of Rouse

chain by taking into account the excluded volume

effects between reactive units in the Rouse chain. 
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Table 1. Comparison of the MFPT predicted by the WF theory, our theory, and simulation

N σ σ
X
(= ) Simulation (95% confidence) WF Present Theory

50
0.5 0.1225 174(±10) 205 194.21

1.0 0.2450 110(±5) 141 126.33

75
0.5 0.1 410(±20) 446 424.60

1.0 0.2 250(±10) 326 294.82

100
0.5 0.08660 680(±30) 778 741.95

1.0 0.1732 450(±20) 590 537.15

3

N
----σ
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