
Abstract. Aim: Inhibitor of DNA-binding (ID) proteins are
negative regulators of basic helix-loop-helix transcription
factors that generally stimulate cell proliferation and inhibit
differentiation. However, the role of ID2 in cancer progression
remains ambiguous. Here, we investigated the function of ID2
in ID2-null oral squamous cell carcinoma (OSCC) cells.
Materials and Methods: We introduced an ID2 cDNA
construct into ID2-null OSCC cells and compared them with
empty-vector-transfected cells in terms of cell proliferation,
invasion, and activity and expression of matrix
metalloproteinase (MMP). Results: ID2 introduction resulted
in enhanced malignant phenotypes. The ID2-expressing cells
showed increased N-cadherin, vimentin, and E-cadherin
expression and epithelial–mesenchymal transition. In addition,
cell invasion drastically increased with increased expression
and activity of MMP2. Immunoprecipitation revealed a direct
interaction between ID2 and zinc finger transcription factor,
snail family transcriptional repressor 1 (SNAIL1). Conclusion:
ID2 expression triggered a malignant phenotype, especially of
invasive properties, through the ID2– SNAIL axis. Thus, ID2
represents a potential therapeutic target for OSCC.

Basic helix-loop-helix (bHLH) transcription factors are key
regulators of lineage- and tissue-specific gene expression in
mammalian and non-mammalian organisms (1). bHLH
proteins act as obligate dimers and dimerize through their HLH

domains and bind DNA through their composite basic domains,
regulating the transcription of target genes containing E-boxes
(CANNTG) in their promoters (2). Inhibitor of DNA-binding
(ID) proteins can dimerize with bHLH proteins. ID–bHLH
heterodimers fail to bind DNA as the ID proteins lack basic
domains. Thus, ID proteins are dominant negative regulators
of the function of bHLH proteins (2).

Constitutive ID protein expression of has been shown to
inhibit the differentiation of various cell types (3, 4). Four
subtypes of the ID gene family have been described thus far:
ID1, ID2, ID3, and ID4. The different members of the ID
family show varying expression patterns and functions and
localize to different chromosomes (5, 6). Previously, we
investigated the role of the ID1 protein in oral squamous cell
carcinoma (OSCC), which is the most common type of oral
cancer, and found that ID1 plays an important role during
cancer cell progression (7). ID1 is expressed during
proliferation and can suppress differentiation in all cell types
examined so far; however, the data on ID2 are much less
consistent. While the HLH motif of ID2 is similar to that of
ID1 (8, 9), the remainders of the sequence are considerably
different. Both proteins are encoded by different genes.
Similarly to ID1, ID2 was first identified as an inhibitor of
differentiation because it is down-regulated during the
differentiation of various cell types (4, 10). In addition, ID2
overexpression inhibits myoblast differentiation (11) and
blocks stage-specific development early in thymopoiesis (12).
Moreover, the expression of both ID1 and ID2 is up-regulated
during prostate cancer progression (13). However, inconsistent
with its role as a differentiation inhibitor, ID2 levels have been
shown to substantially increase during the differentiation of
myeloid precursors such as HL-60 cells into granulocytes or
macrophages (14). ID2 expression is also maintained during
embryonic stem cell-derived hematopoietic differentiation
(15). Mice deficient in ID2 are devoid of lymph nodes and
Peyer’s patches and exhibit disturbed differentiation of natural
killer cells (16).
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Based on this controversy regarding the role of ID2 during
cancer progression, we investigated its role in OSCC cells to
determine whether it acts as a pro-differentiating agent or as
a promoter of tumor cell aggressiveness. To this end, we
generated ID2-overexpressing mutants and evaluated their
proliferative and invasive capacities and matrix
metalloproteinase (MMP) secretion.

Materials and Methods

Cell culture. The human OSCC cell line Ca9-22, originally derived
from a patient with tongue cancer, was purchased from the American
Tissue Culture Collection (Manassas, VA, USA). The cells were
cultured in RPMI-1640 (Sigma-Aldrich, St. Louis, MO, USA)
supplemented with 5% fetal bovine serum (FBS) at 37˚C in the
presence of 5% CO2.

Transfection of pBabe-ID2S. Full-length human ID2 cDNA was
excised from CMV-ID2 and cloned into pBabe-puro (17) in sense
orientation. pBabe-ID2S and pBabe-ctl (empty vector) were
separately transfected into Ca9-22 cells using Lipofectamine® 2000™
Reagent (Life Technologies, Carlsbad, CA, USA). The cells were
selected in 0.6 mg/ml puromycin. The transfected cells (Ca9-22-ID2S
and Ca9-22-ctl) were then screened for ID2 protein expression.

Western blot analysis. The cells were lysed in Laemmli buffer and
stored at −70˚C. Protein concentrations were determined using the
DC protein assay kit (Bio-Rad, Hercules, CA, USA). Total protein
samples (20-30 μg) were separated by sodium dodecyl sulphate–
polyacrylamide gel electrophoresis and transferred to polyvinylidene
difluoride membranes (Hybond® P; GE Healthcare, Amersham
Buckinghamshire, UK). The membranes were then blocked for 1 h at
room temperature with TBST (20 mM Tris, 137 mM NaCl, 3.8 mM
HCl, and 0.1% Tween® 20) containing 5% non-fat milk and then
probed with anti-ID1, anti-ID2, or anti-ID3 (Z-8, C-20, C-20; Santa
Cruz Biotechnology, Santa Cruz, CA, USA), anti-E-cadherin (HECD-
1; Abcam, Cambridge, UK), anti-N-cadherin (CL32; BD Biosciences,
San Jose, CA, USA), anti-vimentin (V9; Dako, Glostrup, Denmark),
anti-SNAIL (ab117866; Abcam), anti-p21 (C-19; Santa Cruz
Biotechnology), anti-serine/threonine kinase 1 (protein kinase B,
AKT) (610860; BD Biosciences Pharmingen, San Diego, CA, USA),
anti-pAKT (Thr308) (558275; BD Biosciences Pharmingen), anti-
pAKT (Ser473) (560404; BD Biosciences Pharmingen), anti-MMP2
(ab2462; Abcam), anti-MMP9 (ab35326; Abcam), or anti-actin (C4;
EMD Millipore, Billerica, MA, USA) antibodies for 1 h. Next, the
membranes were washed and incubated with a secondary antibody
(either goat anti-rabbit or anti-mouse IgG-horseradish peroxidase)
(Santa Cruz Biotechnology) overnight, washed again, and developed
using enhanced chemiluminescence with the Amersham ECL-Plus kit
according to the manufacturer’s instructions (GE Healthcare).

MTT assay. To quantify cell proliferation, the 3-[4,5-dimethylthiazol-
2-yl]-2,5-diphenyl tetrasodium bromide (MTT) assay was used
(Chemicon International, Temecula, CA, USA). Cells were seeded in
96-well plates at 3×103 cells/well for 2 days. Upon completion of
treatments, the cells were incubated at 37˚C with MTT for 4 h, and
then isopropanol with 0.04 N HCl was added and the absorbance was
read after 1 h in a plate reader with a test wavelength of 570 nm. The
absorbance of the medium alone at 570 nm was subtracted, and the

percentage viability relative to that of the control was calculated as
the absorbance of the treated cells/control cells ×100.

Boyden chamber invasion assay. Invasion assays were performed in
modified Boyden chambers with 8-μm-pore filter inserts for 24-well
plates (Collaborative Research, Waltham, MA, USA). The filters were
coated with 10-12 μl of ice-cold Matrigel (Collaborative Research).
Ca9-22-ID2S and Ca9-22-ctl cells (40×103 cells/well) were then
added to the upper chamber in 200 μl of serum-free medium. The
lower chamber was filled with 300 μl of conditioned medium from
fibroblasts. After incubation for 20 h, the cells were fixed with 2.5%
glutaraldehyde in PBS and stained with 0.5% toluidine blue in 2%
Na2CO3. Cells that remained in the Matrigel or were attached to the
upper side of the filter were removed using cotton tips. Cells on the
lower side of the filter were counted using light microscopy. Assays
were performed in triplicate and the results were averaged.

Zymography. Proliferating Ca9-22-ID2S and Ca9-22-ctl cells (1×106
cells in 100-mm dishes) were shifted to serum-free media for 2-3
days, after which the medium was replaced with 10 ml of fresh
serum-free medium. Forty-eight hours later, the conditioned medium
was collected and concentrated 10- to 15-fold using 10-kDa cut-off
filters (EMD Millipore, Billerica, MA, USA). The concentrated
medium was then analyzed using gelatin substrate gels. The gels
consisted of 8-10% polyacrylamide and 3 mg/ml gelatin (Sigma-
Aldrich). Concentrated conditioned medium was mixed with non-
reducing Laemmli sample buffer and incubated at 37˚C for 15 min.
After electrophoresis, the gels were incubated for 1 h in 2.5%
Triton™ X-100 at room temperature, followed by 24-48-h incubation
in substrate buffer [100 mM Tris-HCl (pH 7.4) and 15 mM CaCl2].
The gels were then stained with Coomassie Blue for 30 min and
destained with 30% methanol/10% acetic acid. 

Immunoprecipitation assay. The Ca9-22-ID2S and Ca9-22-ctl cells
were lysed using lysis buffer (0.5% Nonidet P-40, 50 mM Tris-Cl,
10% glycerol, 0.1 M EDTA, and 15 mM NaCl), and whole-cell
lysates were collected. Five micrograms of anti-SNAIL antibody or
2.0 μg of the appropriate control lgG was incubated with 500 μg of
the lysates for 4 h at 4˚C. Fifty microliters of resuspended Protein
A/G Plus Agarose (Santa Cruz Biotechnology) was added, and the
mixture was again incubated at 4˚C overnight. The protein A/G Plus
Agarose-bound immunocomplexes were washed several times with
lysis buffer and analyzed by western blotting as described above.

Statistical analysis. Statistical comparisons were performed using the
two-tailed Student t-test. A p-value of less than 0.05 was regarded as
significant. SPSS version 22.0 (IBM, Armonk, NY, USA) was used
for statistical analyses.

Results

Introduction of ID2 into the ID2-null Ca9-22 cells. The
Ca9-22 cells were transfected with pBabe vector-containing
sense full-length ID2 cDNA or with empty vector as a
control. Western blotting revealed that ID2 protein
expression was increased in the Ca9-22-ID2S cells
compared to that in the control and parental cells (Figure
1A). Ca9-22 cells showed no expression of ID1 and ID3.
There was no induction of ID1 and ID3 expression after ID2
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introduction. Next, we investigated the potential modulation
of the expression of genes known to be either down-
regulated (E-cadherin) or up-regulated (N-cadherin and
vimentin) during epithelial–mesenchymal transition. The
expression of both N-cadherin and vimentin was increased
in Ca9-22-ID2S cells, while that of E-cadherin was
decreased, indicating that ID2 gene expression in these
cancer cells can trigger epithelial–mesenchymal transition.
p21 was down-regulated and SNAIL expression was
drastically induced (Figure 1B). Moreover, the cell shape
also changed: the Ca9-22-ID2S cells were relatively small
and grew in multilayers compared with the parental and
control cells. However, the Ca9-22-ctl cells had a more
flattened appearance and formed monolayers (Figure 1C).

Effect of ID2 gene modulation on cell proliferation and AKT
phosphorylation. We found a significant difference in the rate
of proliferation between the Ca9-22-ID2S and the Ca9-22-ctl
cells (Figure 2A), with Ca9-22-ID2S cells being significantly
more proliferative than the Ca9-22-ctl cells (p<0.05).
Furthermore, introduction of the ID2 gene resulted in AKT

phosphorylation. Western blotting indicated that the quantity
of pAKT (Thr308 and Ser473) was increased in Ca9-22 cells
after ID2 introduction (Figure 2B).

Effect of ID2 introduction on cell invasion and MMP secretion.
One of the major features of aggressive and metastatic cancer
cells is their ability to invade their microenvironment through
the secretion of MMPs. Therefore, we first compared the
invasive phenotype of the different cell populations using the
Boyden chamber invasion assay. Invasiveness was strongly
induced in the Ca9-22-ID2S cells (p<0.01) as compared to that
in the Ca9-22-ctl cells (Figure 3A). Accordingly, the activity
and expression of MMP2 and the secretion of MMP9 by the
Ca9-22-ID2S cells was increased, but the activity and
expression of these MMPs were undetectable in Ca9-22-ctl
cells (Figure 3B), which could explain the strong induction of
invasiveness in Ca9-22-ID2S cells.

Interaction of SNAIL with ID2. Immunoprecipitation indicated
that ID2 interacts with SNAIL, which is the key player in the
epithelial–mesenchymal transition. The level of interaction
between SNAIL and ID2 paralleled the ID2 expression level
(Figure 4).
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Figure 1. Introduction of inhibitor of differentiation (ID)-2 and
epithelial–mesenchymal transition. A: Expression of potential
downstream genes upon up-regulation of ID2 in Ca9-22 cells. B:
Western blot analysis of the expression of ID1, ID2 and ID3, as well as
that of E-cadherin, N-cadherin, and vimentin in the three different cell
populations, Ca9-22: Parental oral squamous cell carcinoma cell line;
Ca9-22-ctl: parental cells transfected with empty vector; Ca9-22-ID2S:
parental cells transfected with ID2 expression vector. Actin was used as
a loading control. C: Representative images of Ca9-22, Ca9-22-ctl, and
Ca9-22-ID2S cells taken using a microscope at a magnification of
×100. Scale bar=150 μm. SNAIL: Zinc finger transcription factor, snail
family transcriptional repressor 1.

Figure 2. Effect of inhibitor of differentiation 2 (ID2) expression on
Ca9-22 cell proliferation and the serine/threonine kinase 1 (protein
kinase B, AKT) pathway. A: Proliferation of the different cell
populations as determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyl tetrasodium bromide assay. parental Ca9-22 cells transfected
with ID2 expression vector (Ca9-22-ID2S) cells grew faster than
parental cells and cells transfected with empty vector (Ca9-22-ctl)
*Significantly different at p<0.01. B: Western blotting indicated that
expression of phosphorylated (p) AKT (Thr308 and Ser473) was
induced in Ca9-22-ID2S cells compared with Ca9-22-ctl cells. 



Discussion

In this study, the effect of ID2 introduction on ID2-null OSCC
cells was determined. In terms of cell proliferation, ID2
protein induced a malignant phenotype. ID2 is the only protein
from the HLH family that can also physically interact with
retinoblastoma protein (Rb) and prevent its antiproliferative
activity. ID2 can also simultaneously control cell
differentiation and cell-cycle progression (2, 18).

One of the major differences in ID2-overexpressing Ca9-22
cells was a change in cell shape. The Ca9-22-ID2S cells were
highly disordered and formed multilayers, while the Ca9-22-
ctl cells formed single layers. Moreover, the Ca9-22-ID2S cells
exhibited a moderately increased invasive behavior compared
to the control cell populations. MMP secretion was not
detectable in the original and control cells, but a drastically
increased activity and expression of MMP was observed in the

cells with introduced ID2. In patients with hepatocellular
carcinoma, increased expression levels of E-cadherin, ID2, and
MMP9 are considered unfavorable prognostic factors (19). In
particular, the expression of MMP2 was considerably induced. 

We also speculated that ID2 transfection might be able to
stimulate the SNAIL–ID2 axis. In colorectal cancer cells, the
suppression of E-cadherin expression through activation of
SNAIL led to the activation of MMPs (20). Therefore, we
performed immunoprecipitation experiments, that revealed a
direct interaction between SNAIL and ID2. It was previously
only suggested that ID2 interacts directly with SNAIL (21,
22), which is a zinc finger transcriptional repressor present in
invasive carcinoma cell lines and tumors in which E-cadherin
expression is lost (23). Epithelial–mesenchymal transition is a
fundamental process that underlies cancer progression;
however, to date, there are only few reports on the relationship
between epithelial–mesenchymal transition and ID2. The
expression of the epithelial–mesenchymal transition markers,
E-cadherin, N-cadherin, and vimentin, was also different
between the groups of cells in our study. Taken together, these
data indicate that this interaction between SNAIL and ID2
might induce epithelial–mesenchymal transition in OSCC.

The introduction of ID2 expression triggered significant
changes in the phenotype of the cells. However, the effect of
ID2 suppression needs to be investigated using OSCC cells
with high malignancy in future studies. At least in OSCC cells,
ID2 expression not only follows a pattern similar to that of
ID1, but also appears to be independent from other IDs during
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Figure 3. Effect of inhibitor of differentiation 2 (ID2) expression on
Ca9-22 cell (Ca9-22-ID2S) invasiveness and the activity and secretion
of matrix metalloproteinase (MMP)-2 and MMP9. A: Cell counts of
each population, as determined using Boyden chamber invasion assays.
Invasive capacity was induced in Ca9-22-ID2S cells compared with
cells transfected with empty vector (Ca9-22-ctl). *Significantly different
at p<0.01. B: Gelatin zymography and western blotting revealed
differences in MMP activity and expression. In particular, MMP2 was
strongly up-regulated in Ca9-22-ID2S cells. 

Figure 4. Inhibitor of differentiation 2 (ID2)-bearing cells (Ca9-22-ID2S),
zinc finger transcription factor, snail family transcriptional repressor 1
(SNAIL1) interacts with ID2 directly. Well-washed immunocomplexes
derived from Ca9-22-ID2S cells and cells transfected with empty vector
(Ca9-22-ctl) were prepared. Anti-SNAIL antibody or control IgG was
used for immunoprecipitation (IP). Samples were analyzed by western
blotting with anti-SNAIL and anti-ID2 antibodies. In Ca9-22-ID2S cells,
direct interaction between SNAIL and ID2 was revealed. 



OSCC progression. Based on our results, ID2 could act as an
oncogenic protein in Ca9-22 cells, and we propose that the
introduction of ID2 could lead OSCC cells to a more
aggressive phenotype and enhance their aggressiveness,
especially their invasive property. 

In summary, we found that ID2 acts as an inducer of cancer
cell proliferation and invasion. ID2 also induces EMT, which
is a fundamental process that underlies the progression of
cancer. Our findings also indicate that ID2 is a unique member
of the ID protein family that can function independently of
ID1 or ID3. Based on our findings, we believe that targeting
ID2 gene expression might represent a novel therapeutic
approach for OSCC.
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