
Abstract. Background: Next-generation sequencing provides
useful information about gene mutations, gene expression,
epigenetic modification, microRNA expression, and copy
number variations. More and more computing tools have been
developed to analyze this large quantity of information.

However, to test and find suitable analytical tools and
integrate their results is tedious and challenging for users
with little bioinformatics training. In the present study, we
assembled the computing tools into a convenient toolkit to
simplify the analysis and integration of data between
bioinformatics tools. Materials and Methods: The toolkit,
GeneGazer, comprises of two parts: the first, named
Gaze_Profiler, was designed for personalized molecular
profiling from next-generation sequencing data of paired
samples; the other, named Gaze_BioSigner, was designed for
the discovery of disease-associated biosignatures from
expressional and mutational profiles of a cohort study.
Results: To demonstrate the capabilities of Gaze_Profiler, we
analyzed a pair (colon cancer and adjacent normal tissues) of
RNA-sequencing data from one patient downloaded from the
Sequencing Read Archive database and used them to profile
somatic mutations and digital gene expression. In this case,
alterations in the RAS/RAF/MEK/ERK signaling pathway
(activated by KRAS G13D mutation) and canonical WNT
signaling pathway (activated by truncated APC) were
identified; no EGFR mutation or overexpression was found.
These data suggested a limited efficacy of cetuximab in the
patient. To demonstrate the ability of Gazer_BioSigner, we
analyzed gene-expression data from 192 cancer tissues
downloaded from The Cancer Genome Atlas and found that
the activation of cAMP/PKA signaling, OCT-3/4 and SRF
were associated with colon cancer progression and could be
potential therapeutic targets. Conclusion: GeneGazer is a
reliable and robust toolkit for the analysis of data from high-
throughput platforms and has potential for clinical
application and biomedical research.
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High-throughput technologies, such as next-generation
sequencing (NGS) and high-density microarrays, provide
systematic information on molecular biological processes
and lead to a comprehensive understanding of cancer
genomes (1-3). Knowledge acquired with these
sophisticated tools indicates that genotypes or expression
profiles in cancer tissues are highly diverse among patients
(4, 5). This molecular diversity leads to the activation of
different pathways and cancer phenotypes, which
subsequently affect therapeutic efficacy and prognosis. For
instance, tumors with high EGFR expression are susceptible
to cetuximab, the therapeutic antibody commonly used
against metastatic colorectal cancer. Once a cancer cell
acquires either mutation of KRAS, BRAF or PIK3CA
mutation, PTEN loss, or overexpression of MET or IGF1R,
it develops resistance to cetuximab by activating a signaling
pathway other than EGFR (6). In the case of EGFR-
independent tumors, cetuximab has limited therapeutic
efficacy, and medications targeting other signaling pathways
should be considered (7, 8). Therefore, the molecular
profiling of genetic variations and gene expression for each
patient would be useful for selecting for the most
appropriate therapeutic approach (9-11).

NGS is a powerful tool for the molecular profiling of gene
mutation, expression, methylation and microRNA profiles.
More and more useful computing tools and pipelines have
been developed for the analysis of NGS data (12). For
instance, the BWA-GATK pipeline is often used for variant
identification (13-15); Tophat-Cufflinks pipeline is widely
applied to calculate the digital gene-expression profile (16);
and VarScan (17, 18) and Somaticsnipper (19) were developed
for identifying somatic variations. Most of these tools have
been developed for text-based user interface and for the UNIX
system only. Many commercial software kits, such as CLC
Genome Workbench, Avadis, and Partek, provide a user-
friendly graphic user interface and are available for various
types of operating systems. These tools are powerful but often
inflexible. In addition, using these programs and selecting for
appropriate parameters is still a great challenge, especially for
clinical technicians without bioinformatics training. 

In addition to molecular profiling, high-throughput
techniques also generate large amounts of data. Many
archive databases, such as Sequence Read Archive (SRA),
Gene Expression Omnibus (GEO), and The Cancer Genome
Atlas (TCGA), have been established for storing omics data
generated from these high-throughput techniques. These data
provide important clues regarding disease-progression
mechanisms, drug development, biosignature identification
and biomarker discovery. For instance, general biosignatures
in glioblastoma multiforme (20), ovarian carcinoma (21),
colorectal adenocarcinoma (22), and squamous cell lung
cancer (23) have been uncovered using the TCGA database.
Many strategies, such as PARADIGM (24) and MuSiC (25),

have been developed for identifying general disease-causing
signatures. These observations indicate that mining
information from such a massive data deposit would be
useful in order to gain a comprehensive understanding of
malignant diseases.

In the present study, we attempted to establish an easy
and integrated toolkit that assembles bioinformatics
resources for analyzing sequencing data and generating
molecular profiles of the samples. The toolkit, named
GeneGazer, comprises of two computing pipelines: the first
one is for personalized molecular profiling through analysis
of NGS data, and the second one is for biosignature
identification (Figure 1). To demonstrate the capability of
the toolkit, an RNA-sequencing dataset from SRA and a
large dataset from TCGA were analyzed. 

Materials and Methods

Resource requirements. The source codes for GeneGazer are
available on request. The toolkit was developed and tested on Linux
Ubuntu 12.04 operating system with the following software:
Burrows-Wheeler Aligner (BWA, 0.6.2-r126), SAMtools (0.1.8),
TopHat (2.0.3), Bowtie (0.12.7), Cufflinks (1.3.0), MySQL (5.5.35),
and JAVA compiler. For Gaze_Profiler, at least two threads and four
gigabytes of RAM are recommended. For Gaze_BioSigner, at least
one thread and four gigabytes of RAM are required. 

RNA-sequencing dataset. The RNA sequence dataset CC2
(SRP021221) was downloaded from the Sequence Reads Archive
(SRA) database of the National Center of Biotechnology and
Information (NCBI) database. This dataset consists of 59.2 million
100-bp reads from each tumor section and 35.4 million 75-bp reads
from the adjacent normal section. All reads were paired-end
sequences. The raw data were stored in the raw_data folder in fastq
format for subsequent analysis. 

Somatic mutation identification. This analysis was performed using
Gaze_Profiler. The workflow is illustrated in Figure 2A. Firstly, five
nucleotides from the 5'-end and 10 nucleotides from the 3'-end were
trimmed. The trimmed data were stored in the seq_data folder. The
data were aligned against human genome DNA version 19 (hg19,
UCSC) using BWA (14, 15). The alignment result was stored in the
sam format. The sam format data were sorted using Picard-Utility
(http://broadinstitute.github.io/picard). The duplicated reads were
removed with Picard-Utility. Indel realignment and quality
recalculation were performed with Genome analytic toolKit (GATK)
(13). Before analysis using VarScan (17, 18), the pileup files are
generated with mpileup module in SAMtools (26). For scanning
somatic variations, (i) the depth of sequencing of normal tissue
should be greater than six; (ii) the depth of sequencing of tumor
tissue should be greater than three; and (iii) the total depth of
sequencing of normal and tumor tissue should be at least six. The
significance of each somatic variant calling was evaluated by
Fisher's exact test. The variants with p-value smaller than 0.05 were
identified as somatic variants or loss of heterozygocity. The selected
variants were subsequently annotated with Annovar (27, 28). The
genes with missense, nonsense, or frameshift mutations were
collected into an SQL database. 
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Geneexpression profile. "Exp" subroutine in Gaze_Profiler, based
on the TopHat-Cufflinks pipeline (16), was applied to evaluate the
gene-expression profile from the RNA-sequencing dataset. The
trimmed sequencing data were aligned to GRCh37 (Ensemble) with
TopHat (16). The alignment data were subsequently analyzed with
Cufflinks (16). The read counts for each gene locus were calculated
and normalized in fragments per kilobase of transcript per million
mapped reads (FPKM) format. The genes whose expression was
two-fold greater or lower in the tumor than in the paired normal
tissue were selected as being up-/down-regulated and were collected
into the SQL database.

Processing of data obtained from The Cancer Genome Atlas
(TCGA) database. The expression profiles of patients with colon
adenocarcinoma, including COAD.IlluminaHiSeq_RNASeqV2
(level 3.1.9.0) and COAD_IlluminaGA_RSEQV2 (level 3.1.1.0)
were obtained from the TCGA database (https://tcga-
data.nci.nih.gov/tcga/). The expression of each gene was centralized
by Z-score transformation. The average and standard deviations of
each gene in normal colon tissues were calculated. The Z-score of
each target gene in tumor tissue was computed according to the
equation: Z-scoretar=(Expressiontar−Averagetar)/SDtar, whereas
Expressiontar represented the level of expression of the target gene,
Averagetar represented the average target gene expression level in
normal colon tissue, and SDtar represented the standard deviation of
the target gene expression level in normal tissue. All calculations
were performed using the subroutine "zscore". The
COAD_IlluminaGA_RSEQV2 (level 3.1.1.0) dataset was used for
the following Gene-Set Enrichment Analysis (GSEA) (29).

Gene-set enrichment analysis. For GSEA, the required files were
generated from the FPKM file. The phenotype data were recorded in
the cls file; gene-annotation data were described in the chip file; and
the expression data were in the gct file. All files were analyzed by
GSEA program. The gene-set database was based on the curated
Kyoto Encyclopedia of Genes and Genomes (KEGG) database
(c2.cp.kegg.v5.0.symbols.gmt). The permutation type was set in
"Gene Set". The default settings of the other parameters were used.

Transcription factor analysis. Genes with differential expression in
distinct groups of patients were identified by the subroutine

"diff_zscore". The gene list was imported into MetaCore™
(THOMSON REUTERS, New York, NY, USA) for analysis of the
transcription factors. The selected pathways were then integrated.

Results

Implementation. GeneGazer utilizes two automatic pipelines,
both of which are encoded in two shell scripts and controlled
by text-based user-interface in the Linux operating
environment.

Gaze_Profiler is designed for identifying somatic genetic
alterations from paired NGS data from a tumor and its
normal tissue counterpart. The pipeline includes BWA,
Picard-tools, GATK, SAMtools, VarScan, Annovar, Tophat,
Cufflinks, and GSEA, as shown in Figure 2A. FASTQ-format
RNA-sequencing or exome-sequencing data from paired
normal and tumor samples from one patient are analyzed in
this pipeline. Initially, low-quality base-calling at both the 5'-
end and 3'-end of reads was trimmed by the subroutine
"prep". To survey somatic mutations, the subroutine "mut" is
applied to map the trimmed reads to the human genome
(hg19, UCSC) using BWA. The alignment results are sorted
and transformed into bam format with Picard-tools, and the
duplicated reads are discarded. The realignment of
insertion/deletion and the recalculation of mapping quality
are processed with GATK. Thereafter, somatic variations are
identified with Varscan, based on Fisher's exact test. These
somatic variations are annotated with Annovar. Finally, the
missense, nonsense, or frameshift mutations are extracted
into a personalized mutational profile, which is subsequently
imported into MySQL database. For such a paired sequencing
dataset with 10 gigabytes of data output for each of the
paired samples, the entire process can be completed within
24 hours using two threads and four gigabytes of RAM. The
subroutine "exp" is designed to calculate differential gene
expression, which is based on the Tophat-Cufflinks pipeline.
The results are presented in FPKM format (16). The gene
sets associated with tumor sections are selected using GSEA,
and the differentially expressed genes, either overexpressed
or down-regulated in the tumor section, are identified and
stored in MySQL database for subsequent analysis. For such
a sequencing dataset with 6 gigabyte data output for each of
the paired samples, the generation of a complete differential
gene expression profile still takes under 24 h with two
threads and four gigabytes of RAM.

Gaze_BioSigner is a pipeline containing subroutines for
data management and biosignature identification. The input
data are genetic variations or gene expression in a cohort,
obtained either from Gaze_Profiler or public domains. Its
workflow is shown in Figure 2B. Molecular profiles from
Gaze_Profiler are imported into MySQL database through the
subroutine "import". The expression data from TCGA are
imported through the subroutine "zscore". The clinical data
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Figure 1. The organization of GeneGazer.



of each patient are stored in the database by the subroutine
"idf". The associations between the genetic alterations and
selected clinical features are calculated with the subroutine
"diff", analyzed by Pearson's Chi-square test and odds ratio.
Expression profiles can be further entered into subroutine
"diff_zscore", which invokes GSEA and identifies the gene
sets associated with selected clinical features.

Personalized molecular profiling. To demonstrate the
capability of Gaze_Profiler, we analyzed a paired (normal
and tumor tissues) RNA-sequencing dataset from a patient
with colon cancer, downloaded from the SRA database in
NCBI. Mutational and expressional profiles of this dataset
were generated with the Gaze_Profiler pipeline.

In this dataset, 70 somatic mutations were identified,
including 18 missense substitutions, four nonsense
substitutions and 48 frameshifts caused by insertions or
deletions. Moreover, there were 108 genes up-regulated and
172 down-regulated in the tumor section. GSEA revealed that
eight pathways were up-regulated and 22 pathways down-

regulated in the tumor section (Figure 3A-C). Genes
associated with these pathways were involved in the cell
cycle, DNA repair, cytokine production, and cell adhesion.
These results suggested that the tumor tissue in this patient
had a phenotype of cell-cycle acceleration, DNA-repair
activation, cytokine reduction and cell adhesion dysfunction.

Gaze_Profiler can extend its capability through utilization
of other analytical tools not part of our pipeline. For
example, to further investigate the pathways in which the
genetic alterations occurred, the somatic genetic alterations
for each patient were entered into MetaCore™, a
comprehensive pathway analysis software. The results show
that in the tumor tissue, a heterozygous KRAS G13D
mutation and SPRY2 overexpression were identified,
suggesting that the tumor tissue harbored the KRAS-driven
activation of the RAS/RAF/MEK/ERK pathway. Moreover,
the tumor also showed activation of the canonical WNT
pathway, most likely due to the dysfunction of APC and
SFRP5, activation of FZD7, and overexpression of BIRC5
(Figure 3D).
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Figure 2. The workflow of GeneGazer. The workflow of the two pipelines in GeneGazer, Gaze_Profiler (A) and Gaze_BioSigner (B), is shown. Blue
squares represent subroutines each consisting of one or more invoked programs (identified in green).



Biosignature identification. To demonstrate the capability of
Gaze_BioSigner, we downloaded the expression profiles of
colon adenocarcinoma from the TCGA database
(COAD_IlluminaGA_RSEQV2 level 3.1.1.0) and analyzed
the molecular profiles associated with certain clinical
features. This dataset includes 459 patients; among them, 192
patients with record of the tumor stage (111 at an early stage
or stage I and II, and 81 at a late stage or stage III and IV).
This dataset was used to identify possible genetic alterations
that were associated with tumor stage. The expression profile

of each patient was converted into a Z-score profile with the
subroutine "zscore". The Z-score profile was transferred into
another subroutine "diff_zscore", which invokes GSEA to
identify stage-associated biosignatures.

The GSEA results are shown in the supplementary
information (https://drive.google.com/open?id=0B3Nd1wE1_
lrRaTl3NnFJTnRXWTA). Briefly, 98 pathways were up-
regulated in patients with late-stage tumor. Only the gene set
KEGG_Vasopression_regulated_water_absorption was
significantly enriched. The genes in its core enrichment were
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Figure 3. The personal molecular profile of patient CC2 was analyzed by Gene-Set Enrichment Analysis (GSEA) and pathway analysis. This figure
shows the top 20 differentially expressed genes (A), up-regulated gene sets (B), and down-regulated gene sets (C) identified by GSEA in the tumor
section. After pathway analysis, activation of the canonical WNT signaling pathway and KRAS/RAF/MEK/ERK signaling pathway was identified in
this patient (D). The genes up-regulated in the tumor are labeled in red; those down-regulated in the tumor in blue; non-synonymous somatic
mutations in purple.
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Figure 4. Transcription factors activated in early- and late-stage colon adenocarcinoma. This figure describes the strategy for identifying the
biosignatures associated with late-stage colon adenocarcinoma. The enriched score of each gene was calculated using Gene-Set Enrichment Analysis
(GSEA) (A). The stage-specific gene expression was identified and could be traced back to transcription factors (B). The transcription factors activated
in patients with late-stage or early-stage disease are shown (C). The network of late-stage-specific transcription factors and their downstream genes
were plotted by Metacore™ (D). The results demonstrate that SRF, OCT3/4, p73, NF-Y and TBP are activated in late-stage colon adenocarcinomas.



associated with cAMP/PKA signal transduction. This result
suggested that cAMP/PKA activation could be important for
tumor progression. However, 119 gene sets were up-
regulated in patients with early-stage disease. Three of them
were significantly enriched, including KEGG_p53_
signaling_pathway, KEGG_Apoptosis, and KEGG_NOD_
like_receptor_signaling_pathway. The genes in the core
enrichment of these gene sets were associated with p53-
dependent cell-cycle arrest, apoptosis, and immune response.
These results indicated that maintaining the activation of
these genes could be crucial to restricting tumor
development.

In addition to pathway analysis with GSEA, we further
surveyed stage-specific transcription factor activation according
to the following strategies not involved in GeneGazer. Firstly,
we extracted the enrich score (ES) of each gene, that was
calculated in GSEA analysis, and calculated the average
(MeanES) and standard deviation (SDES) of the ES. The genes
with an ES larger than MeanES + 2 × SDES were defined as
being related to late-stage disease. In contrast, the genes with
an ES less than MeanES − 2 × SDES were defined as being
related to early-stage disease (Figure 4A). We hypothesized
that these differentially expressed genes were the result of
altered transcription factors crucial for tumor progression
(Figure 4B). These transcription factors can be identified using
MetaCore™. As shown in Figure 4C, 12 transcription factors
were activated in late-stage, 12 were activated in early-stage,
and 17 were activated throughout tumor progression.
Combining the 12 late-stage-related transcription factors, the
transcription factors involved in tumor progression included
SRF, p73, NF-Y,TBP, and OCT3/4.

Discussion

In this study, we developed a computing toolkit, GeneGazer,
which integrates two pipelines, Gaze_Profiler and
Gaze_BioSigner, designed to discover personalized
molecular profiles and the biosignatures associated with
clinical features, respectively. All analyses were
automatically processed after assigning the required
parameters via a simple text-based user interface, and the
results were output as format-ready for further analysis with
other software. We used an RNA-sequencing dataset from a
tumor tissue and its paired normal tissue to demonstrate the
capability of Gaze_Profiler. The pipeline identified activation
of the RAS/RAF/MEK/ERK pathway and canonical WNT
pathway in the tumor tissue. In addition, we used mutation
and expression datasets of colon cancer in TCGA to
demonstrate the capability of Gaze_BioSigner. The pipeline
identified that the activation of SRF, OCT-3/4, NF-Y, p73,
and TBP was highly associated with the progression of colon
adenocarcinoma. These results suggested that GeneGazer is
a useful and reliable toolkit for biomedical studies.

The features of GeneGazer. As a user-friendly and reliable
toolkit, GeneGazer offers the following features: (i) the
integration of computing tools in a simple user interface; (ii)
easy interface with other out-sourcing toolkits; and (iii)
reliable strategies for identification of somatic variation.
GeneGazer integrates many well-established computing tools
into a simple text-based user interface. Once the necessary
parameters are assigned, the personalized molecular profiling
or biosignature discovery will be automatically processed.
The results from GeneGazer are ready to be analyzed with
other computing tools that are not incorporated in the
pipeline. For example, to annotate each variant and estimate
its effect at the protein level, the somatic mutations identified
by Gazer_Profiler were stored in a vcf4-format text file,
which is directly accessible to VarioWatch (http://
genepipe.ncgm.sinica.edu.tw/variowatch/main.do) (30). In
addition, the personalized molecular profile is directly
available to DAVID Bioinformatics Resources (http://
david.abcc.ncifcrf.gov) (31, 32) and MetaCore™. With these
two bioinformatics sources, the pathways associated with
genetic alterations can be identified. This information
provides an insight into the mechanisms of these genetic
alterations.

To identify somatic variations, many computing tools are
available, such as MutTect in GATK (13), mpileup in
SAMtools (26), Somaticsniper (19), and VarScan (17, 18).
The first three are based on genotype likelihood and the
latter, VarScan, is based on Fisher's exact test. We chose to
integrate VarScan in our pipeline as it is more conservative
and reliable for paired samples with different read counts or
insufficient sequencing depth in some alleles, which is a
common occurrence in RNA-sequencing data.

Application of GeneGazer in personalized medicine.
Personalized molecular profiling generated by GeneGazer
can provide useful information for personalized medicine,
therapeutic approach, and prognosis. In the example of the
CC2 patient, the canonical WNT and RAS/RAF/MEK/ERK
signaling pathway was activated; no EGFR overexpression,
BRAF or PIK3CA mutation, nor PTEN loss were identified.
This profile suggested that the CC2 patient is very likely to
be unresponsive to therapy with cetuximab, a commonly
used therapy targeting EGFR in colon cancer (33). Instead,
tankyRASe inhibitor (for blocking the canonical WNT
signaling pathway) (34) or MEK inhibitor (for blocking the
RAS/RAF/MEK/ERK pathway) (35) may be an alternative
therapeutic choice. More and more information on
drug–protein interactions is being gathered (36), and
computational modeling has been applied to evaluate the
effects of genetic alterations on phenotypic changes (37). By
combining this information, personalized molecular
profiling can suggest reasonable therapeutic strategies for
individual patients.
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Application of GeneGazer in cancer research. By using
Gaze_BioSigner, we identified late-stage-specific
biosignatures from colon adenocarcinoma data in the TCGA
database. Activated cAMP/PKA pathway, p53-mediated
apoptosis and immune response were associated with late-
stage disease. The role of p53 and immune response in colon
cancer has been well-documented, but the activation of the
cAMP/PKA pathway is less well-understood. The activation
of cAMP/PKA pathway has been found in many types of
cancer (38-40), including of the stomach (38), prostate (41,
42), thyroid (41), and breast (43-45). Our finding suggests
that the cAMP/PKA pathway is also important in late-stage
colon cancer. 

In addition, five transcription factors, namely SRF, p73,
NF-Y, TBP and OCT-3/4, have been linked to late-stage
colon cancer based upon the results of the Gazer_BioSigner
pipeline and MetaCore™. SRF is an important regulator of
tumor progression. Its activation has been identified in
prostate (46-48), lung (49), and gastric (50) cancer,
hepatocellular carcinoma (51, 52), and papillary thyroid
cancer (53). OCT-3/4 has been shown to accelerate prostate
cancer progression and aggressiveness (54). NF-Y has been
found to support tumor proliferation and progression in
many types of cancers, including colon cancer (55). The p53
family protein p73 has been shown to act as a tumor
suppressor in many types of cancers (56); however, its
activation is highly associated with colon cancer progression
(57). TBP is associated with ovarian cancer progression
(58). These results suggest that these transcription factors
are involved in colon cancer progression and may be
potential therapeutic targets.

Conclusion
In the present study, we demonstrated that GeneGazer is a
reliable and robust toolkit not only for personalized profiling
but also for biosignature discovery. This information could
be useful for personalized medication and mechanism study.
Thus, GeneGazer could have potential for clinical application
and biomedical research.
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