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Abstract. A major factor controlling the metastatic nature
of cancer cells is their motility. Alterations in the signalling
pathways controlling its regulation can lead to tumor cell
invasion and metastasis. Directional motility involves
protrusion of the cell’s leading edge, via formation of
filopodia and lamellipodia, adhesion to the substrate followed
by tail retraction and de-adhesion. Rho GTPase binding
proteins function as activators of the actin cytoskeleton and
are key players in the transendothelial migration of cancer
cells. Activation of the specific GTPases Rho, Racl and
Cdc42 results in formation of actin stress fibres, membrane
ruffles, lamellipodia and filopodia respectively and in cortical
actin assembly. Pathways through which Rho GTPases elicit
these effects are through direct interaction with members of
the Wiskott-Alrich Syndrome Protein (WASP) family which
stimulates structures such as lamellipodia and filopodia. The
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present review explores the role and function of Rho GTPases,
WASP and WAVE in cancer metastasis.

Rho Family of Proteins in Cancer

As members of the Rho family act as key regulators of
cytoskeletal reorganisation, cell motility, cell-cell and cell-
matrix (ECM) adhesion as well as of cell cycle progression,
gene expression and apoptosis and, as each of these
functions is of importance for the development and
progression of cancer, it is not surprising that the Rho
GTPases have been keenly studied for their role in cancer
cell metastasis and invasion.

Rho and Cell Motility

It has been established that the acquisition of the migratory
phenotype of invasive cancer cells is associated with an
increased expression of several genes involved in cell
motility (1). For migration to occur a cell must initiate
polarisation, in response to a migration-promoting agent and
extend protrusions in the direction of migration (2) with the
resultant changes in cell shape involving a dynamic
reorganisation of the cytoskeleton. The extension of the
leading edge is instigated by protrusion of lamellipodia
and/or filopodia, driven by actin polymerisation and filament
elongation (3), and is often accompanied by membrane
ruffling (4), which extends the cell body to create new, distal
adhesion sites. This protrusion is followed by adhesion
between the cell and substratum at the leading edge, which is
accomplished mainly by integrin and non-integrin receptors
binding to specific extracellular matrix protein domains
(5,2). Actomyosin-mediated contraction of the cell drives the
forward motion of the cell body with contractile forces being
generated at or near the leading edge, associated with
detachment of the trailing edge from the substratum, with the
migrating cell secreting proteases to digest extracellular
matrix proteins.

155



CANCER GENOMICS & PROTEOMICS 17: 155-166 (2014)

Studies on the involvement of Rho GTPases in these
aspects of cell motility have firmly identified GTP-binding
proteins as activators of the actin cytoskeleton (6), and to be
key players in the transendothelial migration of cancer cells
(7). It was originally demonstrated that activation of the
specific GTPases Rho, Racl and Cdc42 resulted in the
formation of actin stress fibres, membrane ruffles,
lamellipodia and filopodia respectively in in vitro cell culture
(8) and in cortical actin assembly (9). The activities of these
three proteins were found to be linked to each other in a
hierarchical manner. Thus, activation of Cdc42 was thought
to lead to the formation of filopodia and to the activation of
Rac, leading to the induction of lamellipodia. Rac
subsequently activates Rho, leading to the formation of new
sites of adhesion and to the assembly of stress fibres to enable
cell contraction and retraction of the trailing edge (10).

Cdc42 and the WASP Proteins

Research has shown that the Rho protein Cdc42 has a major
role as a regulator of cell polarity and its activity is found to
be most prominent at the tip of the leading edge of the
migrating cell (11). A group of molecules acting downstream
of the Rho GTPases that are directly involved in actin
reorganisation and form links between GTPases and the actin
cytoskeleton are the Wiskott-Aldrich Syndrome protein
(WASP) family. The first member of this family, WASP, was
isolated in 1994 as a novel gene mutated in the X-linked
recessive immunodeficiency disease Wiskott - Aldrich
syndrome (WAS) (12). The human WASP gene is located at
Xpl1.22-p11.23 and is exclusively expressed in
haematopoietic tissue. Following the discovery of the WASP
gene, work from a number of research groups to unravel the
disease mechanism of Wiskott-Aldrich syndrome identified
the active, GTP-bound Rho GTPase Cdc42 as interacting
with WASP (13-15). This link between WASP and Cdc4?2
was thought to be important as it had been shown that Cdc42
stimulated the formation and extension of finger-like
protrusions, or filopodia, containing actin bundles (8, 16),
and also to stimulate actin polymerisation in vitro (17, 18).
However, further studies have demonstrated that neither N-
WASP nor the Arp2/3 complex are necessary for filopodia
formation (19-21) with knockdown of Cdc42 having no
effect on filiopodia formation in fibroblastoid cells (22).

The WASP Family Proteins
and the Arp2/3 Complex

In 1996, Miki et al., identified a 65kDa protein with 50%
homology to WASP, which was termed neural-WASP (N-
WASP) and is dominantly expressed in the brain. Similarly
to WASP, N-WASP functions in regulating the cortical actin
cytoskeleton (23).

156

During this time, five mammalian WASP family members
were described; WASP, N-WASP and the WASP family
verprolin homologous proteins WAVE-1/SCAR (24, 25)
WAVE-2 and WAVE-3 (26).

At the same time in the mid-1990s, the actin-related
proteins (Arps) were being studied in relation to the actin
cytoskeleton (27, 28), with the Arp2/3 complex emerging as
a key player in binding to actin in vitro and was found to
co-localise with the actin cytoskeleton (28-30). Arp2 and
Arp3 form a complex with five other proteins, the Arp
complex (Arc) proteins, namely p41-Arc, p35-Arc, p19-Arc,
p18-Arc and pl4-Arc in Acanthamoeba (28, 29); p41-Arc,
p34-Arc, p21-Arc, p20-Arc and pl6-Arc in humans (and
was found to be localised with actin-rich structures in
Acanthamoeba (28, 31, 32) providing evidence for the
association of the complex with actin polymerisation and
thus in cytoskeletal organisation. All five WASP family
proteins associate with the Arp2/3 complex, activating it by
acting as nucleation promoting factors (NPFs), thus
exhibiting an important role in actin polymerisation and
cytoskeletal dynamics. More recently, three new NPFs have
emerged; WASH (33), WHAMM (34) and IMY (35, 36)
which contain an actin and Arp2/3 interacting WCA module.
WASH (WASP and Scar homolog) has been linked with
endosome trafficking (37, 38); WHAMM (WASP homolog
associated with actin, membranes and microtubules), which
appears to be important in maintaining Golgi structure and
inducing actin assembly to promote tubule elongation (34);
JMY (junction-mediating and regulatory protein) influences
cellular motility and adhesion and drives actin nucleation by
both Arp2/3 dependent and Arp2/3 independent pathways
(35, 36, 39). The discovery of these novel NPFs has
increased the complexity of Arp2/3 regulation and future
work will undoubtedly aim to further clarify their functions
and interactions within the cell.

Structure of WASP Family

The WASP and WAVE family proteins share common
regions of homology (Figure 1): a proline-rich segment and
a carboxy-terminal homologous sequence comprising three
characteristic regions termed the VCA domain. The VCA
region is comprised of the verprolin homology domain
(also termed WASP homology 2 [WH2]) domain; the
central homology domain and the acidic region. The V
domain binds G-actin while the CA domain binds the
Arp2/3 complex (40-42). Activation of the Arp2/3 complex
is achieved by this binding, the resultant complex
catalysing actin polymerisation. Importantly, N-WASP
contains two WH2 domains and accordingly exhibits a
much higher nucleation rate associated with the VCA
region in contrast to the other members within the
mammalian WASP protein family (43).
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Figure 1. Domain structure and tissue distribution of human WASP and WAVE family proteins. The percentage amino acid homology of the WHI1/EV1
domain of WASP and N-WASP and of the WHD/SHD domain of the WAVE proteins is shown.

The proline-rich region of these proteins allows binding
of SH3-containing proteins such as Ash/Grb2 (23, 44), Nck
(45) and proline-serine-threonine phosphatase-interacting
protein (PSTPIP) (46). This stretch of residues separates the
C-terminus from the amino (N-) terminus. At the N-terminus
is the WH1 (WASP homology 1) domain which facilities
association with WIP (WASP-interacting protein), which is
implicated in protecting WASP from protease degradation
(47, 48). Adjacent to this region is a basic stretch is involved
with  phospholipid PIP2 (phosphatidylinositol  4,5-
bisphosphate) interaction and is postulated to co-ordinate
with Cdc42 to drive actin polymerisation (49). Proximal to
this basic stretch, and integral to the role played by WASP
and N-WASP in actin polymerisation, is the presence of the
CRIB (Cdc42 and Rac interactive binding) domain
alternatively named GBD (GTPase binding domain) (Figures
1 and 2).

WASP Activation

Further studies have revealed that WASP and N-WASP exist
in a closed conformation within the cell due to auto-
inhibition of the VCA domain by the Cdc42/Rac interactive
binding (CRIB) domain (50) (Figure 3A). This folded
conformation masks the VCA region and therefore prevents
the C and A domains from activating the Arp2/3 complex
(51). Disrupting intramolecular interactions relieves the
inhibited state of the protein and can be brought about via
the competitive binding of various ligands such as the Rho
GTPase, Cdc42 and phosphatidylinositol 4.5-bisphosphate
(PIP2) which can associate with the GBD and basic-rich
region of the protein, respectively and exposes the VCA

region for subsequent Arp2/3 activation (49, 51, 52),
inducing the assembly of a branching network of actin
filaments that push the cell membrane forward (53).

Serine and tyrosine residues within WASP and N-WASP
are subject to phosphorylation by numerous kinases that are
able to influence their activity and localisation. For instance,
it has been shown that releasing WASP and N-WASP
allowed intramolecular interactions to occur following
protein phosphorylation by the Src family of tyrosine kinases
adjacent to the CRIB region (54). Additionally, focal
adhesion kinase (FAK) phosphorylates tyrosine residue 256
of N-WASP, which affects its nuclear localisation and
promotes cell migration (55). A potential explanation for this
link between FAK and N-WASP is that activated FAK
recruits Cdc42, which promotes N-WASP activation thus
stimulating Arp2/3 and promoting actin polymerisation, a
necessary step in cell motility (56). The equivalent conserved
tyrosine residue described in WASP is at position 291 in N-
WASP and is also subject to tyrosine kinase phosphorylation
that leads to subsequent actin polymerisation (54).
Furthermore, two serine residues found in the VCA domain
of WASP are targeted by casein kinase 2. Phosphorylation of
these serine residues dramatically increases VCA domain
and Arp2/3 interaction, which significantly influences actin
nucleation (57).

It would seem however, that these two modes of activation
are not independent of each other as some interplay has been
discovered. Coupling protein phosphorylation with Cdc42
intervention was found to have an enhanced effect on WASP
activation (58); with Cdc42 shown to recruit WASP to the
plasma membrane, where it was subjected to phosphorylation
by Lyn and Btk (59).
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Figure 2. Domain structure and binding partners of N-WASP and WAVE2. N-WASP contains an N terminal region (WHI/EVHI domain), which
binds WIP, CR16 and WICH. WAVE?2 binds to Rac through SRA1/PIR121 in the WAVE2 complex and through IRSp53 binding to the proline-rich

region of WAVE2.

WASP Family Verprolin Homologous
(WAVE) Protein Family

Following database searches using the verprolin-homology
(VPH) domain sequence, a novel WASP-related WASP-
family verprolin-homologous (WAVE) protein was identified
due to its sequence conservation between WASP and N-
WASP and its actin polymerising properties (24, 25).
Subsequent to this discovery, two additional WAVE proteins
were identified, with the original protein re-named WAVE 1
(alternatively named suppressor of cAR; SCARI) and the
additional proteins named WAVE 2 and WAVE 3 (26). The
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WAVE] gene is located at chromosomal region 6q21 and
encodes a gene product of 80,186 bp. The translated protein
is 559 amino acids long and whilst there is evidence that it is
widely expressed, it is expressed particularly in the brain. At
chromosomal region 1p36.11 resides the WAVE2 gene which
encodes a product of 85,940 bp. The corresponding protein is
498 amino acids long and is ubiquitously expressed but more
so in peripheral blood leukocytes. The remaining protein of
this sub-family is WAVE 3 whose gene, found at chromosomal
region 13q12.13, encodes a product of 131,246 bp which
when translated into protein, is found expressed mainly in the
brain (60).
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Figure 3. Regulatory pathways for N-WASP and WAVE?2 activation. A. Auto-inhibition of the VCA domain by the Cdc42/Rac interactive binding

(CRIB) domain of N-WASP. SH3 domain binding to N-WASP can activate

N-WASP. B. WAVE protein forms a complex within the cell with Nap,

HSPC, PIR and Abi2 which keeps WAVE inactive. Locally-activated Rac binds to the Nap-PIR-Abi2 subcomplex releasing the HSPC-WAVE sub-
complex, which binds to the Arp2/3 complex to stimulate actin polymerisation.

All WAVE proteins share a common carboxyl- (C-)
terminus comprised of the verprolin homology domain (V)
also known as WASP homology 2 (WH2) domain, central
homology sequence (C) and an acidic region (A), which

together cumulate as the VCA region that is homologous and
serves the same purpose as the WASP and N-WASP
C-terminal in actin monomer and Arp2/3 complex
interaction. Moreover, the similarity seen in protein domains
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of all five WASP and WAVE members extends to the
presence of a highly basic region and a long proline region
between the amino- (N-) terminus and C-terminus of these
proteins. The distinguishing factor between the WASP and
WAVE proteins is the WH1 and GBD/CRIB domains
characteristically seen at the N-terminus of WASP proteins
that are absent in the WAVE proteins. In contrast, the N-
terminus of WAVE proteins possesses the WAVE homology
domain/SCAR homology domain (WHD/SHD). (Figure 1
shows the domain structure of the WAVE proteins).

WAVE activation

Unlike the WASP proteins that exist independently in cells,
each WAVE protein is found to be associated with four
additional proteins via its WHD to form the WAVE regulatory
complex (WRC). The components of this 400kDa pentameric
heterocomplex were described by Eden et al., in 2002 as
comprising Abi (Abelson-interacting protein), Napl/Hem-2,
Sral/Cyfipl and HSPC300/Brickl (61). These authors
proposed that this complex keeps WAVE inactive within the
cell with the addition of locally activated Rac relieving the
inhibition by binding to the Nap-PIR-Abi2 subcomplex
releasing the HSPC-WAVE subcomplex, which also binds to
the Arp2/3 complex to stimulate actin polymerisation (61)
(Figure 3B). This trans-inhibitory model controlling WAVE
activation may explain how actin nucleation in the cytoplasm
can be prevented but does not explain how the activity of the
complex in actin nucleation is site-directed in regions of
membrane protrusions. Characterisation of the various partners
of WAVE within the WRC has identified Abil as an essential
component of the complex (62), and increases WAVE2 actin
polymerisation activity by directly binding with the WHD
domain of WAVE2. Furthermore, it has been shown that the
Abil-Napl-PIR21complex with WAVE1 and WAVE2 were
not disrupted following the addition of activated Rac (62,63).
This is in contrast to the findings of Eden et al., and further
results have given added support to the belief that, in
Drosophila and mammalian cells, WAVE proteins form stable
complexes that are not disrupted following activation by Rac.
Individual deletion of the expression of WAVE, Napl,
PIR121/Sral or Abil by RNAi methods led to the failure of
Rac-induced actin remodelling and lamellipodia formation
(62-64). This seems to indicate that PIR121/Sra-1, Nap1 and
Abi have positive, rather than inhibitory, roles to play in
WAVE regulation. Other studies have shown the WAVE2
complex, isolated from the membrane fraction of cells, to be
fully active without dissociation of the complex, however, the
WAVE 2 complex isolated from the cytosol was inactive (65).
In order to clarify the intrinsic activity of the WAVE complex,
Derivery et al., (2009) (66) employed an approach whereby
the human WAVE complex was purified using a stable cell
line expressing a tagged subunit. The endogenous complex
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formed around this subunit was then purified by affinity
chromatography. The activity of this WAVE complex was then
assessed using pyrene-actin assay in the presence of purified
Arp2/3 complex. These assays unequivocally demonstrated
that the WAVE complex in its native conformation is
intrinsically inactive. These authors concluded that the
discrepancies in the state of activity of the WAVE complex
may be a result of differences in purification procedures and
risks of denaturation. Similarly, Ismail et al. (67) showed that
WAVE activity is inhibited within the WRC complex. Utilising
actin assembly assays it was shown that WAVEl VCA
concentrations of 100-500 nM resulted in substantial activation
of the Arp2/3 complex whereas the same concentrations of
WRC components produced practically no activation (67).
Work by other authors has identified an interaction between
the transmembrane cell adhesion molecules protocadherin 10
and 19 (PCDH10 and PCDH19) and the WAVE regulatory
complex via Nap-1 (68, 69). Recently, the biochemical
interactions between these molecules and the WRC have been
investigated and a conserved peptide motif termed the WRC
interacting receptor sequence (WIRS) has been identified (70).
A further 120 membrane-associated proteins, have been
identified including protocadherins, which contain the WIRS
motif. This sequence directly binds a conserved surface on the
WRC formed by the Sra and Abi subunits and provides an
important link between diverse membrane proteins, the WRC
and the actin cytoskeleton (70). The importance of the WIRS
can also be seen where synaptic adhesion molecule SYG-1
interacts with the WRC through the WIRS in its cytoplasmic
tail leading to local F-actin assembly. This may provide a
means of limiting the activity of the WRC to specific cell
regions (71).

Integration of the WAVE protein with other subunits to
create multi-protein complexes would also appear to act as an
intra-complex mechanism to inhibit WAVE. Within the WRC,
the V and C regions of WAVEI are sequestered by Sral as a
means of blocking WAVE activation. Actin-binding residues of
the V region are concealed by Sral binding making it
impossible for monomeric actin to associate (Figure 3B and
Figure 4). Coupled with a combination of inter-protein contacts
within the WAVE] structure, the V region is rendered inactive
and the WRC is induced into a configuration which is
incompatible with actin association and therefore suppresses
actin polymersiation. Studies have shown that mutations of
certain Sral residues, important for actin V region binding,
enables WRC association with the Arp2/3 complex and
consequently stimulates actin filament branching. Moreover,
the effects of mutations of particular residues of the C region
have been found to reduce WRC activity towards the Arp2/3
complex (72).

The WRC is constitutively inactive without intervention
by Rac GTPases, phosphatidylinositols and/or kinases.
Recruitment of the WAVE proteins to the plasma membrane
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is facilitated by Rac GTPases. However, WAVE proteins are
unable to interact directly with Rac in the same way WASP
and N-WASP do with Cdc42. Instead, WAVE relies on
components of the WRC to elicit these effects. RNA
interference studies have shown how the removal of either
Sra-1 or Napl prevented the ability of cells to produce Rac-
dependent lamellipodia (63). Whether Rho GTPase-
dependent activation of WASP or WAVE is direct or not,
regulating their activity is controlled via the competitive
binding of GTPases.

The competitive binding of Cdc42 which disrupts
intramolecular interactions between the CRIB domain and
VCA region, induces WASP out of its intrinsically inactive
state. In a similar way, deletion of the VCA region of WAVE
was found to increase the affinity between WRC and Racl
as VCA deletion released Sral for Racl binding (72). This
could explain previous findings that certain Sral mutations
impeded Arp2/3 complex activation by WRC; this is likely
to be due to reduced affinity of Racl for WRC.

Although the relationship between Rac and WAVE in cell
motility has been long established, it would seem that Rac is
not the sole GTPase activator of the WRC. In vitro
approaches have demonstrated the affinity of Racl for WRC
interaction was relatively low as was the case for WRC
activation by Arfl GTPase alone. However, upon the
coordinated efforts of Racl and Arfl together, WRC
recruitment and activity at the plasma membrane were
greatly enhanced (73).

Additionally, proteins comprising the WRC have shown
the ability to become phosphorylated at various residues with
some modifications showing enhanced signalling activity of
the complex (74-76). Phosphorylation of residues within
regions of WAVE has been shown to be an influential factor
in WRC activity with the potential to facilitate actin
polymerisation (76). It has been proposed that specific
phosphorylation modifications could affect the stability of
helix structures of the VCA motif and thus Sral interaction.
WAVEL phosphorylation of serine residues by cyclin-
dependent kinase 5 (Cdk5) suppresses its ability to activate
actin polymerisation through the Arp2/3 complex (77).
However, phosphorylation of WAVEI at tyrosine residue 125
by the non-receptor tyrosine kinase Src was shown to
enhance both Arp2/3 complex association and activity in
vitro and in vivo (74). Likewise, phosphorylation of the
tyrosine residue 150 in WAVE2 by Ableson (Abl) non-
receptor tyrosine kinase was found to be essential in actin
polymerisation and cytoskeletal remodelling as Y150
mutations hindered these effects (75). Furthermore, Abl-
mediated WAVE3 phosphorylation was shown to
phosphorylate four tyrosine residues in WAVE3 (Y151,
Y248,Y337 and Y486) and promoted lamellipodia formation
and cell motility (76) (Figure 2 shows WAVE2 binding
partners).

WAVE and Cancer

Work analysing WAVE and its association with breast cancer,
carried out in our laboratories, demonstrated an overall trend
of elevated expression in all three isoforms in breast tumor
tissues relative to normal breast tissue. This pattern of
expression was also evident for patients who died from
breast cancer with WAVE2 levels reaching statistical
significance. Furthermore, node-positive specimens and
moderately and poorly differentiated tumors exhibited
significant WAVE?2 overexpression (78).

The clinical significance of WAVE in cancer was further
implicated by Fernando et al. who demonstrated higher
expression levels of WAVEL and WAVES3 in the metastatic
prostate cancer cell lines, PC-3 and DU-145 in comparison
with epithelial prostate cancer cells. Accordingly,
immunohistochemistry techniques revealed stronger staining
for WAVE]l and WAVE3 in prostate tumor specimens
compared to normal prostate specimens. WAVE1 knockdown
in PC-3 and DU-145 cells revealed a significant reduction in
growth rate and invasive capacities of the cells whilst the
same approaches were utilised to knockdown WAVE3
expression which showed a significant decrease in cell
invasion (79, 80). An independent research group also
demonstrated suppression of in vitro cell invasion following
WAVE3/WASF3 gene inactivation in metastatic prostate
cancer cells, PC-3 and DU-145. Furthermore, they were also
able to show a reduction in cell motility as well as decreased
proliferative abilities which contrast with findings published
by Fernando et al., which showed no significant change in
cell growth. The same group also evaluated the in vivo
effects by injecting WAVE3 knockdown prostate cancer cells
into the flanks of mice. Tumor growth rate was significantly
reduced as well, as there was no evidence of metastatic
spread to the lungs in mice injected with WAVE3 knockdown
cells compared to the control group (81). These findings
mirror those on in vivo breast cancer and the effects of
WAVE3 knockdown (76).

However, the role of WAVE proteins in cancer is not clear
and may be different in different types of cancer. Spence et
al. (82) show that WAVE3 knockdown does not affect
invasion of cancer cells in vitro. Tang and colleagues show
that NWASP and WAVE2 have different roles in migration
and invasion of cancer cells; the WRC actually inhibits
invasive migration of epithelial cells in 2D, which triggers
an N-Wasp-dependent invasion program involving FAK (83).

Looking more closely at the members of the WAVE
regulatory complex, Silva et al., (2009) (84) have shown that
Cyfipl is deleted in human epithelial cancers and has been
identified as a potential tumor suppressor. Loss of Cyfipl
was shown to lead to changes in WAVE-regulated actin
dynamics and changes in cell-cell adhesion and cell-ECM
contact. These authors have shown a clinical association with
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poor prognosis in colon and breast cancer cohorts, with low
expression of Cyfipl significantly associated with higher
tumor stage and with lymph node metastasis in IDC and with
vascular invasion and higher stage in colon cancer patients
(84). Interestingly, members of the WRC have been shown
to have a variety of expression levels in different breast
cancer cell lines, with higher expression levels of Abil
present in more invasive breast cancer cell lines compared
with less invasive breast cancer cell types (85). Furthermore,
down-regulation of Abi-1 expression in MDA-MB-231 cells
lead to a decrease in adhesion, proliferation, migration and
invasion.

WASP and Human Disease

Discovery of the WASP gene stemmed from the identification
of mutations in the gene in patients affected by Wiskott-
Alrich syndrome (WAS). Affected individuals present a broad
spectrum of symptoms and severity, with some patients
exhibiting the full triad of clinical manifestations with poor
survival rates compared to those with a milder phenotype who
survive to adulthood. The genetics underlying WAS have been
linked to several hundred mutations in the WASP gene with
some evidence of a genotype to phenotype relationship (86).
For example, missense mutations within the first three exons
of the WASP gene are associated with individuals displaying
mild symptoms whilst those with nonsense, frameshift, splice
site, insertion or deletion mutations in the WASP gene are
linked with symptoms of a more aggressive nature (87). On a
molecular level, such mutations within the WASP gene would
result in a defective protein product and could cause a decline
in WASP activity. Alternatively, mutations within important
domains of WASP could disrupt its specified function. For
instance, amongst the missense mutations identified in the
WASP gene, the vast majority of these are found within the
regions that encode the WH1 domain. Aberrations within this
protein domain could potentially interfere with WIP
interaction.

In addition to platelet abnormalities, immunological
defects and eczema being commonly observed in affected
individuals, many WAS patients are at an increased risk of
developing malignancies, especially those presenting with
autoimmune disorders (88). Accordingly, the majority of
these malignancies are lymphoreticular in origin and such
malignant tumors can establish at a young age, although the
frequency at which they occur is higher in adolescents
through to adulthood. Statistics from a North American
group of WAS patients found malignancies were present in
13% of the cohort with a mean age of onset of 9.5 years. The
most common malignancy reported is B-cell lymphoma
testing positive for Epstein-Barr virus (88).

Beyond the human malignancies associated with the WAS
clinical phenotypes, the WASP family of proteins have also
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been linked to other cancers. Using immunohistochemical
approaches, N-WASP expression was demonstrated to be
lower in breast tumor tissue compared to normal mammary
epithelial cells. The same study also revealed a link between
tumors from patients with a poor prognosis and significantly
lower N-WASP levels compared to those with a good
prognosis. Forced expression of N-WASP was induced in the
breast cancer cell line MDA-MB-231 that displayed
significantly reduced invasive and motility abilities (89). The
outcome for patients with breast cancer has been shown to
be related to the levels of N-WASP within the tumor tissues,
with a stepwise decrease of the levels of N-WASP seen from
good prognosis through to poor prognosis (89). Another
study using the metastatic breast cancer cell line, MTLn3
revealed the use of either dominant negative N-WASP cells
or treating cells with shRNA targeting N-WASP considerably
decreased the ability of invadopodia formation, fundamental
cell protrusions for cell invasion (90). Similarly, N-WASP
expression was found to be higher in invasive breast cancer
samples than in normal tissue and this study outlined a role
for N-WASP in invasion by controlling the spatial
arrangement of MT1-MMP in relation to actin-based
pseudopodia. Despite the contradicting conclusions drawn
from these studies, it would be logical to associate WASP
abnormalities with human cancer considering their roles in
actin polymerisation, a driver of cell motility, a contributory
trait to cancer progression.

WAVEs and WASP as Therapeutic Targets

More and more, data is emerging confirming that
abnormalities of the WASP and WAVE proteins are linked to
clinical outcome in cancer. Increased WAVEI is associated
with invasiveness and growth of prostate cancer cells (79).
Similarly, enhanced cell motility stimulated by abnormal
upregulation of WAVE2 has been linked to cancer
invasiveness and metastasis (92), with Arp2/WAVE2
colocalisation providing a risk factor for liver metastasis in
colorectal cancer (93). Targeting these molecules has been
highlighted as a fundamental step in the journey towards
cancer control. Further research to elucidate the role played
by WAVE in cancer pathology could lead to novel cancer
therapeutics.

Summary

The present review highlighted the role of the small GTPases
of the Rho family and their activation of WASP family
proteins in relation to cell motility. It is clear from the
evidence presented that the WASP family, especially WAVE
proteins, are strongly associated with migration of a range of
tumor cells, and are implicated in tumor cell invasion and
metastasis. They are shown to be linked with the
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aggressiveness and invasiveness of cancer cells, in relation
to their function as nucleators of actin via association with
the Arp2/3 complex, driving lamellipodia formation and cell
motility. As more evidence emerges to link the WASP family
proteins as regulators of cancer cell motility, targeting these
molecules may be an important step in preventing cancer cell
metastasis.
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