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Abstract. Antibody-based molecules can be delivered into
cells either by intracellular expression or through cellular
uptake. We describe technologies for identification and
expression of intracellular antibodies for target validation,
intracellular immunization and tumor therapy, such as
intracellular antibody capture technology, suicide or
silencing technology, antigen-antibody interaction dependent
apoptosis and their application for inhibition of oncogenic
intracellular proteins and induction of apoptosis. These
strategies have to be viewed in the context that inhibition of
protein-protein interactions by small molecules is often
limited due to their large interaction surface. We summarize
antibodies with the ability to penetrate cells and strategies
to induce uptake of antibodies after modification with protein
transduction domains. Interference in oncogenic pathways is
described for moieties based on antibody 3EI0, which
translocates into the nucleus after
administration. Finally, we discuss examples of tumor
immunotherapy and vaccination against intracellular
antigens, and possible interactions mediating their mode of
action.

extracellular

Based on the hallmarks of cancer (1-3), deregulated pathways
as well as overexpressed and mutation-activated molecules
have been identified as targets for potential therapeutic
intervention. Secreted or cell surface-expressed target
molecules are accessible to antibody-based entities,
immunotoxins, or agents based on novel antigen-binding
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scaffolds (4-6). On the other hand, in general, intracellular
targets are inhibited by small molecules. Some potentially
important targets which function through protein-protein
interaction (PPI), however, are usually classified as
‘undruggable’ due to the large protein surface to be covered by
a small molecule inhibitor in order to interfere with such a PPIL.
Targeting of PPIs is an important strategy for the generation of
anticancer drugs since PPIs are basic units in oncogenic
signaling networks promoting uncontrolled proliferation and
sustained cell survival (7, 8). Amplified c-MYC leads to
binding to MYC-associated factor X (Max) or mothers against
decapentaplegic (Mad), thereby inducing transcription of
growth-promoting genes and inducers of cell cycle progression
such as cyclin D (9). Induction of tumorigenesis by human
papilloma viruses (HPV) is based on neutralization of the
tumor-suppressor functions of the phosphorylated form of
retinoblastoma protein (pRb) and p53 by binding of HPV
proteins E7 or E6, respectively (10). Dysregulated epigenetic
mechanisms are important contributors to the generation and
progression of cancer. Altered histone methylation and
acetylation based on the recognition of binding proteins such
as methyl-lysine or acetyl-lysine-binding bromodomains are
important contributors to tumorigenesis (11, 12). The interface
of many protein-protein complexes is typically hydrophobic
and relatively flat, often lacking deep grooves where small
molecules can dock (13, 14). Intracellular delivery of
antibodies or antibody-related molecules which in theory
should be able to target large surface PPIs, could be a method
of choice to tackle this problem.

Basic options for the intracellular delivery of antibodies
are either based on the transfer of the genetic information
required to synthesize the antibody within the target cell
itself [plasmid- or virus-based (adeno-, adeno-associated
virus, retroviruses)] or on direct delivery of the antibody-
based molecules themselves alone or in the context of
dendrimers, liposomes, nanoparticles or fusion of antibody-
related moieties with protein transduction domains (Figure
1) (15). In the following, we review achievements in more
detail.
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Systems for Intracellular Expression of Antibodies

Numerous technologies have been described for the
generation of antibodies directed against defined antigens.
These include hybridoma technology, DNA-based
immunization, phage display libraries and transgenic animals
(16-18). In the following we describe technologies for
expression of antibodies inside bacterial, yeast, or
mammalian cells. In eukaryotic cells, the correct folding and
proper disulfide bond formation of antibodies takes place in
the endoplasmic reticulum (ER) and is supported by ER-
associated chaperones such as binding protein (BiP) and
protein disulfide isomerase (PDI) (19-21). In addition,
retention of newly-synthesized antibodies in the ER can be
achieved by adding an ER-retention signal, such as the
KDEL peptide motif, to the carboxy-terminus of the
antibody. A strategy for intracellular production of antibodies
in Escherichia coli is based on the twin arginine
translocation (TAT) system which mediates the transport of
proteins folded in the cytoplasm through the cytoplasmic
membrane into the periplasm of bacteria. Here, a TAT-
specific signal peptide and B-lactamase are fused to a single-
chain variable fragment antibody (scFv) at the N- and C-
terminus, respectively, thus conferring ampicillin resistance
to cells in the case of scFv fusion protein correctly
transported from the cytoplasm (22).

Selection of intracellular antibodies has also been achieved
by intracellular antibody capture technology (IACT). This
technology is based on a two-hybrid screen in yeast relying
on scFv or intracellular domain antibody (iDab) antigen
interaction. For example, the antigen is expressed as a DNA-
binding domain-target antigen fusion protein and the
corresponding antibody as an activation domain antibody
moiety fusion protein. Their interaction results in activation
of a reporter gene conferring resistance to ampicillin or
tetracycline (Figure 2A). In a variation of this method, in the
case of antibody moiety antigen interaction, production of
the tetracycline repressor will be stopped and the
imidazoleglycerol-phosphate dehydratase (HIS3) gene will
be expressed, allowing selection of antibody moiety
expressing yeast cells based on the growth in the absence of
histidine (23-25).

Another variation on the theme was the development of
suicide or silencing intracellular technology (SIT), based on
the inducible degradation of intracellular antibodies equipped
with proteasome-targeting sequences and thus converted into
suicide antibodies (26). Cellular proteolysis is predominantly
carried-out through the ubiquitin/proteasome pathway,
leading to the degradation of a target upon ubiquitinylation in
a multistep process. SIT relies on recruitment of target scFv
cellular substrate complexes to the specific binding pocket
of one of the members of the E3-E2 ubiquitinylation
complex, for example the F-Box protein, resulting in
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degradation of the cellular substrates by the proteasome
(Figure 2B). Inhibitor KBa (IKBa) protein undergoes
stimulus-mediated degradation induced by tumor mecrosis
factor-a (TNFa) and was used as a bridging molecule in the
context of a fusion protein between the target protein
recognized by the antibody and the cellular degradation
machinery, resulting in selective protein knock-down. Proof-
of-concept experiments were performed with [3-galactosidase
and T protein (26).

Another powerful method is the induction of cell death by
antigen antibody interaction-dependent apoptosis (AIDA)
(27). The underlying principle is autoproteolysis and
activation of pro-caspases through dimerization of antibody
moiety procaspase fusion proteins after interaction with the
corresponding antibody-related epitopes (Figure 2C).
Corresponding epitopes can be located on a single protein,
two different proteins, or on different parts of a cancer-related
fusion protein generated by chromosome translocation.

Intracellular Monoclonal Antibodies (mAbs)
Directed Against Oncogenic Kinases

An scFv antibody directed against epidermal growth factor
receptor (EGFR) and inhibiting the binding of EGF was
directed to the secretory pathway after intracellular
expression in NIH/3T3 fibroblasts. EGF-induced activation
of the receptor was shown to be reduced and anchorage-
independent growth of the cells was inhibited (28). Intra-
molecular disulfide bridges are important for antibody
stability. They are formed during expression in the secretory
pathway, whereas scFv expressed in the reducing
microenvironment of the cytosol is often inactive. Therefore,
in order to isolate mAbs directed against the intracellular
domains of EGFR, a combination of biopanning of a
combinatorial library and subsequent expression in yeast was
used to isolate the corresponding mAbs. Their co-
localization with EGFR at the plasma membrane was shown
(29). Other proof-of-concept experiments for the expression
of intracellular antigens have focused on human epidermal
growth factor receptor-2 (HER2) as a target. Intracellular
antibody directed against HER2 down-regulated HER2 on
the surface of SKOV3 ovarian carcinoma cells and inhibited
proliferation of HER2-overexpressing cells (30). Functional
inactivation of activated HER2 and reversion of the
transformed phenotype was demonstrated in scFv-transfected
NIH/3T3 cells engineered for synthesis in the lumen of the
ER and prevention of secretion (31). Studies of an
intracellular scFv in T47D breast cancer cells, which express
all four members of the HER family, revealed suppression of
cell surface expression of HER2 and impairment of Neu
differentiation factor (NDF) and EGF signaling (32).
Transmembrane receptor kinase receptor d’origine nantais
(RON) and its ligand macrophage stimulating protein (MSP)
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Figure 1. Basic options for intracellular delivery of antibodies. A mammalian cell is represented by the light blue oval and some of its organelles
are highlighted. The options for delivery are outlined in ovals at the periphery of the cell. ER, Endoplasmic reticulum; G, Golgi apparatus; M,
mitochondria; N, nucleus. The Ingenuity Pathway Analysis Path Designer tool supplier was used to prepare this figure.

have a significant impact on the development and
progression of human cancer (33). Making use of glutathione
S-transferase RON intracellular domain fusion protein as an
antigen, a phage display derived scFv was isolated and
shown to interact in vivo with the intracellular domain of
RON in mammalian cells (34). The potential of intracellular
antibodies as tools for target validation was demonstrated
with neutralizing antibodies directed against endothelial and
epithelial kinase (ETK), an intracellular kinase involved in
the SRC-induced cell transformation process (35). When
single-domain light-chain variable regions derived from
phage libraries were expressed intracellularly, inhibition of
kinase activity and clonogenic cell growth of mouse NIH
3T3 cells overexpressing vSrc (NSR) was observed.

An important potential of intracellular antibodies is their
capability to interfere with PPIs mediating stimulation of
oncogenic pathways. As a prototype of inhibiting these kinds
of interactions, intracellular antibodies to rat sarcoma (RAS)
have been investigated in detail (36). scFv antibodies based
on intracellular capture frameworks and binding to RAS with
high affinity were shown to impair oncogenic transformation

(37). These findings were extended to single-domain
intracellular antibodies directed against RAS (38). It was
shown that variable heavy-chain domain (VH) and light-
chain domain (VL) regions of anti-RAS Fv can be
intrinsically stable and independent of intra-domain disulfide
bonds (39). The neutralizing RAS antibody 413-259 (40) was
investigated in detail after microinjection of expression
plasmids for the whole antibody or scFv fragments targeted to
the cytosol into Xenopus laevis oocytes. Co-localization with
RAS and block of meiotic maturation were observed. In
mammalian cells it was noticed that anti-RAS scFv fragments
sequestered the antigen in aggregated structures referred to as
aggresomes, leading to inhibition of RAS function (41, 42).

Oncogenic fusion proteins based on chromosome
translocations have been identified as major oncogenic
drivers in many subtypes of cancer. Neutralization of
oncogenic function with intracellular antibodies is another
potential of this class of molecules. Making use of IACT,
panels of antibodies were identified which bind
intracellularly to the breakpoint cluster region protein (BCR)
and Abelson murine leukemia viral oncogene homolog
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Figure 2. Schematic outline of intracellular antibody capture technology (IACT), suicide (or silencing) intracellular technology (SIT) and antigen-

antibody interaction-dependent apoptosis (AIDA). A: ICAT technology. Antigen antibody interaction results in activation of transcription of a reporter
which may be a selection marker. B: SIT technology. After interaction of F-box protein with a fusion protein of F-box protein substrate and an
antibody moiety directed against antigen A, which is complexed with antigen A, the complex is ubiquitinylated (red bubbles) and subsequently

degraded by the proteasome. C: AIDA technology. After dimerization of fusion proteins of antibody moieties directed against antigens A and B and
procaspase, autoproteolysis of procaspase leads to caspase activation and subsequently to induction of apoptosis.

1(ABL), parts of the BCR-ABL fusion protein which is
involved in the pathogenesis of human chronic meloid
leukemia (43). It has been shown that the SRC-homology
domain 2 (SH2) of the BCR protein is essential for the
transforming properties of the BCR-ABL fusion protein.
Therefore, blocking of this domain with an intracellular mAb
may neutralize its oncogenic function.

A method was devised in which intracellular interaction
between an antigen and the corresponding antibody induced
killing of tumor cells (44). It is based on the finding that
caspase 3, an inducer of cell death by apoptosis, can undergo
autoactivation when two or more scFv-caspase 3 fusion

proteins bind to the epitopes of the same or different antigens
that are close together. This was shown for anti-f§ galactosidase
scFVvR4 caspase 3 fusion protein and anti-HIV integrase scFv
IN33 caspase 3 fusion proteins. Making use of this method,
cells expressing a defined target antigen were selectively killed.

Cell-penetrating Antibodies
Cell penetrating antibodies have been described, mostly in
the context of autoimmune diseases such as systemic lupus

erythematosis. Most of these autoantibodies were found to
be directed against nuclear antigens.
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In a landmark study, it was shown that antibodies directed
against nuclear ribonucleoprotein penetrated live human
mononuclear cells through fragment crystallizable (Fc)
receptors in patients with mixed connective tissue disease.
Intra-nuclear immunoglobulin was observed in skin biopsies
of these patients by direct immunofluorescence (45). More
recently, anti-P-mAb 9B6-4, recognizing ribosomal
phosphoproteins PO, P1 and P2 (46), was described. This
antibody penetrates Jurkat cells, astrocytes and lung cancer
cells, probably via interaction with PO on the cell surface.
Although it was shown that the antibody penetrated more than
90% of Jurkat cells, only 20% were killed by apoptosis,
indicating that sensitivity may vary with cell-cycle phase.
Similarly, antibodies to DNA were observed in patients with
systemic lupus erythematosis. In a corresponding mouse
model, murine monoclonal antibodies to DNA were able to
penetrate cells, bind to nuclei and to induce glomerular
proliferation and proteinuria in vivo (47). In addition,
penetration of patient-derived auto-antibodies into living
epithelial Colo16 tumor cells was demonstrated (48).
Specifically, 5/36 (14%) of the antinuclear antibody positive
sera from patients scored positive for cell penetration.
Antibodies were internalized by an Fc- and complement-
independent mechanism which was inhibited by cytochalasin
B blocking receptor-mediated endocytosis (48). In addition,
intranuclear immunoglobulin G (IgG) was detected in
keratinocytes of a patient with penetrating IgG (48), and
antibodies to heat shock protein 27(HSP27) were identified in
patients with ovarian cancer (49). An HSP27-specific mAb
able to internalize into neuronal and glial cells, activate
caspases and to induce apoptosis was described.
Internalization was Fc receptor-independent, and it is not
known whether interaction with cell surface HSP27 was
responsible for internalization (50). The mAb binds to actin
and mediates depolymerization and proteolytic cleavage of
actin in a dose-dependent manner.

It might be argued that antibodies reactive with intracellular
antigens might contribute to the peripheral deletion of
autoreactive clones (51). In summary, quite likely the
mechanisms of uptake and intracellular transport are not
uniform. Specific or cross-reactive antigens on the cell surface
have not been identified in all cases, and uptake can be Fc-
receptor-dependent or -independent. Some antibodies are also
internalized via clathrin-associated vesicles and later released
or transit may occur with facilitators or chaperones (52).

Cellular Uptake of Modified Antibodies

The concept of generating cell-permeable antibodies
(transbodies) through conjugation or genetic fusion of
protein transduction domains (PTD) with antibody-derived
moieties was recently put forward (53).
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For example, neutralization of oncogenic drivers after
transfer of modified, cell-permeable antibodies would be
an exciting prospect of this technology. In fact, a fusion
protein consisting of glutathione-S-transferase, an scFv
antibody directed against murine thyoma viral oncogene
homolog (Aktl), and a membrane translocating sequence
(MTS) from Kaposi fibroblast growth factor accumulated
intracellularly in 293T, BT-474 and polymoma virus
middle T-antigen (PyVmT)-expressing cells, and inhibited
Aktl as well as Akt2 and Akt3 phosphorylation. The
fusion protein reduced tumor volume and mediated
inhibition of angiogenesis in PyVmT-expressing tumors
implanted into mouse dorsal window chambers (54).
Similarly, cyclin D1 is often overexpressed in cancer. A
polyarginated antibody to cyclin D1 inhibited cell-cycle
progression in NIH3T3, HT29 and SW480 cells after
internalization (55). MYC is a transcription factor
deregulated in many types of cancer (56). Thus, an sc-Fv
directed against c-MYC was fused with the internalization
domain int of antennapedia for intracellular delivery. Anti-
proliferative activity in HCT-116 cells was noted after
internalization of the fusion protein (57).

However, one has to bear in mind that antibodies such as
these described above do not have a targeting component
specific for tumor cells, therefore they are probably also
internalized by other non-transformed cells. Consequently,
combination of these binders with a targeting moiety directed
against cell surface-exposed tumor cell antigens, resulting in
bi-specific fusion proteins, might be mandatory for
therapeutic applications in patients with cancer.

Antibody 3E10-based Internalizing Moieties

A cell-penetrating antibody, 3E10, was isolated from a
mouse model of systemic lupus erythematosis. A 3E10-
derived scFv penetrates cells and nuclei through equilibrative
nucleoside transporter 2 (ENT2), a nucleoside transporter
which is ubiquitously expressed in human cells, including
malignant cells (58-60).

In the context of studying lupus autoantibodies to deliver
proteins for protection of normal cells from therapeutic
ionizing radiation, it was discovered that one of the
antibodies, 3E10, was able to sensitize tumors to radiation
treatment (61). The mode of action is based on binding of
3E10 to single-stranded DNA, thus interfering with DNA
repair, making cells more susceptible to DNA damaging
agents such as doxorubicin or radiation. mAb 3E10 as a
single agent is toxic to cancer cells with deficiencies in DNA
repair pathways, such as those harboring mutations of breast
cancer susceptibility type 2 antigen (BRCA2) (61). Since
previous phase I clinical studies in patients with systemic
lupus erythromatosis have demonstrated the safety of 3E10,
studies in patients are expected soon.
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3E10 also has the potential as a delivery vehicle (62). 3E10
and its single-chain variants proved effective in delivery of cargo
proteins to cell nuclei in cell culture and in animals. Protein
complexes consisting of 3E10 Fab fragments bound to alkaline
phosphatase-conjugated goat anti-mouse K chains were
transported into the nucleus of COS-7 and CHO cells. Cellular
penetration of 3E10 was markedly enhanced by a single
mutation in the VH region. A fusion protein between scFv 3E10
and green fluorescent protein (GFP) penetrated COS-7 cells and
localized in the cell nucleus (62). PAb421, an antibody which
binds to the C-terminus of p53, was shown to restore the wild-
type function of several p53 mutants (63). A bi-specific single
chain antibody composed of scFv of 3E10 and scFv PAb421
was evaluated in SW480 colon cancer cells, which carry a
mutation at position 273 of p53 and are responsive to treatment
with mAb PAb421. Indeed, the bispecific single-chain antibody
was toxic for SW480 cells but not for COS-7 cells, in which the
presence of SV40 large T-antigen inhibits the binding of
pAb421 to p53. Mutant bispecific antibody was not cytotoxic
to SW480 cells (64). However, only data for SW480 cells but
not for additional cells with other p53 mutations were shown.

Protein transduction with wild-type p53 as a 3E10 p53
fusion protein selectively kills tumor cells with functionally
inactivated p53 (65). In an experimental mouse model of
colon cancer metastasis to the liver, splenic injection of the
3E10Fv-p53 fusion protein inhibited metastasis of
CT26.CL25 cancer cells significantly after their injection
into the portal vein (66).

Forkhead box p3 (FOXP3), a forkhead family nuclear
transcription factor, is deleted or mutated in the majority of
human breast cancer tissues, providing a rationale for
replacement therapy (67). Thus, 3E10 Fv-FOXP3 fusion
protein inhibited proliferation and induced apoptosis in a dose-
dependent manner in breast and ovarian cancer cell lines such
as MDA-MB 231, MCF-7, SKOV-3 and OVCAR-3. 3E10 Fv-
FOXP3 killed CT26 syngeneic colon cancer cells in vitro, and
inhibited the development of liver metastases in vivo (68).

Mouse double minute homolog (MDM2), an E3-type
ubiquitin ligase, down-regulates the function of p53 by
repressing its transcriptional activity. Inhibition of MDM?2 can,
thus, induce senescence of tumor cells (69, 70). mAb 3G5
binds to MDM2 and thus blocks binding of MDM2 to p53. A
bispecific 3E10 3G5 antibody created by genetic linkage of two
scFvs retained both cell-penetrating properties and MDM?2-
binding activities, which resulted in increased tumor p53 levels
and growth inhibition of MDM2-addicted tumors (71).

mAb-based Immunotherapy Against
Intracellular Targets

Proof-of-concept experiments for mAb-based immuno-therapy
directed against intracellular cancer-related targets have been
performed in several systems for members of the phosphatase

of regenerating liver (PRL) family. Dysregulation of protein
tyrosine phosphatases resulting in aberrant tyrosine
phosphorylation is implicated in cancer formation and
progression (72). PRLs have been characterized as
farnesylated proteins and were shown to be associated with
the inner leaflet of the plasma membrane (73). Global gene
expression profiling has implicated PRL3 in metastasis of
colorectal cancer to the liver as the only gene to be highly
expressed in all 18 liver metastases investigated (74). There is
evidence that PRL1 and PRL2 are also involved in metastasis
(75). Expression of PRL3 was detected in developing heart,
blood vessels and erythrocytes, but not in their corresponding
mature tissues (76). PRL3 overexpression promotes cell
migration, invasion and metastasis (77) and is found in many
types of cancer such as acute myeloid leukemia (AML) and
lung cancer (31% squamous cell carcinoma, 26%
adenocarcinoma) (77). From the mode of action point of view,
activation of the human v-akt thyoma viral oncogene homolog
(AKT) pathway by PRL3 and its tight regulation by poly C-
binding protein (PCBP1), which suppresses the translation of
PRL3, seem to have a significant impact on PRL3 function in
cancer (78). Activation of AKT signaling by PRL3 is based on
down-regulation of phosphatase and tensin homolog
expression and activation of phospho-inositol-3- kinase
signaling to promote epithelial mesenchymal transition (79).
Involvement of PRL3 in endothelial recruitment and new
blood vessel formation underlines the role of PRL3 as a multi-
tasking phosphatase (76). Loss of transforming growth factor-
 signaling, which often occurs during progression of
colorectal cancer, was shown to activate PRL3 by releasing
product of sma gene (SMA) and MAD-dependent inhibition of
PRL3 transcription (79).

An important proof-of-concept experiment demonstrated
that mAbs directed against intracellular PRL phosphatases
inhibited cancer metastases in mice (80).

Chinese Hamster Ovary (CHO) cells expressing EGFP
PRL1 or EGFP PRL3 fusion proteins, or enhanced GFP were
injected into nude mice. Mice treated with PRL1- or PRL3-
specific mAbs showed 90% inhibition of lung metastases.
PRL1-specific mAbs inhibited metastasis of PRL1-, but not
PRL3-expressing cells, while PRL3 specific mAbs blocked
tumor formation of PRL3-, but not PRL1 expressing cells.
In addition, metastasis formation by A2780 human ovarian
cancer cells, which express endogenous PRL3, was blocked
by PRL3 antibodies, whereas the PRL3 antibodies had no
impact on metastasis of CT26 mouse colon cancer cells
which do not express the PRL3 protein (80). In vitro, 10%
of non-permeabilized MCF-7 breast cancer cells took up
mouse anti-GS28 directed against a Golgi marker, and rabbit
anti-p53, with enhancement of uptake to 70% of cells after
serum starvation. No uptake was noticed in non-
permeabilized mammary epithelial cells (MCF-10A). Uptake
of antibody was inhibited by endosome inhibitor NH4CI.
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Figure 3. Antibodies directed against intracellular tumor antigens: possible mechanisms for generation of an anti-tumoral response. The following
mode of-action scenarios are outlined: intracellular interaction of antigen with antibody, recruitment of immune effector cells to antigens translocated
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Designer tool (IPA) was used to prepare this figure.

A chimeric anti-PRL3 human IgG1 antibody was
evaluated with respect to inhibition of lung metastasis
formation after tail vein injection of B16 melanoma cells
with high and low expression of endogenous PRL3,
respectively (81). Significant inhibition of metastasis was
seen only in the high PRL3-expressing cell line in nude
mice. These findings were extended to the PRL3 high-
expressing human colorectal HCT-116 and human ovarian
A2780 cell lines, whereas PRL-3-negative human lung
cancer cell line NCI-H460 was unaffected. Depletion
experiments indicated the functional involvement of B-cells
by comparison of the antibody-mediated efficacy between
nude mice lacking mature T-cells and severe combined
immunodeficiency (SCID) mice lacking both mature B-
and T-cells (81). Dependence of anti-tumor activity on B-
cells has also been shown for a death receptor DRS5-
specific mAb in mouse breast and colon adenocarcinoma
models (82). PRL3 localized to the cell surface was
demonstrated in the cell lines under investigation. This
finding was supported by the observation that calreticulin,
another intracellular protein, is expressed on the cell
membrane when cells are exposed to chemotherapeutic
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agents or radiation (83). As an extension to a more relevant
model for clinical application, in vivo experiments were
performed in immune-competent C57BL/6 mice (84). Here,
an IgG1 antibody against PRL3 effectively retarded growth
of metastatic tumors that expressed endogenous PRL3, and
the efficacy of treatment highly correlated with the
expression of endogenous PRL3. B-cells enhanced
internalization of these antibodies into cancer cells in vivo.
As an extension of these experiments, an IgG2a-antibody
directed against enhanced GFP was evaluated in melanoma
cells overexpressing enhanced GFP and corresponding
control cell lines. Results indicated that only enhanced
GFP-expressing cell lines responded to the mAb therapy.
In MMTV-PymT transgenic mice, middle T-antigen (mT)-
specific rat I[gG2b antibody prevented progression of mT-
expressing mammary tumors. Antigen-induced antibodies
(by vaccination) in C57BL/6 mice prevented formation of
PRL3- or enhanced GFP-expressing tumors, and the
formation of mammary gland mT tumors was retarded in
female MMTV-PymT transgenic mice vaccinated with mT
antigen. Thus, in genetically predisposed,
vaccination with an appropriate oncogenic protein was able

cancer
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to prime the immune system against the oncogenic protein.
Unfortunately, data covering treatment of established, solid
syngeneic or xenograft tumors are not yet available. In
addition, the mode of action of mAbs directed against
intracellular antigens has not yet been properly dissected
and might be an amalgamate of several mechanisms
(Figure 3). B-Cell-facilitated internalization of mAbs might
initiate a cell death-inducing program with a yet unresolved
mode of action. Tumor antigens could move to the cell
surface and be recognized by antibodies directed against
the specific antigen and might thus induce antibody-
dependent cellular cytotoxicity by recruitment of natural
killer cells via the Fc moiety of the antibody. Tumor
antigens might be shed to the tumor microenvironment or
into the circulation and form complexes with the
corresponding mAbs. These complexes could then be taken
up by dendritic cells which process the corresponding
antigen and present the resulting tumor antigen-derived
peptides to natural killer cells which mediate tumor cell
killing after activation. It is claimed that T-cells do not play
a role in the antitumor activity of intracellular tumor
antigen mAbs in nude mice. It remains to be tested,
however, whether these conclusions are also valid for
immune-competent mice (85, 86).

Conclusion

Intracellular expression of antibodies is an important
method for target validation of PPIs and is complementary
to RNA-based approaches which result in knock-down of
the corresponding proteins (87-91). Recombinant expression
of tumor-specific antibodies via plasmid-based or viral
delivery is dependent on the identification of selective tumor
antigens and hampered by the immunogenicity of viral
delivery vectors. Overall, improvements in delivery of
constructs for the expression of antibody-based molecules
in human tumors is progressing slowly and will require
significant breakthroughs to achieve successful clinical
applications. The demonstration that some autoimmune
disease-related antibodies can be taken-up by mammalian
cells is a major achievement in the field, allowing molecules
based on these antibodies to interfere with intracellular PPIs
through delivery of antagonistic peptides, proteins or
antibody-based moieties. The efficacy of antibodies directed
against intracellular antigens as shown for selected antigens
with respect to inhibition of metastasis is probably based
on a combination of mechanisms which need to be resolved
in more detail, but may open an avenue for new
achievements. The characteristics of intracellular antigens
for which this technology is applicable also need to be
worked out. Finally, the demonstration of treatment efficacy
for established, solid syngeneic or xenograft tumors is a
pending issue.
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