
Abstract. Breast cancer metastasis accounts for the
majority of deaths from breast cancer. Detection of breast
cancer metastasis at the earliest stage is important for the
management and prediction of breast cancer progression.
Emerging techniques using the analysis of circulating tumor
cells show promising results in predicting and identifying the
early stages of breast cancer metastasis in patients.
Additionally, a deeper understanding of the metastatic
cascade in breast cancer will be critical for developing
therapeutic interventions to combat breast cancer metastasis.
In this review, the current and novel methods for detection
of breast cancer metastasis, as well as the mechanisms
involved in metastasis and the treatment of breast cancer
metastasis, are discussed. 

Breast cancer is the most common type of cancer and the
primary cause of cancer mortality in women (1). The
majority of deaths from breast cancer are not due to the
primary tumor itself, but are the result of metastasis to other
organs in the body (2). 

Detection of Breast Cancer Metastasis

Currently, detection of breast cancer metastasis relies on
clinical manifestations of the spread to distant organs,
biopsies of affected organs, radiological evaluations, imaging
methods and serum tumor markers (3, 4). 

According to the American Society of Clinical Oncology
(ANCO) guidelines on breast cancer follow-up and
management, symptoms of breast cancer recurrence include
presence of new breast lumps, pain in the bone, chest or

abdomen, dyspnea and constant headaches (5). In addition,
ASCO also recommends mammography for the early detection
of relapse in breast cancer (5). Nicolini et al. (6) emphasized
that the inclusion of serum tumor markers is an important
factor in the postoperative monitoring of breast cancer patients
(7, 8). Another suggestion is to have intensive postoperative
follow-up which includes consultations every 4-6 months,
physical examination and evaluation of serum
carcinoembryonic antigen (CEA), tissue polypeptide antigen
(TPA) and breast cancer-associated antigen 115 D8/DF3
(CA15.3), at each visit. Additionally, imaging methods such as
bone scintigraphy, liver echography and chest X-ray are to be
performed bianually. Computed-tomography and magnetic
resonance imaging should be performed if suspicion arises
from the earlier mentioned methods (6). 

Although mammographic screening has reduced the
mortality rate associated with metastasis as a result of early
diagnosis (2), the methods described above are frequently
inept at detecting metastasis at the earliest stage and at
accurately predicting the clinical outcome of the disease (3,
4). An emerging method to detect metastasis is the analysis
of circulating tumor cells (CTCs), which has shown promise
in filling the gaps left by other diagnostic methods.

CTCs are tumor cells originating from primary sites or
metastases that circulate in the patients’ bloodstream and are
very rarely found in healthy individuals (9, 10) (Figure 1).
CTCs are recognized as playing important roles in the
metastasis of carcinomas (11, 12) and their analysis enables
the prediction of metastatic relapse and progression (11).
Generally, CTCs are firstly isolated and enriched through
either morphological or immunological techniques (4).
Morphological-based isolation separates CTCs according to
size discrepancies, using isolation by size of epithelial tumor
cells (ISET) or according to density, using density-gradient
separation (4). Immunological techniques, which are the
most widely used methods, employ immunomagnetic
isolation (4). This method uses either epithelial cell-specific
markers which are generally expressed in all tumor cells, or
tumor markers expressed by specific types of cancer (13).
After isolation, the source and genetic make-up of CTCs are
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characterized using nucleic acid-based methods, such as
quantitative real-time reverse transcriptase polymerase chain
reaction (qRT-PCR), or cytometric-based methods, such as
flow cytometry and enzyme-linked immunospot assay
technology (4). 

Clinical applications of CTC analysis have shown
promising results. Indeed, Goodman et al. (14) proposed that
the number of CTCs could indicate ongoing metastasis.
There is accumulating evidence that CTCs are correlated
with clinical outcome and survival in patients with cancer
(4). A study on patients with metastatic breast cancer before
treatment showed that patients with more than five CTCs in
7.5 ml of blood are predisposed for shorter progression-free
and overall survival (15). Pierga et al. (16) demonstrated that
the presence of one CTC in 7.5 ml blood after neoadjuvant
chemotherapy, could be predictive of metastatic relapse.
However, although promising results have been recorded, an
expansion in the number of methods to detect CTCs calls for

a need to standardize the techniques available, in order to
ensure increased efficacy and quality (17).

Mechanisms of Breast Cancer Metastasis

Metastatic cascade. The process of metastasis comprises of
a series of sequential steps (Figure 2). Failure to complete
any of these steps will arrest the process (18). Metastasis
starts with the local invasion of surrounding host tissue by
cells originating from the primary tumor and continues until
the tumor cells invade and intravasate into blood or
lymphatic vessels (19, 20). The tumor cells are disseminated
via the blood stream or the lymphatic vessels to distant
organs. Consequently, the tumor cells undergo cell cycle
arrest and adhere to capillary beds within the target organ,
before extravasating into the organ parenchyma, proliferating
and promoting angiogenesis within the organ (19). While
undergoing these steps, the tumor cells must simultaneously
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Figure 1. Circulating tumor cells in the blood stream. 



evade the host’s immune response and apoptotic signals in
order to survive (19, 21). If the tumor cells succeed in
completing these steps, the process can be repeated to
produce secondary metastases or ‘metastasis of metastases’
(18, 20).

Invasion. Metastasis begins with the invasion of tumor cells
into the surrounding host tissue. The invasive tumor cells
must first alter cell-to-cell adhesion and cell adhesion to the
extracellular matrix (ECM). The cadherin family has been
documented to play a large role in mediating cell-to-cell
adhesion and plays predominant roles in breast cancer
metastasis (22). E-Cadherin maintains cell-cell junctions,
while the down-regulation of E-cadherin was shown to be a
determinant in the outgrowth of metastatic breast cancer cells
(23). The down-regulation of E-cadherin has been reported
to reflect progression and metastasis in breast cancer
associated with poor prognosis (24, 25). Mutations in E-
cadherin which lead to its functional loss were discovered in
lobular breast carcinoma (26). N-Cadherin is closely
associated with mesenchymal cells and related to epithelial-
to-mesenchymal transition (EMT) during the gastrulation
stage (27). There is increasing evidence that EMT is

associated with cancer progression (28, 29). EMT plays a
major role in tumor progression by assisting invasion and
intravasation into the bloodstream and inducing proteases
involved in the degradation of the ECM (30, 31). Kotb et al.
(27) showed that the expression of N-cadherin in place of E-
cadherin caused the formation of fibrosis and cysts in
mammary glands and eventually led to malignant breast
tumor in mice. In addition, as reported by Yilmaz et al. (32),
down-regulation of E-cadherin and up-regulation of 
N-cadherin were frequently observed in cancer cells of most
epithelial cancers during stromal invasion. Down-regulation
of E-cadherin is believed to result in the loss of adhesion
between epithelial breast cancer cells and other epithelial
cells, while increase in N-cadherin, and possibly other
mesenchymal cadherins, permits the adhesion of tumor cells
to stromal cells and subsequently, the invasion of tumor cells
into the stroma (33). 

The adherence of tumor cells to the ECM is mediated
through integrins (34). Integrins are transmembrane receptors
found on ECM components such as fibronectin, laminin,
collagen, fibrinogen and vitronectin (22). Invasion is
preceded by degradation of the ECM to enable the
penetration of tissue boundaries. The degradation of ECM is
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Figure 2. Schematic showing the metastasis cascade of breast cancer.



carried out mainly through metalloproteinases (MMPs) and
the urokinase plasminogen activator (uPA) system (35, 36).
In breast cancer patients, uPA showed prognostic importance
in predicting the risk of distant metastases (37). This result
also encompasses patients with good prognosis at diagnosis
(38). Huang et al. (39) showed that the inhibition of uPA via
small-interfering RNA (siRNA) restricted invasion and
reduced the expression of MMP9. MMPs mediate the
proteolysis of ECM at the invadopodial front of invasive
breast cancer cell lines (40). Integrins are also known to
participate in the modulation of tumor motility by
participating in the activity of ECM-degrading enzymes such
as the MMPs (22). For instance, integrins α5β1 and α3β1
were both reported to up-regulate MMP9 (41, 42). 

Additionally, heparanase, a β-glucorinidase, also aids in
the degradation of the ECM by breaking down heparan
sulfate proteoglycan (43), a proteoglycan existing either in
the ECM or the cell surface which is important in the
assembly and integrity of the ECM (44) and for mediating
cell matrix adhesion and growth factor receptor interactions
(45). Heparan sulfate acts as a reservoir for heparin-binding
growth factors and angiogenic factors (43). By degrading
heparan sulfate, heparanase helps in the release of these
substances which promote tumor growth, invasion and
angiogenesis (46). Indeed, the expression of heparanase
correlates with metastatic potential in breast cancer (47) and
an increase in heparan sulfate proteoglycans such as
glypican-1 and syndecan-1 has been observed in advanced
stages of breast cancer (48). In addition, Cohen et al. (49)
reported that the overexpression of heparanase in MCF7
breast cancer cells increased cell proliferation and survival,
as well as stromal infiltration, in vitro and in vivo. 

Migration and motility. In order to achieve an invasive
phenotype, tumor cells need to migrate from the confined
primary site. Tumor cells are able to migrate either singly or
coordinately (50). Tumor cells are inclined to migrate
coordinately from intermediate or highly differentiated
lobular carcinomas of the breast (51). It is suggested that
coordinated cell migration may switch to single-cell

migration, mainly in poorly differentiated tumors due to
structural and functional abnormalities of the intercellular
adhesion proteins (50). Tumor cells that migrate collectively
need the presence of intercellular junctions. As a result, after
invasion and intravasation, they commonly circulate as
emboli in the blood or lymphatic vessels (52, 53). Cells at
the leading edge of the migrating tumor will create tube-like
microtracks by cleaving and orienting collagen fibers using
the membrane type 1 (MT1) MMP for the ensuing collective
mass migration of tumor cells through the ECM (54, 55). On
the other hand, single tumor cells migrate in two ways,
mainly by protease-dependent mesenchymal movement or
the protease-independent amoeboid movement (50). 

The EMT is a critical pathway in the mesenchymal
movement of single migratory cells. Here, the cells will
undergo changes from an epithelial phenotype to a
mesenchymal-like phenotype (32) (Figure 3). 

EMT starts with the disintegration of cell-cell adhesion by
losing epithelial markers, such as E-cadherin, and expressing
mesenchymal markers, such as vimentin. Accordingly, the
expression of transcriptional repressors of E-cadherin
including zinc finger E-box-binding homeobox 1 (ZEB1),
zinc finger E-box-binding homeobox 2 (ZEB2), twist-related
protein (Twist), zinc finger protein, Snail and Slug, involved
in signaling pathways such as transforming growth factor- β
(TGF-β), the wingless-type MMTV integration site family
(WNT) cascade and the phosphatidylinositol 3’ kinase-
serine/threonine kinase (PI3K/AKT) axis linked to the EMT
programs, are associated with poor prognosis in breast
carcinoma (56-62). Following the loss of cell adhesion, cell
polarity is altered from apical-basal polarity to front-rear
polarity to initiate cell migration through changes in cortical
actin and actin stress fibers that induce cytoskeleton
remodeling. And lastly, proteolytic enzymes such as MMPs
are activated and cell matrix adhesion is changed (63). Thus,
cells which have undergone EMT have an elongated
fibroblast-like shape and their movement is facilitated by
channels which are produced in the ECM by matrix-
degrading enzymes, such as MMPs (54). In contrast, cells
with amoeboid movement are round cells and resemble to
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Figure 3. Epithelial–to-mesenchymal transition (EMT). The epithelial cells undergo phenotypic changes to take on mesenchymal-like characteristics.



primodial unicellular organisms (32, 50). Similarly to those
organisms, they push and squeeze through pores in the
matrix by relying mostly on shape deformations and
structural changes in the ECM (64-67) rather than actual
degradation of the matrix (32, 50). These cells are loosely
attached to the ECM, lose cell polarity and move through the
paths of least resistance (34). The mechanical force used is
generated by active myosin/actin contractions and cortical
actin via signaling pathways such as RhoA/Rho kinase
(ROCK) (32, 54). 

It is postulated that tumor cells predominantly utilize
mesenchymal motility (50). However, under certain
circumstances, alterations in the molecular pathways
determining either mode could cause a switch in the
migration mode, either from mesenchymal to amoeboid
movement, named mesenchymal-to-amoeboid transition
(MAT), or vice-versa, the amoeboid-to-mesenchymal
transition (AMT) (68). At the molecular level, the inhibition
of pathways related to Rho/ROCK, such as PI3K and cell
division control protein 42 homolog (CDC42)-mediated
signaling, which are pro-amoeboid, caused AMT, while
molecules such as ras-related C3 botulinum toxin substrate
(Rac) and SMAD-specific E3 ubiquitin protein ligase 1
(Smurf1) encourage mesenchymal movement and their
inhibition caused MAT (68). Events such as inhibition of
pericellular proteolysis (69) or high Rho/ROCK levels (70)
also caused MAT. The spatial arrangement of surrounding
collagen fibers at the tumor ECM boundary also plays a role
in determining the mode used by migrating cells (64). When
collagen fibers were pre-aligned perpendicularly to the tumor
ECM boundary, amoeboid movements of MDA-MB-231
mesenchymal cells were not associated with the Rho/ROCK
pathway. Conversely, activation of the Rho/ROCK pathway
was observed in these cells when collagen fibers were not
pre-aligned to tumor ECM boundary (64). 

There is also compelling evidence that stromal cells aid
migration of tumor cells. The majority of stromal cells
within breast cancer are fibroblasts and are usually referred
to as carcinoma-associated fibroblasts (CAFs) (34, 71).
Conditioned medium collected from CAFs was found to
promote cell motility and invasion in breast cancer in vitro
(72). Moreover, immunodeficient nude mice when injected
with both human CAFs and MCF7-ras human breast cancer
cell lines, also exhibited enhanced breast tumor growth and
angiogenesis compared to mice injected with normal human
fibroblasts (73). 

Tumor microenvironment. In the 1980s, Stephen Paget
proposed the ‘seed and soil’ theory for metastasis whereby
the ‘seed’ (tumor cells) is postulated to only grow when it
finds a suitable ‘soil’ (environment) (74). This theory is being
revisited, as increasing evidence points to the tumor
microenvironment as a critical factor in metastasis. 

The microenvironment of metastatic tumor cells is critical
for tumor cell proliferation. A suitable microenvironment is a
requirement for and equally important in establishing tumor
growth and malignant progression (75). Many different
specialized cells, including fibroblasts, immune cells,
endothelial cells and mural cells of the blood and lymph
vessels, together with the ECM make up the microenvironment
which influences tumor progression (76-78). Malignant cells
constantly interact with cells of the microenvironment at both
the primary and metastatic sites (79-84). These interactions
pave the way for the progression of ‘in situ’ breast cancer to
metastatic breast cancer (85). For example, the recruitment of
macrophages by non-invasive breast tumor cells induced
angiogenesis and promoted malignant transformation (86).
Tissue-associated macrophages, which are capable of
influencing tumor invasion, angiogenesis, immune evasion and
migratory behavior (87-90), were found to form interactive
niches with breast cancer cells and endothelial cells, thus
promoting intravasation and metastatic spread (91). In the
bone, it is known that interactions between tumor cells and the
stromal components, such as osteoclasts and osteoblasts,
influence the growth and dormancy of the tumor cells; hence,
success of the outgrowth of metastatic cells into bone, heavily
depends on the bone stroma (92, 93). 

It is also postulated that tumor cells themselves might
secrete substances to prime the ‘soil’ prior to metastasis to
establish a ‘pre-metastatic niche’ supporting future metastatic
sites (75). Hiratsuka et al. (94) showed that signals from
primary tumor which induced MMP9 expression in lung
endothelial cells and macrophages prior to metastasis,
promoted preferential invasion of tumor cells to the lungs. In
addition, vascular endothelial growth factor receptor 1
(VEGFR-1)-positive hematopoietic progenitor cell clusters
were observed in pre-metastatic lymph nodes of patients with
breast cancer before the arrival of tumor cells, suggesting the
formation of a pre-metastatic niche (75). Indeed, breast
cancer has been observed to preferentially metastasize to the
bone and lungs and less frequently to other organs such as
the liver and brain (95). Gene expression signatures
accounting for the preferential metastasis of breast cancer
cells to the bone marrow and lung have been identified,
providing evidence that metastasis exhibits tissue tropism
(96, 97). Interestingly, evidence also suggests the
involvement of chemokines in the homing of tumor cells to
target organs. Breast cancer tissue highly expresses the
chemokine receptor, chemokine (C-X-C motif) receptor 4
(CXCR4) while its ligand, chemokine (C-X-C motif) ligand
12 (CXCL12), is predominantly expressed in lymph nodes,
lung, liver and bone marrow but weakly expressed in small
intestine, kidney, brain, skin and skeletal muscle (98). Organs
with higher expression of CXCL12 are associated with being
common sites of metastatic breast cancer (99). Furthermore,
Muller et al. (98) demonstrated that the CXCR4-CXCL12
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interaction encouraged migration of breast cancer cells to the
common sites of breast cancer metastasis. 

Another important aspect in metastasis is the
establishment of tumor vasculature. Angiogenesis plays a
significant role in generating metastasis and subsequent
metastasis growth (100). It is a critical microenvironmental
adaptation for tumors and is regarded as a hallmark of cancer
(101). In tumorigenesis, the balance between pro-angiogenic
and anti-angiogenic factors is disrupted with a slant towards
the pro-angiogenic side (102-104). Genetic mutations,
mechanical stresses, inflammatory processes, tumor
expression of angiogenic proteins and, predominantly,
hypoxia are believed to cause the ‘angiogenic switch’ (105,
106). Unlike under normal physiological conditions, the
tumor vasculature is distorted and is structurally, functionally
and genetically different from that of normal vasculature.
The abnormal blood vessels are insufficient to supply oxygen
to the tumor, which causes tumor hypoxia (107). This, in
turn, encourages tumor cells to produce more pro-angiogenic
factors, resulting in an increase in abnormal vasculature.
Hence, this vicious cycle continues. In order to escape the
severely hypoxic microenvironment induced by this cycle,
invasive and metastatic programs are turned on (108). 

In addition, hypoxic conditions allow factors such as
hypoxia inducible factor-1 (HIF-1) to trigger the production of
angiogenic proteins (100, 109, 110). Among them, vascular
endothelial growth factor (VEGF) and its receptors (VEGFR)
have been extensively studied (111). VEGF belongs to a family
of growth factors which includes VEGF-A, -B, -C, -D and -E
and placental growth factor (112, 113). Generally, VEGF
stimulates vasculogenesis and angiogenesis and its functions
are mediated through different VEGFRs (100). VEGF
stimulated the proliferation, invasion and migration of
endothelial cells and enhanced microvascular permeability
(114-116). In solid tumors, the expression of VEGF denotes
poor prognosis and a tendency for metastasis (111, 117). 

Treatment of Breast Cancer Patients 
with Metastatic Disease

Although advances in the treatment for metastatic breast
cancer have significantly improved the survival of patients
(118), metastatic breast cancer is still considered an
incurable disease (6, 119). In general, the treatment for
breast cancer metastasis can be divided into standard
chemotherapy and targeted therapy. 

Cytotoxic drugs used in standard chemotherapy for
metastatic breast cancer include anthracyclines, taxanes and
5-fluorouracil as first, second and third lines of therapy,
respectively (6). However, anthracycline use has been
associated with cardiac dysfunction (120). Newer cytotoxic
chemotherapeutic agents that have been developed are
epothilones and ixabepilone (121). Both these agents

exhibited increased efficacy in patients with metastatic breast
cancer who had prior treatment with anthracyclines and
taxanes (119).

Targeted therapies include hormone therapy, immunological
therapy and antiangiogenic therapy. Hormone therapy either
blocks estrogen receptor (ER) or reduces estrogen by
inhibiting the enzyme aromatase. Aromatase converts adrenal
androgen to endogenous estrogen, and in post-menopausal
women, this conversion is the sole source of endogenous
estrogen (6). Tamoxifen is an agent that blocks the ER and
when used as an initial hormone therapy in post-menopausal
women with metastatic disease, it results in tumor regression
(122). Examples of aromase inhibitors are letrozole,
anastrozole and exemestane. Interestingly, letrozole and
anastrozole were shown to have better therapeutic index as
first-line therapy of post-menopausal patients with metastatic
disease, compared to tamoxifen (123, 124). 

Trastuzumab is a monoclonal antibody that selectively
binds to the extracellular domain of human epidermal growth
factor receptor 2 (HER-2) and blocks the proliferation of
tumors that overexpress HER-2 (6, 125). This antibody is
regularly used with combination chemotherapy for both
adjuvant treatment of breast cancer and metastatic breast
cancer (126). The addition of trastuzumab to chemotherapy
in the treatment of metastatic breast cancer was reported to
improve overall survival rate, response rate and time-to-
progression (127). The newer generation of HER-2-targeting
antibodies, such as trastuzumab-MCC-DM1 and pertuzumab,
have shown promising results in the treatment of metastatic
breast cancer (119). 

As mentioned earlier, angiogenesis is considered a
hallmark of the malignant process and antiangiogenic
therapy focuses on inhibiting new blood vessel growth (6).
Bevacizumab is a humanized monoclonal antibody derived
from murine VEGF, targeting all human VEGF-A isoforms
but not other members of the VEGF family (128). It inhibits
endothelial proliferation and starves tumor cells of vascular
supply (129). The combination of bevacizumab with other
chemotherapeutic agents has led to increased progression-
free survival duration (119). However, this therapy also poses
significant risks to patients with breast cancer such as
severely high blood pressure, bleeding and hemorrhage, and
even heart failure (119). 

Conclusion

Breast cancer metastasis is a complex process determined by
many factors and pathways. New and effective ways to detect
and predict breast cancer metastasis at the earliest stage
possible are important for the management of this disease.
In addition, the unraveling of the mechanisms behind breast
cancer metastasis could give rise to novel therapeutic
approaches to combat this disease. 
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