
Abstract. The molecular characterization of different tumor
types using gene expression profiling is expected to uncover
fundamental aspects related to cancer diagnosis and drug
discovery. There is, therefore, a need for reliable, accurate
sample classification tools, as well as methods for efficient
identification of genes informative for the class discrimination.
We propose a method based on Support Vector Machine
(SVM) ensembles, trained within a boosting framework. The
approach allows sequential training of classifiers on different
data subsets, their aggregate yielding results superior to single
SVM. Results from binary and multiclass classification
experiments performed on several data sets are presented.

Gene expression profiling using microarray technology
creates a molecular picture of a cell’s internal state and
microenvironment by measuring the expression levels of
thousands of genes in a single microarray experiment (1, 2).
By performing such experiments on samples of distinct
pathogenetic disease type, as well as on samples from
healthy tissues, a broader understanding of the molecular
variations between healthy and disease tissues could be
obtained, based on the quantitative measure of thousands
of parameters (the gene expression levels). The data mining
research community is thus offered the challenge of
analyzing and interpreting the wealth of data produced by
this technology that has revolutionized biological research.
Novel or adapted machine learning and statistical
techniques are required. Some of the opportunities opened
by employing the analysis of gene expression data as a
phenotyping tool include diagnostic categorization of cancer
versus non-cancer tissues (2, 3), discrimination among
different subtypes of tumors (4-6), as well as drug response

prediction or cancer prognosis (7). Obtaining a reliable
distinction between normal and tumor tissues or between
tumor tissue subtypes has recently attracted significant
research efforts, since conventional clinical diagnostic
methods are based on subjective evaluation, which may
negatively influence the efficacy of subsequent therapy.

Different classification methods have been employed to
date in diagnostic applications, such as classic nearest
neighbor classifiers, linear discriminant analysis or more
recent approaches, including bayesian networks, support
vector machines (SVMs) and other machine learning tools
(8-14). Classification is a supervised learning task, having as
a goal the development of an efficient model for predicting
the class membership of the data. The learning system is
given the training data, consisting of data points chosen
from the input data space and their respective class labels.
The model derived from the training data is expected not
only to produce the correct label on the training data, but
to correctly predict labels of unseen data (also referred to
as test set). In the cases when the classification task is
dichotomous, we deal with a binary classification problem,
while in the cases when the data has at least three classes,
we are confronted with a multiclass classification problem.

Whatever classification method is used for gene expression
data analysis, the questions to be solved are either classic
classification issues (such as the curse of dimensionality –
referring to the case when the dimension of the feature space
is much larger than the number of available observations, a
fact that leads to a drastic rise in computational complexity
and classification errors (15)), or specific problems related to
gene expression data (noise and large variability of data
among samples (16)). Feature selection is another classic
classification task, closely related to the data dimensionality
issue. It refers to data dimensionality reduction by keeping
only features that are significant for the class discrimination.
This is of great importance, since, using only a subset of
genes reduces computational complexity, is more convenient
for developing diagnostic tests and for obtaining interesting
biological insights into the molecular mechanisms triggering
diseases. Since the prediction of diagnostic categories is such
a sensitive task, it is crucial to deal with the above issues
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accordingly, in order to obtain optimal classification
performance, while confidence in the results should make the
analysis suitable for further interpretation by clinicians.

The current study presents an approach that aims at
improving the classification performance and, at the same
time, increasing the results confidence. Current publicly
available gene expression data sets obtained from microarray
experiments have huge dimensionality, with only a few tens
to a hundred experimental samples (that correspond to the
input vectors in our algorithms, which from here on will be
referred to as profiles) and with thousands of gene
expression measurements (the variables, or features in our
analysis). Working on such data, there is always the risk of
overfitting when trying to find a suitable classifying model.
Overfitting refers to the case when the model estimated may
very accurately fit the samples in the training set, but be very
inaccurate in assigning the label of a new sample. Therefore,
we employed SVMs, which reduce the overfitting risk to
some extent (17). Although SVMs theoretically provide near
optimal classification results, their training on large data sets
is enormously time-consuming and, therefore, approximate
implementations are normally used in order to reduce the
computation time, with a direct result in degrading the
classification performance (18, 19). By using such sub-
optimal implementations of SVMs aggregated in an
ensemble scheme, classification indices superior to single
SVMs and to other classic methods should be obtained. The
supposition is based on results from the theory of ensembles,
which prove that a combination of individual classifiers, each
performing better than average and having negatively
associated errors, result in an aggregate with improved
classification performance (20). Our choice of aggregating
single SVMs in an ensemble is that of a boosting framework,
since boosting has been proved to be an efficient class
prediction tool with remarkable success in a wide variety of
applications, especially in those dealing with high
dimensionality data (13, 19).

SVM ensembles have been proposed by (17) and their
aggregation by a boosting scheme has been applied to various
classification tasks. Although boosting was originally designed
for the aggregation of the so-called weak classifiers
(performing only slightly better than average), previous studies
(and our current results) confirm the supposition that the SVM
performance may also be enhanced by boosting: Yan et al. (22)
used such a method for inferring high-level semantic scene
categories from low-level visual features, while Kim et al. (23)
applied it in fraud detection in a mobile telecommunication
payment system, as well as on several benchmark classification
data sets. For the purpose of gene expression data analysis,
boosting has only been used to date in conjunction with weaker
classifiers, such as decision stumps (13). 

A detailed explanation of the methods used and the ideas
underlying our approach are presented, together with the

results of binary and multiclass classification on several
benchmark data sets. Finally, the results are discussed and
the direction of future research is outlined.

Materials and Methods

A simple representation of gene expression data in the context of the
current work would be that of a n x m matrix X=(xij), with xij
representing the expression level of gene i in sample j. Gene
expression profiles xj=(xj1, ... , xjn) were assigned labels yi in the case
when the respective sample belongs to a known diagnostic class. Since
SVMs, which are binary classification tools, yj ∈ {+1; –1}, an
extension for the multiclass classification is presented. 

Based on a learning set of k profiles, LS={(x1, y1), K, (xk, yk),
which are known to belong to certain classes, the learning
algorithm must build a classifier C that is able to predict correct
class labels for a new set of expression profiles, called the test
set, with unknown class labels. The classifier must be
understood as a discriminant (or decision) function f, such that
y=f(x). Therefore, the supervised learning task consists, in fact,
of finding suitable discriminant functions or their best
approximations.

Support vector machines. SVMs (17) find hyperplanes <w,b> that
optimally separate the classes by maximizing the width of the
separating band between the data points and the hyperplane. In the
linearly separable problem, the discriminant function is of the form
f(x)=wñx+b, which has an associated decision function: 

fd(x)=sign(wñx+b) (1)

The optimal hyperplane must obey the following constraints:

subject to yi(<w, xi>+b)≥1 for all i=1, ... , m (2)

The constraints ensure that f(xi) will be +1 for yi=+1 and –1 for
yi=–1. In the case of linearly non-separable data, the constraints
are adapted to allow misclassification data points but penalize them
by means of some slack variables Íi≥0. The constraints for the
optimal hyperplane are modified in this case as follows: 

minimize 

subject to for all i=1, ..., m (3)

where C>0 determines the trade-off between margin maximization
and training error minimization, while º(Ø) is a non-linear function
which maps the input space into a higher dimensional space.

To solve the constraint problem of eq. (2), a Lagrangian method
(24) is used, which eliminates the primal variables w and b and
introduces instead the Lagrangian multipliers. Thus, from the
problem of eq. (2), performing some mathematical manipulations,
one has to deal with:

(4)

CANCER GENOMICS & PROTEOMICS 3: 63-70 (2006)

64



which is solvable in practice. Note that above k(xi, xj)=<º(xi),
º(xj)> is the so-called kernel function. The decision function of
eq. (1) now takes the following form:

(5)
As previously stated, approximate algorithms (19) are used in
practical implementations of SVMs in order to be able to deal with
the size of the quadratic problem of eq. (4) for large scale data.

Ensemble framework. In order to overcome the drawback of the
practical implementations of SVMs, described above, we use an
ensemble framework as suggested by (23). There are two kinds of
problems that such an approach solves. The first one arises when
the learning algorithm is searching a space of possible discriminant
functions that is too large for the amount of the available training
data. The second problem is encountered when the space of
possible discriminant functions does not contain any function that
is a good approximation to the ideal discriminant function. 

From a practical point of view, variability and noise are well-
known issues to face when analyzing gene expression data (16).
Either physiological variability (which describes differences in the
expression characteristics of cells from macroscopically identical
conditions) or sampling variability (differences in sample
characteristics such as tissue heterogeneity and other host factors)
may constitute impediments difficult to surpass by current
analytical techniques. Given the small sample size of current
microarray experiments, it is puzzling for a learning algorithm to
correctly estimate the correct distribution of the data. 

Taking into account the peculiarities of the gene expression
data, we believe that an ensemble approach would overcome
problems of this type. Ensembles construct a set of classifiers and
then have those classifiers vote in a weighted manner to predict the
class label of a new data point. Ensembles theory (20, 25) justifies
the enhanced performance of an ensemble of classifiers over single
classifiers by the following reasoning. If we have a set of classifiers
and a new data case xi, in the case when all classifiers are identical,
then if one classifier is wrong, all the other classifiers will be wrong
too. However, if the classifiers are different and their errors are
uncorrelated, if one of the classifiers is wrong, the majority of the
other may be correct, so the majority vote of the ensemble will
correctly classify xi. A formal characterization of the problem is: if
the probability of error of the individual classifiers is p<1/2 and the
errors are independent, then the error probability pÂ of the
majority voting of a set of d classifiers is:

(6)

which decreases as the number of classifiers d increases.

Boosting. Our approach of constructing an ensemble is that of an
additive model (21), which predicts the class label of a new data
point by performing a weighted sum of a set of component
classifiers, in such a way that the weighted sum fits the data well.
Boosting is an efficient and flexible method based on this principle.
Specifically, it incrementally adds a new classifier at a time to an
ensemble. Each new classifier is constructed by a learning
algorithm that tries to minimize the classification error on a
weighted training data set. At each iteration step, the current

classifier-weighted error is applied to update the weights of the
training examples. The desired effect is to place more weight on
the training examples that were misclassified and less weight on
examples that were correctly classified. Therefore, in subsequent
iteration, the boosting framework constructs progressively more
difficult learning problems. Intuitively, we can imagine that
subsequent classifiers concentrate on class boundary regions of the
data space, where classification decisions are difficult to take.

The boosting algorithm we employ initializes by creating a
training set TS of m labeled examples (gene expression profiles and
their respective class label) TS={(xi, yi)|i=1,...,m}. At the same
time, the same weight values are assigned for all the profiles in the
training set according to: p0(xi) = 1/m. At the following k iteration
steps training subsets TSk={(xi, yi)|i=1,...,l} are built by selecting l
training samples (with l<m) from the initial training set, according
to their weight values. The weight values of the training samples
are re-evaluated at each iteration step, based on their contribution
to the classification error of the respective classifier. Accordingly,
weights of the samples misclassified at the previous steps are
increased, while samples that were correctly classified have their
weights decreased. The procedure results in the construction of
training subsets consisting, in an increasing manner, of samples that
are difficult to classify. 

The final classifier is constructed based on a weighted voting of
the individual classifiers. Each classifier is weighted (by Âk)
according to its accuracy on the weighted training set that it was
trained on:

(7)

Multiclass classification. Although SVMs were originally designed
as binary classification tools, several manners of extension to the
multiclass were proposed (26-28). The approaches we are
considering split the multiclass classification problem into multiple
binary problems and may be roughly divided into two types: the
one-against-all and one-against-one methods. In the former,
classifiers for discriminating one from all the other cases are built.
Therefore for a q class problem, we would employ q different
binary classifiers. In the latter case, a classifier is built for each pair
of classes, so that we would have q(q - 1)/2 independent binary
classifiers.

For practical considerations, concerning the complexity of the
ensemble model, in the case of multiclass classification we use the
one-against-all approach. Specifically, in the case of q class
classification problems, we will have an aggregation consisting of 
q SVM ensembles. Each SVM ensemble will consist of M
independent binary SVMs (where M is the number of classifiers
resulting from the boosting framework) discriminating classes in a
one-against-all manner. The final classification decision derived
from the decision results of the q SVM ensembles will be taken
through a maximum wins voting strategy.

Feature selection. In high dimensional data analysis, as is the case
with gene expression analysis, feature selection methods are
essential if the researcher is to make sense of his data. In
classification problems, the task translates into finding ways to
reduce the dimensionality of the feature space to overcome the risk
of overfitting. Although the SVM is, as stated before, a method
that is not particularly vulnerable to overfitting, it was proven that
it benefits from feature space dimensionality reduction (29).
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Identifying subsets of genes that are most relevant for the
classification task is important not only from the statistical learning
point of view, but also from the biological one. Subsets of genes
important for the phenotype distinction can be further employed
to investigate the biology of disease. 

We use two feature selection methods to evaluate the
performance of our approach on sets of subsequently reduced
dimensionality: Recursive Feature Elimination - RFE (29), which is
a wrapper-based method using a linear SVM to remove features
based upon the absolute magnitude of the hyperplane elements,
already proved to be a successful application in gene selection and
the Signal-to-Noise ratio - S2N (4), which computes a ranking
measure for each gene based on its class correlation. In the
multiclass case, the feature selection is applied in a one-versus-all
fashion.

Results

In order to assess the performance of our method, several
classification experiments were performed on five publicly
available data sets. The expression measurements originate
from microarray experiments monitoring either tumor/
healthy tissue samples or samples of different tumor
subtypes. 

Leukemia data set. The data consisted of 72 microarray
experiments containing 7129 genes from cancer patients
with two types of leukemia (acute lymphoblastic leukemia –
ALL and acute myeloid leukemia – AML) and is available
at http://www.genome.wi.mit.edu/MPR (4). The data was
split into a training set of 38 samples (27 ALL and 11 AML)
and a test set of 34 samples (20 ALL and 14 AML).

Colon cancer data set. The data set contained tissue samples
from 22 normal and 40 colon cancer tissues. The expressions
of 2000 genes, some of which are non-human, were
provided across the 62 tissue samples by the authors of the
microarray experiment Alon et al. (3). The data set is
available at http://microarray.princeton.edu/oncology .

Prostate cancer data set. Singh et al. (30) performed a
microarray experiment to determine whether the clinical
behavior of prostate cancer is linked to underlying gene
expression differences that are detectable at the time of
diagnosis. One hundred and two samples (52 tumor and 50
healthy tissue samples) containing expression levels of 6033
genes were derived for the study of prostate tumors, which
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Figure 1. Average classification accuracies over the 10 random splits of the data set for SVM ensembles (black bars) compared to those of single SVMs
(white bars – overlapped), for the two feature selection strategies [recursive feature selection (RFE) and signal to noise (S2N)], obtained from experiments
on the leukemia data set. Within each group of bars, to the left is the result corresponding to RFE feature selection, while to the right is the one
corresponding to S2N.



are among the most heterogeneous of cancers, both
histologically and clinically. The data set is available at
http://www-genome.wi.mit.edu/mpr/prostate .

Lymphoma data set. Alizadeh et al. (5) studied the expression
levels of 4682 genes in lymphoid cells, with samples from 3
of the most prevalent adult lymphoid malignancies: diffuse
large B-cell lymphoma (DLBCL, 43 samples); B-cell chronic
lymphocytic leukemia (B-CLL, 29 samples) and follicular
lymphoma (FL, 9 samples). The data set is available online
at http://llmpp.nih.gov/lymphoma/data .

Brain tumor data set. Pomeroy et al. (31) studied the molecular
differences of several embryonal tumors of the central nervous
system. One of their data sets contained 42 patient samples of
different tumor and healthy tissues: medulloblastomas (10
samples), malignant gliomas (10 samples), atypical
teratoid/rhabdoid tumors (AT/RT, 10 samples), primitive
neuroectodermal tumors (PNET, 6 samples) and normal
cerebellum (4 samples). The expression levels of the 5597
genes were measured in the experiments and the data set is
available at http://www.broad.mit.edu/mpr/CNS/ .

In order to systematically fill in the missing values from
the above-described data sets the weighted K-nearest
neighbors imputation method proposed in (32) was applied.
In the absence of genuine test sets for 4 of the data sets
(only the leukemia data set was designed by its authors such
as to contain separate training and test sets), we performed
random divisions of each data set into training and test sets,
as described by Dudoit et al. in (8). Shortly, the data sets
were split into a balanced training set containing two-thirds
of the available samples, which were used to train the
classifiers, while the class labels of the remaining third were
used for comparison with the results of the classification.
The splitting procedure was repeated 10 times in order to
reduce the variability of the results and the classification
ratios from the repeated experiments were averaged. It must
be noted that, in order to avoid selection bias, the following
procedure was performed: at each data splitting loop, the
data set was first split into training and test subsets, then
feature selection was performed using only the current
training set and the performance of the classifier on the test
set was assessed, using the features previously selected (see
(4) and the erratum of (29)). 
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Figure 2. Average classification accuracies over the 10 random splits of the data set for SVM ensembles (black bars) compared to those of single SVMs
(white bars –overlapped), for the two feature selection strategies [recursive feature selection (RFE) and signal to noise (S2N)], obtained from experiments
on the Colon cancer data set. Within each group of bars, to the left is the result corresponding to RFE feature selection, while to the right is the one
corresponding to S2N.



Each individual SVM that is aggregated in the ensembles
used a 2D polynomial kernel function; we performed a
classifier optimization over the set of values of cost
C=[0.0001, 0.01, 1, 100] (presented results correspond to
C=100), while for the purpose of feature selection with
RFE linear SVMs were employed. The total number of
classifiers was empirically set in an ensemble to M=20,
further increasing the classifiers number having no influence
on the total classification accuracy. Our implementation
grew on the LibSVM package of (33). For the experiments
employing the kNN classifier k=1 was set.

Binary classification experiments. In this set of experiments,
the classification performances of our approach on the
leukemia, colon and prostate cancer data sets were tested.
Specifically, the ensemble of classifiers was first trained on
a training set with the complete number of features and the
classification performance was estimated by performing the
classification on the test set. The success rate: 

(9)

was used to quantify the classification performance, where k
was the number of samples in the test set. Subsequently,
feature reduction was performed by means of RFE and
S2N, respectively. The number of genes used as features of
the training set was iteratively decreased by half, in order to
identify a suitable subset of genes that may be used to
discriminate between the 2 classes. Figures 1, 2 and 3
present the results obtained for the leukemia, colon and
prostate cancer, respectively. The black bars represent
classification ratios for the SVM ensembles, while the white
ones (overlapped) correspond to the classification ratios of
single SVMs. The results were averaged for the 10 random
splits of the data sets. 

It may be noticed that our approach yielded consistently
higher classification performance that single SVMs. Only in
the case of the leukemia data, did the ensembles yield
identical accuracy with single SVMs, for the reduced feature
data containing 16 genes (for both RFE and S2N obtained
sets) and 8 genes (only for the RFE obtained set),
respectively. In this case, the plots of the SVM ensembles
and single SVMs completely overlapped. It may be noticed
that the smallest success rates were obtained on the prostate
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Figure 3. Average classification accuracies over the 10 random splits of the data set for SVM ensembles (black bars) compared to those of single SVMs
(white bars –overlapped), for the two feature selection strategies [recursive feature selection (RFE) and signal to noise (S2N)], obtained from experiments
on the Prostate cancer data set. Within each group of bars, to the left is the result corresponding to RFE feature selection, while to the right is the one
corresponding to S2N.



cancer data set, which may be due to the heterogeneity of
the tissue samples, as well as to the fact that it was the
largest data set of the 3. 

Multiclass classification experiments. A comparative result of
the classification performance of our approach, single SVMs
and the kNN classsifier, is presented in Table I for 2
multiclass tumor data sets: lymphoma (3 classes) and brain
(5 classes). The classification performance was computed as
the percentage of correctly classified test set samples. The
figures in Table I represent averages over the 10 repetitions
of the experiment with random training and test sets. The
splitting procedure, followed by feature selection, was
performed as described above, in order to avoid bias. It may
be noticed that, as in the case of all current machine
learning techniques, the classification performance
decreased with the number of classes involved. 

Discussion

The current study proposes a method to improve the
classification performance in the case of gene expression
data. The idea underlying our approach is to extend the
area of the data space where correct classification decisions
are taken by combining several classifiers that are
aggregated in an ensemble. This approach allows us to treat
different regions of the data space by different means, since
individual classifiers are trained on data subsets differently
from each other. Successive SVM classifiers are employed
for more difficult decision regions by training the SVMs
with data sets constructed within a boosting framework. 

We tested our method on several benchmark tumor data
sets publicly available. The results prove that such an
approach yields superior performance to that of single SVMs.

The SVM ensemble provides optimal classification results in
the case of the leukemia data set, by employing subsets of 8,
16 and 32 genes selected in a feature selection step performed
by the recursive feature elimination algorithm. Also in the
case of the colon cancer and prostate cancer data sets, the
ensemble provides high classification performance, which is
encouraging, specially in the latter case, which is known to
contain heterogeneous measurements to a high degree. 

Also, in multiclass classification tasks, the approach yields
superior performance to single SVMs and to kNN classifiers.
The multiclass ensemble is built in a one-against-all manner
and offers satisfactory prediction accuracy, since it is known
that multiclass classification problems are more difficult than
binary ones. In our case, the prediction accuracy was very
high for the lymphoma experiments, which is a success taking
into account the size of this data set. The accuracy for the
brain tumor data set was drastically lower, which may be
explained by the sample heterogeneity and in the higher
number of classes of these data sets. 

A further direction for our work could be that of studying
the behavior of a semi-supervised SVM, which could open the
way to constructing decision functions based on both training
and test data. Such an approach could yield interesting results,
since it is known that, due to the high variability of the gene
expression data, small training sets are not capable of offering
a true model of the underlying data distribution. In the future,
we hope to analyze, from a biological point of view, the small
subsets of genes yielding optimal classification performance.
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Table I. Average classification accuracies of SVM ensembles and single SVMs compared with those of kNN on two multiclass tumor data sets for subsets
of different number of genes (entire data set, top 1000 and top 100 selected genes, respectively). Figures represent average classification accuracies over
the 10 random splits of the data set±standard error.

Data set Feat. selection/No. of genes SVM ensemble SVMs kNN

Lymphoma All genes 0.946±0.0076 0.913±0.0049 0.812±0.0102
RFE 1000 genes 0.989±0.0234 0.915±0.0276 0.846±0.0197

100 genes 0.923±0.0327 0.869±0.0398 0.803±0.0289
All genes 0.946±0.0076 0.913±0.0049 0.812±0.0102

S2N 1000 genes 0.965±0.0261 0.894±0.0212 0.824±0.0342
100 genes 0.896±0.0313 0.817±0.0376 0.746±0.0313

Brain All genes 0.836±0.0461 0.743±0.0293 0.681±0.0311
RFE 1000 genes 0.825±0.0313 0.746±0.0365 0.695±0.0389

100 genes 0.813±0.0489 0.724±0.0461 0.631±0.0401
All genes 0.836±0.0461 0.743±0.0293 0.681±0.0311

S2N 1000 genes 0.812±0.0323 0.719±0.0326 0.665±0.0368
100 genes 0.803±0.0389 0.706±0.0414 0.624±0.0394
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