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Although they are abundant and even dominant members of animal microbiomes (microbio-
tas), from sponges and termites to mice and cattle, archaea in our own microbiomes have re-
ceived much less attention than their bacterial counterparts. The fact that human-associated
archaea have been relatively little-studied may be at least partially attributed to the lack of any
established archaeal human pathogens [1,2]. Clinically oriented microbiology courses often do
not mention archaea at all, and most medical school and biology students are only aware of ar-
chaea as exotic extremophiles that have strange and eukaryotic-like molecular machinery.
Since archaea have been known to be associated with the human gut for several decades, one
would think that human microbiome studies may unravel new facets of archaea–human inter-
actions. However, adequate universal primers that amplify both bacterial and archaeal small
16S rRNA genes but not any host rRNA genes were only published in mid-2011 [3], and thus,
many studies chose to focus on bacteria alone rather than multiply effort and expense to cover
taxa that are considered secondary in importance, if not altogether rare. Here, we provide a
brief overview of what is currently known about archaea in and on the human body and their
potential effects on human health (for additional reviews on archaea and their potential in-
volvement in human disease, see [4–8]).

Archaea in the Human Gut
The human large intestine (colon), in healthy individuals, has extremely low oxygen concentra-
tions, and over 90% of its microbiota are strict anaerobes. Researchers taking metagenomic
fecal microbiota surveys of adult Europeans could assign about 0.8% of the genes in their data-
set to archaea [9], and similar numbers (0.2%–0.3%) were reported for Amerindians and Mal-
waians [10], while North Americans had much lower fractions (<0.05%). With the exception
of a single report indicating the presence of halophilic archaea in biopsies of inflammatory
bowel disease patients [11], archaea that reside in the human colon are nearly always methano-
gens. Most of these strict anaerobes belong to the order Methanobacteriales (Fig 1), the most
common genera being the closely relatedMethaonbrevibacter andMethanosphaera.Methano-
brevibacter (previously calledMethanobacterium) was first isolated from human stool as early
as 1968 [12], followed nearly 15 years later by the discovery that such fecal isolates belonged to
the speciesMethanobrevibacter smithii.M. smithii has been shown to be present in up to 95.7%
of human subjects [13], and to be the most abundant methanogen in the human gut by several
studies, comprising up to as much as 10% of all anaerobes found in a healthy individual's colon
[14–16]. Remarkably, its abundance appears to remain stable over time, even following radical
dietary changes [17], and it is highly heritable, meaning that monozygotic twins are more con-
cordant for its presence, or absence, than dizygotic twins [18,19]. Importantly, substrates for
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methanogenesis, such as H2, methanol and acetate, are mostly derived from the end products
of bacterial fermentation. The second most abundant methanogen in this environment is
Methanosphaera stadtmanae. This organism, which has the most restricted energy metabolism
of all known methanogenic archaea, is totally dependent on acetate as a carbon source, and its
methane production requires methanol and hydrogen [20]. The human colon and other mam-
malian intestines are dominated by hundreds of bacterial species [14], and it is therefore not

Fig 1. The distribution of human-associated archaea in the phylogenetic tree of the domain Archaea. Tree is based on [63], and [64]. Highlighted are
groups that contain human-associated members.

doi:10.1371/journal.ppat.1004833.g001

PLOS Pathogens | DOI:10.1371/journal.ppat.1004833 June 11, 2015 2 / 8



surprising to observe that the genomes ofM. smithii andM. stadtmanae appear to be very rich
in inter-domain lateral gene transfers, especially relating to glycosyltransferases and ABC
transporters in both species and adhesin-like proteins inM. smithii [21,22]. These laterally ac-
quired genes are thought to have played a significant role in these organisms' initial adaptation
to mammalian hosts [21,22]. Both of these species have been recently shown to induce mono-
cyte-derived dendritic cell maturation, andM. stadtmanae also induced a strong pro-inflam-
matory cytokine release from these cells [23] and is more prevalent in patients with
inflammatory bowel disease [24].

In ruminants, presence of the methanogenMethanobrevibacter ruminantium can result in
loss of up to 6% of all ingested energy [25]. In contrast, it has been suggested, based primarily
on mouse studies [26,27], that gut methanogens contribute to human obesity. Indeed, metha-
nogens are capable of syntrophic interactions with bacteria that enhance production of short-
chain fatty acids, which provide a considerable caloric contribution to the host. However, more
recent evidence from several large human studies strongly supports an association ofM. smithii
with leanness [19,28–30]. Future research may determine more precisely the roles that metha-
nogens play in host metabolism in order to enable new microbiota-based approaches for
weight management.

Another possible connection between gut methanogens and human health is the strong as-
sociation between methanogen presence and chronic constipation [31]. Methane was shown to
slow intestinal transit time by 59% [32], and thus may contribute substantially to constipation.
However, a shorter intestinal transit time probably selects against the presence of methanogens,
since they tend to have generation times that are longer than those of many gut bacteria, even
when grown in the most favorable, state-of-the-art culture media [33]. In agreement with these
in vitro data, human studies have shown a lower prevalence of methanogens (determined by
methane excretion) in patients that tend to have diarrhea episodes (such as those with inflam-
matory bowel diseases) compared to healthy individuals [34]. Taken together, these findings
indicate that in individuals with already slow intestinal transit, methanogens may bloom and
promote further constipation.

Until recently, there were only six known orders of methanogens, only one of which (the
above-mentioned Methanobacteriales) was represented in the human body. However, recent
reports show that there is a seventh order, Methanomassiliicoccales, which includes the gut-re-
siding methanogensMethanomassiliicoccus luminyensis and Candidatus Methanomethylophi-
lus alvus [35]. Both these organisms are methylotrophic archaea isolated from human feces
[36,37]. AlthoughM. luminyensis has been shown to require H2 for methanogesis, it can utilize
not just methanol but also trimethylamine for growth in the presence of H2, which has impor-
tant implications for human health [38]. Trimethylamine is a metabolite produced from host
dietary choline [39] or carnitine [40], by the gut microbiota, which is later oxidized to tri-
methylamine N-oxide (TMAO) by the host enzyme flavin monooxygenases. TMAO has been
shown to promote atherosclerosis in mice and to be a strong biomarker for human cardiovas-
cular disease [39]. Thus, having an archaeal community that may remediate not just methanol
toxicity, but also prevent trimethylamine accumulation and TMAO production could be highly
desirable. Accordingly it has been suggested that these archaea can be used as "archaebiotics,"
for the prevention of cardiovascular disease as well as trimethylaminuria, a hereditary deficien-
cy in flavin monooxygenases activity that results in an unpleasant fishy odor in breath and
sweat [38]. Whether this novel and exciting therapeutic concept can be tested in animals and
subsequently translated into the clinic remains to be seen.
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Subgingival Archaea
Methanogenic Archaea have been reported in subgingival dental plaque as early as 1987 [41].
To date, three genera have been successfully isolated from subgingival plaque:Methanobrevi-
bacter [42,43],Methanosphaera (based on weak antigenic similarity) [44], andMethanosarcina
(based on physiology and staining) [45]. Additionally, 16S rRNA gene amplicon sequencing
studies detected archaea related to Thermoplasmata [46,47] (which, in retrospect, probably be-
long to the seventh order of methanogens; see gut methanogens section, above), as well as
members of theMethanobacterium genus [48,49]. In general, it appears that the genetic diver-
sity of archaea of the human subgingival dental plaques is low, much as is the case for the gut
methanogens, and thatMethanobrevibacter oralis is by far the most prevalent methanogen
found in this environment. In a recent review, Nguyen-Hieu et al. pooled the data from several
studies of methanogens in the oral cavity and concluded thatM. oralis is significantly associat-
ed with periodontal disease both in terms of abundance comparisons between patients and
controls and between diseases and healthy sites within the same patient [50]. Furthermore,
they concluded that indirect evidence supports the contribution of that methanogen to peri-
odontal disease and that this contribution likely stems from syntrophic interactions with sul-
fate-reducing bacteria. Thus, a mixed infection may be required for a direct causal
demonstration of the pathogenic contribution ofM. oralis in an animal model of periodontal
disease. Unlike many antibiotics that do not target archaea (because they do not have a pepti-
doglycan cell wall and have ribosomes that are more eukaryotic like [51]), metronidazole,
which is commonly used to treat periodontitis, is highly effective againstM. oralis [52] and,
thus, suppression ofM. oralis could contribute to its efficacy [50]. Statins that inhibit the activi-
ty of 3-hydroxy-3-methylglutaryl coenzyme A reductases of eukaryotes and archaea lower
blood cholesterol in humans, but they also effectively inhibit archaeal growth because they
block the synthesis of their main membrane lipids [53]. If indeedM. oralis is a "co-pathogen,"
it would be interesting to examine the effects of "archaea-specific" drugs such as statins on peri-
odontal disease, for example, by examining the periodontal pockets of patients who have re-
cently been prescribed statins before and after several months of statin use.

Archaea on the Human Skin
Archaea on the human skin have been discovered only in recent years. A 16S rRNA gene
amplicon sequencing study focusing on the navel found rare occurrence ofMethanobrevibacter
in several individuals. Even more rare were phylotypes belonging to the halophilic archaea
(family Halobacteriaceae), which were only present in a single individual, who abstained from
showers or baths for several years prior to sampling [54]. A large metagenomic survey detected
reads that matched archaea in most individual samples, but all archaeal sequences combined
did not exceed 2.3 × 10–5 of the reads in any sample [55]. A recent study, using archaeal-
specific 16S rRNA gene primers, found archaea to be present on the skin of 13/13 volunteers,
with relative abundances that exceeded 4% in one individual. Five out of five individuals that
were more closely studied displayed human-associated archaea that were not methanogens, as
may be expected in such an aerobic niche. Instead, the dominant skin-associated archaea be-
longed to the phylum Thaumarchaeota [56]. In a study that continuously sampled the skin
(left and right palm) of one male and one female over several months, the male had only tran-
sient Thaumarchaeota, while the female had persistent, albeit low, presence of these archaea on
her right palm [57], indicating there is likely to be high inter-individual variation in skin colo-
nization by these archaea. Like other members of the Thaumarchaeota phylum, skin phylo-
types are thought to be chemolithotrophic ammonium oxidizers and encode characteristic
amoA gene homologs [56]. Whether the relatively small amounts of ammonium in sweat are
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sufficient to sustain such metabolism in the human skin is unclear, but ammonium release in
sweat was shown to increase during physical exercise [58] and could reach several mM [59].
Thus, people who sweat and/or exercise more could harbor larger communities of
these archaea.

Concluding Remarks
The availability of reference genomes from previously unrepresented groups, such as the
Methanomassiliicoccales for metagenomic analysis, as well as better 16S rRNA gene primers,
should improve the detection of archaea in human microbiome studies. This improvement is
highly timely, since archaea are still an under-detected and little-studied part of the human
microbiome, and their contributions to human health or disease remain mostly unknown. This
knowledge gap should be addressed in the near future to inform clinicians, many of whom are
totally unaware of these organisms. While no human clinical study studying the in vivo effects
of statins on archaea in our microbiomes has been published, in vitro results [60] strongly sug-
gest that these drugs could inhibit the growth of archaea in the human body. While the inhibi-
tory concentrations reported for archaea in vitro (4 mg/L, about 10 μmol/L for lovastatin [60])
are much higher than their level in circulation (9.4 nmol/L [61]), their levels in the gut may be
very much higher. Moreover, in highly competitive niches, such as the colon, even partial
growth inhibition may cause extinction. In developed countries, such as the United States, stat-
in use is on the rise, and over a third of people over 65 use these drugs for their cholesterol-
lowering effects, unaware that at the same time they are taking a broad-spectrum anti-archaeal
agent. At the moment, there is little evidence of whether eradication of human-associated ar-
chaea (and potentially their bacterial syntrophs) will be beneficial or harmful for human health,
with the possible exception of periodontal disease. Thus, before archaea become part of the
"disappearing human microbiota" [62] we should at least know if we are going to miss them
when they are gone.
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