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Abstract
Mycobacterium tuberculosis (Mtb) relies on a specialized set of metabolic pathways to sup-

port growth in macrophages. By conducting an extensive, unbiased chemical screen to

identify small molecules that inhibit Mtb metabolism within macrophages, we identified a

significant number of novel compounds that limit Mtb growth in macrophages and in medi-

um containing cholesterol as the principle carbon source. Based on this observation, we de-

veloped a chemical-rescue strategy to identify compounds that target metabolic enzymes

involved in cholesterol metabolism. This approach identified two compounds that inhibit the

HsaAB enzyme complex, which is required for complete degradation of the cholesterol A/B

rings. The strategy also identified an inhibitor of PrpC, the 2-methylcitrate synthase, which

is required for assimilation of cholesterol-derived propionyl-CoA into the TCA cycle. These

chemical probes represent new classes of inhibitors with novel modes of action, and target

metabolic pathways required to support growth of Mtb in its host cell. The screen also re-

vealed a structurally-diverse set of compounds that target additional stage(s) of cholesterol

utilization. Mutants resistant to this class of compounds are defective in the bacterial adenyl-

ate cyclase Rv1625/Cya. These data implicate cyclic-AMP (cAMP) in regulating cholesterol

utilization in Mtb, and are consistent with published reports indicating that propionate me-

tabolism is regulated by cAMP levels. Intriguingly, reversal of the cholesterol-dependent

growth inhibition caused by this subset of compounds could be achieved by supplementing

the media with acetate, but not with glucose, indicating that Mtb is subject to a unique form

of metabolic constraint induced by the presence of cholesterol.
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Author Summary

Human beings are the sole ecological niche forM. tuberculosis (Mtb), and it is estimated
that 1.8 billion people are currently infected with Mtb. An important aspect of this infec-
tion is Mtb’s ability to maintain infection by replicating within macrophages. Within mac-
rophages, Mtb exploits a specialized set of metabolic pathways to utilize host-derived
nutrients, such as fatty acids and/or cholesterol, for energy production. Many details re-
garding Mtb metabolism during infection remain unknown. Here we took a chemical ap-
proach to identify small molecule probes, which target Mtb metabolism during infection
in macrophages. We found that many of the small molecule inhibitors that we identified
require cholesterol for activity. Here we report a novel chemical rescue approach to identi-
fy the metabolic targets of three novel inhibitors, and discovered that cAMP signaling is
linked to cholesterol utilization in Mtb. Together, these data demonstrate that cholesterol
exerts a dominant effect onMtbmetabolism within macrophages. Additionally, the novel
inhibitors identified in this study will facilitate evaluation of cholesterol metabolism as a
target for chemotherapeutic intervention.

Introduction
There is an urgent need to identify new drugs to treatMycobacterium tuberculosis (Mtb). TheWorld
Health Organization estimates that 1.8 billion people are infected withMycobacterium tuberculosis
(Mtb) and approximately 1.3 million people die from tuberculosis (TB) annually. The global preva-
lence of TB is sustained by the ongoing HIV-AIDS pandemic, poverty, and the emergence of antibi-
otic resistant isolates of Mtb [1]. Unfortunately, with the notable exception of bedaquiline [2], there
have been no new drugs approved for treatment of tuberculosis, and some of the emergent drug re-
sistant strains are virtually untreatable. Therefore identification of compounds that inhibit new bio-
logical targets and pathways is a vital component in TB drug discovery.

Intracellular survival within macrophages is an important aspect of Mtb pathogenesis. In
macrophages Mtb resides and replicates primarily in phagosomes, which are thought to be a
nutritionally-constrained environment [3,4]. In order to replicate in this environment Mtb re-
lies on particular metabolic pathways to utilize host-derived nutrients [5]. Numerous transcrip-
tional profiling studies have indicated that the metabolism of host-derived carbon sources such
as fatty acids and/or cholesterol are critical for Mtb survival in macrophages [6–10]. Addition-
ally, genetic studies have identified key bottlenecks in Mtb carbon metabolism, which are es-
sential for growth during infection. Specifically, mutants lacking genes involved in
gluconeogenesis [11–13], cholesterol utilization [14–17], or the methyl citrate cycle (MCC)
[18,19] fail to establish infection in macrophages. The importance of these pathways is under-
scored by the observation that many of these pathways are also required for full Mtb pathoge-
nicity in small animal models of infection. For this reason, the central carbon metabolic
pathways of Mtb are considered potential targets for TB drug discovery.

Identifying small molecules that inhibit predetermined enzymatic targets in Mtb with tar-
get-based screens continues to be a challenge. Frequently inhibitors identified through target-
based screens fail to show activity when tested against intact, live Mtb. Such failures are usually
the consequence of poor permeability, drug efflux, and/or metabolic redundancy [20]. In con-
trast, cell-based screens typically identify compounds on the basis of their activity against live
Mtb but this approach is constrained both by appropriateness of the growth condition(s) used
in the screen, and the subsequent need to determine the mode of action of inhibitors. To
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circumvent at least some of these challenges, phenotypic screening against Mtb-infected mac-
rophages represents a viable alternative strategy.

In this report we conducted an unbiased chemical screen to identify compounds that inhibit
Mtb replication during infection in macrophages, and subsequently in cholesterol media. To iso-
late compounds that specifically target cholesterol metabolism in Mtb we developed a novel
chemical-rescue approach that exploits the toxicity of cholesterol-derived intermediates to iden-
tify pathway specific inhibitors in whole Mtb. With this approach we identified inhibitors of the
HsaAB complex, which is required for complete degradation of the A/B rings of cholesterol, and
PrpC, the gating enzyme of the MCC, which is required for effective assimilation of propionyl-
CoA into central metabolism. Finally, we describe three structurally-diverse compounds that
limit cholesterol utilization indirectly by perturbing cyclic-AMP (cAMP) levels. The sheer
breadth of inhibitory compounds that reduce Mtb fitness in macrophages through the disrup-
tion of cholesterol metabolism was unexpected but provides us with a rich set of new tools to
probe the metabolic re-alignment required to sustain growth within the host macrophage.

Results

Identification of compounds that inhibit Mtb growth in macrophages
To discover compounds that limit Mtb growth within macrophages, we developed a whole-cell
assay suitable for phenotypic high-throughput screening (HTS). In a 384-well format, J774
macrophages were infected with an Mtb strain that constitutively expresses the fluorescent pro-
tein mCherry. In this assay, Mtb replicates and produces a 4- to 5-fold increase in mCherry sig-
nal over a six-day period. In the presence of the frontline anti-TB drug rifampicin, the Mtb
mCherry signal is quenched in a concentration-dependent manner indicating that mCherry
fluorescence can serve as a marker of reduced intracellular Mtb growth (S1 Fig.). To identify
compounds that inhibit Mtb growth in macrophages, the J774 cells were infected and screened
with an experimental compound library at a single concentration of 10 μM.We quantified the
Mtb derived-mCherry signal at day 6 and hit compounds were identified by their ability to re-
duce Mtb-derived mCherry fluorescence. For the screen we used a proprietary compound li-
brary supplied by Vertex Pharmaceuticals which contained ~340,000 synthetic small molecules
and natural products. From this screen we identified ~4000 compounds that displayed Mtb
growth inhibition in the range of 30–100% relative to the positive control rifampin (5 μM)
which we used as the reference for 100% inhibition. The cutoff of 30% inhibition is a low strin-
gency filter and was chosen because this threshold is approximately 3 standard deviations from
the mean signals from the experimental compounds in our screen (S1 Fig.). The calculated
Z’-factors for all of the ~1,200 screening assay plates was 0.65–0.75, indicating that the assay is
very robust [21]. We next determined the potency of the hit compounds by testing a compound
dilution series against Mtb using the intracellular mCherry fluorescence assay. This assay re-
confirmed activity for>90% of the hit compounds and resulted in 1,359 validated hits with
IC50 values<50.0 μM in the macrophage assay.

Middlebrook 7H9 OADCmedia has historically been used to evaluate anti-Mtb com-
pounds. Therefore, we titrated our most potent 1,359 hits against Mtb cultivated in standard
7H9 OADC and quantified growth inhibition using an Alamar Blue-based assay [22]. This re-
vealed two distinct sub-sets of compounds; those that were universally-active, inhibiting Mtb
growth in 7H9 OADC and inside macrophages, and those that were conditionally-active, that
inhibit intracellular Mtb growth but have little or no inhibitory activity in 7H9 OADC. Of the
1,359 hits tested in this assay, 141 (10%) were universally-active compounds with IC50 values
<5.0 μM in 7H9 OADC media and in the macrophage assay (Fig. 1). The screening library that
we used contained known anti-Mtb compounds and greater than 70% of the universally active
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compounds were structurally related to compounds with reported anti-Mtb activity. The most
potent conditionally-active subset contained 132 (9%) compounds that inhibit Mtb replication
in macrophages displaying IC50 values<5.0 μM. These conditionally-active compounds dem-
onstrate little inhibitory activity against Mtb in 7H9 OADCmedia (IC50 values>50.0 μM). Im-
portantly>95% the compounds in the conditionally-active category were novel with no
structurally related compounds reported in the literature. Numerous compounds displayed dif-
ferential potency in these two different assays which may be a result from multiple factors in-
cluding: (i) variable compound access to Mtb, (ii), induction of bacterial drug efflux systems
during infection, (iii) partial inactivation of the compound by host-cell metabolism, or (iv) the
compounds target pathways (host or bacterial) required only during infection.

Numerous conditionally-active compounds are active in medium
containing cholesterol
Middlebrook 7H9 OADC media is a carbohydrate-rich medium that does not reflect the nutri-
tional conditions encountered by Mtb in macrophages, or any aspect of the bacterium’s life
cycle. We hypothesized that a subset of the conditionally active compounds target Mtb metab-
olism and inhibition by these compounds would be buffered by the nutritional redundancy
provided within 7H9 OADCmedium. Numerous studies have indicated that host-derived lipid
(cholesterol and fatty acid) substrates and the metabolic pathways required for their utilization
are important for Mtb replication during infection [11,16,23,24]. Therefore, we tested the 132
most potent conditionally-active compounds (IC50 values< 5.0 μM in macrophages) against
Mtb grown in 7H12 media containing cholesterol as the main carbon source [25]. We observed

Fig 1. Distribution of hit compound IC50 values in macrophages and in 7H9 OADC.Dot plot depicting
the IC50 values for the most potent 1,359 compounds in 7H9 OADC and in the macrophage infection assays.
For both assays, compounds were tested across 8 separate 2-fold dilution series 50–0.4 μM. Universally
active compounds with IC50 values< 5.0 μM in macrophages and< 5.0 μM in 7H9 OADC are indicated in
green. The conditionally active compounds with IC50 values< 5.0 μM in macrophages and> 50.0 μM 7H9
OADC are depicted in red. Compounds with differential inhibitory activity are indicated in orange, grey,
and blue.

doi:10.1371/journal.ppat.1004679.g001
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that 74 (56%) of these conditionally-active compounds inhibited Mtb replication in this medi-
um with IC50 values<5.0 μM. These IC50 values are comparable to those observed in the mac-
rophage assay. Additionally, 33 of these 74 compounds were also active in 7H12 media
containing acetate as the carbon source with IC50 values< 5.0 μM. Of the 132 conditionally-
active compounds, we were unable to recover inhibitory activity for 58 conditional hits despite
testing various liquid culture conditions. Possible explanations for this include: (i) our inability
to faithfully reproduce the environment of the macrophage in liquid media; (ii) the compounds
target the host-cell; (iii) the compounds are pro-drugs that require activation by an unknown
enzyme (host or bacterial); or (iv) the compounds limit bacterial growth by inducing macro-
phage cell death. Nonetheless, we isolated numerous potent compounds that inhibit Mtb
growth in cholesterol media and we hypothesize that a subset of these compounds target Mtb
metabolic pathways involved in cholesterol utilization.

Chemical-rescue of cholesterol toxicity in Δicl1 Mtb
In Mtb, the enzyme isocitrate lyase (Icl1) is bifunctional, acting both as an isocitrate lyase in
the glyoxylate pathway and as a methyl-isocitrate lyase of the methylcitrate cycle (MCC) [26].
Mtb utilizes the MCC to assimilate propionyl-CoA into central metabolism to produce succi-
nate and pyruvate [19,27]. When an Icl1 deficient strain (Δicl1 Mtb) is growth in 7H9 OADC
supplemented with cholesterol or propionate this mutant experiences a metabolic toxicity and
fails to grow despite the presence of saturating amounts of carbohydrates and fatty acids in the
medium. We hypothesize that this toxicity is induced by intermediates of the MCC that accu-
mulate in Δicl1 Mtb when the bacteria are supplied either cholesterol or propionate. We further
hypothesized that chemical inactivation of key cholesterol catabolic enzymes and/or MCC en-
zymes will alleviate this toxicity and rescue growth inhibition in the Δicl1 Mtb mutant grown
in 7H9 OADC supplemented with cholesterol.

To identify compounds that suppress cholesterol toxicity in Δicl1 Mtb we evaluated our
most potent 1,359 hit compounds for their ability to rescue cholesterol-dependent toxicity in
Δicl1 Mtb. Briefly, a Δicl1 Mtb strain, which constitutively expresses mCherry, was inoculated
into Middlebrook 7H9 OADC media containing 100 μM cholesterol and compounds at 10
μM. Bacterial growth was measured by quantifying the bacterial-derived mCherry fluorescence
at day 12. From this single-point analysis we identified three compounds (V-13–009920,
V-13–012725, and V-13–011503) that restored Δicl1 Mtb growth in the presence of cholesterol
suggesting that these compounds target key enzymes of the MCC or the cholesterol breakdown
pathway (S2 Fig.). To discriminate between compounds that potentially target the MCC en-
zymes from those that target cholesterol catabolism, we also evaluated these compounds for
their ability to rescue growth in the presence of propionate. While all three compounds re-
stored growth of the Δicl1 Mtb in 7H9 OADC supplemented with cholesterol, only one com-
pound, V-13–009920, restored bacterial growth on propionate (S4 Fig.). We next quantified
the relative growth rates of Δicl1 Mtb in 7H9 OADC supplemented with cholesterol or propio-
nate in the presence of these compounds. This confirmed that V-13–012725, and V-13–011503
rescue growth of Δicl1 Mtb only in the presence of cholesterol while V-13–009920 rescues
growth of Δicl1 Mtb in the presence of cholesterol and propionate (Fig. 2). Additionally, the
growth rescue of Δicl1 Mtb by V-13–009920 in 7H9 OADC is equivalent to rerouting propio-
nyl-CoA into the methyl-malonyl pathway upon the addition of vitamin B12 [28] Based on
these phenotypes, we hypothesized that V-13–009920 targets enzymes of the MCC while
V-13–011503 and V-13–012725 target cholesterol catabolic enzymes upstream of the MCC.
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V-13–009920 inhibits the 2-methylcitrate synthase PrpC
Since V-13–009920 rescues Δicl1 Mtb growth in propionate, the target of this compound is
most likely an enzyme in the MCC. PrpC is the 2-methylcitrate synthase that catalyzes the first
dedicated reaction of the MCC in Mtb and condenses oxaloacetate with propionyl-CoA to
form 2-methylcitrate [19]. We therefore tested V-13–009920 against recombinant PrpC and
confirmed that V-13–009920 directly inhibits pure PrpC enzyme activity in vitro with an IC50

of 4.0 ± 1.1 μM (Fig. 3). The compound V-13–009920 has an IC50 value of 3.0 μM in macro-
phages and is 10-fold more potent in 7H12 cholesterol media with an IC50 value of 0.3 μM. Mi-
crobiological profiling experiments demonstrate that this compound is bacteriostatic against
Mtb grown in 7H12 cholesterol media. Previous reports have established that a prpCD double
mutant has a growth defect in macrophages [19]. Thus, our discovery of a PrpC inhibitor from
a collection of small molecules that limit intracellular Mtb replication reassured us that we
have identified compounds that target the Mtb metabolic pathways required for infection.

The ability of the PrpC inhibitor to promote growth of Δicl1 Mtb in 7H9 OADCmedia con-
taining cholesterol is consistent with our interpretation that a toxic MCC intermediate(s) is pro-
duced in Δicl1 Mtb under this condition. Eoh and Rhee recently reported that the growth defect
observed in Δicl1 Mtb during growth solely on propionate is derived from a defective MCC and
is principally due to a depletion of tricarboxylic acid (TCA) intermediates and the secondary ac-
cumulation of potentially toxic intermediates. Additionally, this study reported that vitamin-

Fig 2. Chemical rescue of MtbΔIcl1. (A)Growth of Mtb ΔIcl1 was monitored in 7H9 OADC containing
cholesterol (100 μM) or propionate (100 μM) in the presence of V-13–012725 (25 μM) and V-13–011503 (25
μM). Growth rescue by the compounds V-13–012725 and V-13–011503 is specific to cholesterol with no
growth is observed in media containing propionate. (B) The compound, V-13–009920 (25 μM) rescues Mtb
ΔIcl1 growth in 7H9 OADCmedia containing cholesterol (100 μM) and propionate (100 μM). Chemical rescue
by V-13–009920 is comparable to rescue by vitamin-B12 (10 μg/ml). The data are representative of two
independent experiments.

doi:10.1371/journal.ppat.1004679.g002
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B12 rescues the Δicl1 Mtb growth defect by shunting carbons from propionyl-CoA back into
the TCA cycle via the vitamin-B12 dependent methyl-malonyl pathway [28]. Under the condi-
tions used here it is unlikely that TCA intermediate levels are limiting in 7H9 OADC cholester-
ol, which contains excess amounts of glucose, fatty acids, and glycerol. Additionally, unlike the
vitamin-B12 rescue of Δicl1 Mtb, chemical inactivation of PrpC would not reroute carbons into
the TCA cycle. Thus, we propose that growth suppression of Δicl1 Mtb under this condition is
induced by accumulation of a toxic intermediate(s) produced from the MCC.

V-13–011503 and V-13–012725 inhibit the two-component flavin-
dependent hydroxylase HsaAB
To determine if the compounds V-13–011503 and V-13–012725 directly inhibit cholesterol ca-
tabolism, we monitored the evolution of 14CO2 from [4–14C]-cholesterol by radiorespirometry.
For this, wild-type Mtb was grown in 7H9 OADC supplemented with 100 μM cholesterol and
trace levels of [4–14C]-cholesterol. In this assay the bacteria are provided excess carbohydrates
and fatty acids to support bacterial growth allowing us to specifically quantify inhibition of
cholesterol catabolism and bacterial viability in this assay was confirmed (Fig. 4A). Under this

Fig 3. V-13–009920 inhibits the 2-methylcitrate synthase PrpC. (A) Inhibition of PrpC enzyme activity was
monitored by quantifying thiol release from propionyl-CoA leading to the formation of 3-thio-6-nitrobenzoate
from DTNBmeasured at 412 nm. V-13–009920 inhibits pure PrpC enzyme with an IC50 value of 4.0 ± 1.1 uM.
(B) Chemical structure of V-13–009920 (5-(4-chlorophenyl)-N-(4-(N-(5-methyl-1,3,4-thiadiazol-2-yl)
sulfamoyl)phenyl)-2-(trifluoromethyl)furan-3-carboxamide. Data are representative of two
independent experiments.

doi:10.1371/journal.ppat.1004679.g003
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condition we observed that both V-13–012725 and V-13–011503 significantly decreased the
levels of 14CO2 released in the presence of these compounds (Fig. 4B).

To delineate the targets of these inhibitors we next analyzed the cholesterol-derived metabo-
lites which accumulate in Mtb following treatment with V-13–012725 and V-13–011503. GC-
MS analyses of culture extracts from cells treated with V-13–012725 and V-13–011503 re-
vealed one diagnostic metabolite (tR = 14.9 min) that was undetectable in DMSO-treated cells
(S3 Fig.). The retention time and mass spectrum of this metabolite corresponded to 3-hydroxy-
9,10-seconandrost-1,3,5(10)-triene-9,17-dione (3-HSA) [29]. Treatment with V-13–012725
also promoted the accumulation of two additional metabolites and the retention times and
mass spectrum of these metabolites correspond to those of 3-hydroxy-9-oxo-9,10-seco-23,24-
bisnorchola-1,3,5(10)-trien-22-oic acid (3-HSBNC) [30] and a derivative of 3-HSBNC with a
double bond. Most importantly, accumulation of 3-HSA following treatment with V-13–
011503 and V-13–012725 indicates that these compounds target enzymes involved in degrad-
ing the A/B rings of cholesterol in Mtb (S3 Fig.).

To identify the molecular targets of V-13–011503 and V-13–012725 we tested these two
compounds for their ability to inhibit key enzymes involved in the degradation of the A/B rings
of cholesterol (HsaA, HsaB, HsaC, or HsaD). At concentrations up to 100 μM, neither V-13–
011503 nor V-13–012725 detectably inhibited HsaC or HsaD in in vitro enzymatic assays de-
scribed previously [31,32]. However, both compounds inhibited HsaAB, the two-component
flavin-dependent hydroxylase that catalyzes the 4-hydroxylation of ring A to produce a cate-
chol. HsaAB inhibition was measured using a coupled enzymatic reaction containing recombi-
nant HsaAB, HsaC, and 3-HSA which allowed us to track 4,9-DHSA production by measuring
absorbance at 392 nm as described in the methods. Dose-response assays with these com-
pounds revealed that the IC50 values for the inhibitors V-13–011503 and V-13–012725 are 11 ±
2 μM and 5.0 ± 0.8 μM, respectively against pure enzymes (Fig. 4C-D). Killing kinetic analysis
revealed that these two compounds are bacteriostatic against Mtb in media containing choles-
terol as a sole carbon source. Our metabolite analysis confirmed that the side chain of cholester-
ol is fully degraded to 3-HSA upon treatment with the HsaAB inhibitors therefore, it is likely
that Mtb can support minimal growth on cholesterol as a sole carbon source in vitro by utilizing
the carbons liberated from the side chain of cholesterol in the presence of these inhibitors.

Characterizing the Mtb response to the orphan cholesterol utilization
inhibitors
A large proportion of hit compounds were active against Mtb when the bacterium is grown in
cholesterol medium but do not seem to target cholesterol catabolism directly. To further char-
acterize this diverse collection of compounds we performed global gene expression profiling to
identify conserved patterns of differentially expressed genes to provide indication of mode of
action [33,34]. Using this approach, we focused on three structurally-diverse compounds from
the 132 conditionally-active inhibitors that are among the most potent in macrophages and
cholesterol media (S4 Fig.). Briefly, Mtb was cultivated in 7H12 cholesterol media and exposed
to compounds at 10x IC50 concentration for 4 hr and the global Mtb transcriptional responses
were quantified by microarray. We focused on those genes which were significantly up- or
down-regulated across 3 biological replicates [8].

These inhibitors induced a common set of 49 genes including genes associated with the pu-
tative drug efflux systems Rv1216–19c and Rv0677–78c (S1 Table). Rv1216–19c encodes a puta-
tive ABC-type transporter (Rv1218c), which has been implicated in the efflux of a wide-variety
of small molecule substrates fromMtb [35]. Similarly, we noted up-regulation of the genes
Rv0676–78c, which encode the putative MmpL5 efflux pump that has been implicated in azole
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drug, clofazimine, and bedaquiline resistance [36,37]. Importantly, these structurally-unrelated
compounds shared a common transcriptional profile consistent with a perturbation in choles-
terol utilization. The key feature of this transcriptional signature is the repression of the MCC
genes despite the presence of cholesterol in the medium (Fig. 5). This is informative since the
MCC is involved in assimilating cholesterol-derived propionyl-CoA and the expression of the
MCC genes are normally highly induced in the presence of increasing concentrations of propi-
onate and/or cholesterol [27,38]. Additionally, 21 common genes that are under control of the
transcriptional regulators KstR1 and KstR2 are also repressed and these genes are also normally
induced during infection or in the presence of cholesterol or cholesterol breakdown products
(Fig. 5 and S1 Table) [39,40]. The concomitant repression of the MCC genes and genes within
KstR1 and KstR2 regulons suggest that cholesterol utilization is blocked in the presence of
these inhibitors. Growth arrest was also evident in the transcriptional response to these com-
pounds as indicated by the reduced expression of ribosome-encoding genes (S1 Table). The
overlapping gene lists from these transcriptional responses is an unexpected result given the
structural diversity of these compounds and we hypothesize that these compounds target as-
pect(s) early in cholesterol utilization.

Phenotypic characterization of orphan cholesterol utilization inhibitors
Although lipids appear to be favored nutrients by Mtb during infection, the bacterium likely
encounters complex mixtures of nutrients in vivo. We next examined the inhibitory activities

Fig 4. V-13–012725 and V-13–011503 inhibit cholesterol breakdown. (A)Growth of wild type Mtb is not inhibited in 7H9 OADC containing cholesterol
(100 μM) and experimental compounds. (B) In 7H9 OADC containing cholesterol (100 μM) V-13–012725 and V-13–011503 specifically inhibit cholesterol
turnover. (C) V-13–012725 and V-13–011503 directly inhibit the activity of the recombinant HsaAB enzyme complex with IC50 values of 5.0 ± 0.8 and 11.0 ±
2.0 μM, respectively. (D) Chemical structures of V-13–012725, 2-(4-fluorophenyl)-5-methyl-1H-[1, 2, 4]triazolo[1, 5-a]pyrimidin-7-one and V-13–011503, 3,5-
dimethyl-N-(5-phenyl-1,3,4-thiadiazol-2-yl)-1,2-oxazole-4-carboxamide. Data are representative of at least two independent experiments and error bars
represent s.d.

doi:10.1371/journal.ppat.1004679.g004
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of these orphan cholesterol utilization inhibitors in the presence of multiple carbon sources.
This analysis revealed that in mixed carbon source media, containing both cholesterol and a
glycolytic substrate (glucose), these compounds inhibit Mtb replication with potencies similar
to the intracellular macrophage assay. However, in mixed carbon source media containing cho-
lesterol and a gluconeogenic substrate (acetate), these compounds do not inhibit Mtb replica-
tion (Fig. 6A). Previous metabolomics analysis has shown that Mtb can co-metabolize simple
carbon substrates such as glucose, glycerol and acetate, although the products of these sub-
strates have separate fates [41]. Our observation suggests that these compounds inhibit Mtb
growth by limiting cholesterol turnover and acetate likely rescues this defect by fueling the
TCA cycle for energy production. To test this idea we quantified cholesterol utilization by Mtb
in the same mixed carbon source media by monitoring the release of 14C-labeled CO2 from
[4–14C]-cholesterol by radiorespirometry. Consistent with our inhibition observations these
compounds inhibited cholesterol utilization equally in mixed carbon source media containing
either a glycolytic or gluconeogenic substrate (Fig. 6B). Importantly, because acetate rescues
growth inhibition the reduction in the amount of 14CO2 release by these compounds is not
linked to a reduction in bacterial growth when the media is supplemented with acetate.

Fig 5. Orphan cholesterol utilization inhibitors display transcriptional response characteristic of
blocked cholesterol utilization. (A) The methylcitrate genes are repressed in the presence of the Group 1
cholesterol utilization inhibitors. (B) Numerous genes in the KstR1 and KstR2 regulons are repressed in the
presence of the orphan cholesterol utilization inhibitors. Data represent the normalized mean of three
independent experiments with P-values<0.05. Data represents the ratio of gene expression values
compared to DMSO controls.

doi:10.1371/journal.ppat.1004679.g005
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Analysis of the killing kinetics with this set of inhibitors indicates that these compounds are
bacteriostatic against Mtb in both macrophages and in cholesterol media.

A role for cAMP in regulating cholesterol utilization in Mtb
In comparison to the HsaAB inhibitors, the orphan cholesterol inhibitors (V-12–003679, V-
12–007958, and V-12–007960) only partly inhibit cholesterol metabolism leading to a 30–50%
reduction in cholesterol turnover. In addition, these inhibitors do not rescue growth of Δicl1
Mtb in 7H9 OADC supplemented with cholesterol and we could not detect accumulation of
any cholesterol-derived intermediate in the presence of these compounds. These observations
lead us to hypothesize that these inhibitors could indirectly inhibit cholesterol utilization in
Mtb by perturbing a regulatory system that modulates cholesterol or propionyl-CoA utiliza-
tion. To identify mutants resistant to growth inhibition by these compounds we grew a trans-
poson library (~105) wild type CDC1551 background, in 7H12 cholesterol media containing
V-12–007958 (10 μM) for seven days and plated the mutant pool onto 7H10 agar plates with-
out compound and cholesterol. We picked 10 mutants and, upon sequencing, we identified 5
insertions that mapped to the adenylate cyclase rv1625c/cya (three independent insertion
sites). The integral membrane adenylate cyclase Cya is known to generate cyclic adenosine
30,50-monophosphate from ATP [42,43].

We therefore hypothesized that cAMP levels are perturbed by the orphan inhibitors, which
negatively regulates cholesterol utilization. We first confirmed that two of the Tn::cya mutants
were resistant to the compound V-12–007958 (Fig. 7A). We next quantified cAMP production
by wild type Mtb following an 8-hour exposure to V-12–003679, V-12–007958, and V-12–

Fig 6. Acetate rescues inhibition by orphan cholesterol utilization inhibitors. (A)Wild type Mtb was grown in 7H12 media containing cholesterol (100
μM) and supplemented with the additional carbon substrates glucose (0.1%) and acetate (0.1%) as indicated. Growth inhibition was quantified using an
Alamar Blue-based assay. (B) The compounds V-12–003679, V-12–007958, and V-12–007960 inhibit cholesterol utilization in media supplemented with
cholesterol and the additional carbon substrates 0.1% glucose (glu) and 0.1% acetate (ace) indicated in parentheses. Data are representative of at least two
independent experiments and error bars represent s.d.

doi:10.1371/journal.ppat.1004679.g006
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007960 in 7H12 cholesterol media containing acetate. We observed that all three orphan com-
pounds in this class significantly induced the production of cAMP (Fig. 7B). Lastly we con-
firmed that cholesterol utilization was no longer inhibited by V-12–007958 in the Tn::cya
mutant in 7H12 cholesterol media containing acetate (Fig. 7C). Importantly, because acetate
rescues growth inhibition by these compounds the reduction in the amount of 14CO2 and the
production of cAMP in the presence of these compounds is not linked to a reduction in bacte-
rial growth in 7H12 cholesterol media containing acetate. Although the precise molecular tar-
get for V-12–003679, V-12–007958, and V-12–007960 is unknown, this data suggests a role for
high levels of cAMP in negatively regulating cholesterol utilization in Mtb.

Discussion
One hurdle in TB drug discovery stems from a limited understanding of the growth conditions
and physiological environments experienced by Mtb during infection. Historically, the condi-
tions used to identify anti-Mtb compounds are artificial and are unlikely to resemble those con-
ditions encountered by Mtb during infection [44]. It is known that Mtb experiences a variety of
environmental stressors during the course of infection such as starvation, hypoxia and low pH
[45]. We decided to directly incorporate the host macrophage into a drug screen to reproduce
the most common niche exploited by Mtb in its host and to recapitulate at least some of the
metabolic and physiological adaptations required for infection. We hypothesized that chemical
interrogation of Mtb within the context of its host cell would reveal additional targets that
would not be required in rich medium that can provide diverse metabolic escape routes that
are absent within the macrophage environment. Our screening against Mtb in macrophages
identified both conventional, universally-active compounds that functioned independently of
the bacterial environment, and conditionally-active compounds that were active in macro-
phages or in medium with cholesterol as the limiting carbon source.

We were surprised to find that many of conditionally-active compounds required cholester-
ol for inhibitory activity in liquid culture and yet many of these compounds do not appear to
target cholesterol utilization directly. Our interpretation is that cholesterol exerts a dominant
influence on Mtb physiology in more ways than just being a substrate for energy production,
perhaps by influencing carbon flux through central metabolic and biosynthetic pathways.
More particularly, the unique mixture of central metabolites produced from cholesterol catabo-
lism, such as acetyl-CoA, pyruvate, and propionyl-CoA, dictate that the bacteria make drastic
metabolic rearrangements, which opens additional vulnerability to chemical intervention [27].

The inhibitors V-13–011503 and V-13–012725 are the first two known inhibitors of choles-
terol catabolism in Mtb and they inhibit HsaAB, which is required for the NADH-dependent
conversion of 3-HSA into 3,4-DHSA during degradation of the A/B rings of cholesterol. The
HsaAB proteins function as an enzyme complex, it is currently unknown which protein is actu-
ally inhibited by these compounds. Our observation that chemical inhibition of HsaAB limits
Mtb replication in macrophages is novel and is consistent with the prediction that these genes
are required for growth in macrophages from previous transposon studies [17]. To our knowl-
edge, survival studies with HsaAB mutants have not been reported in macrophages or in vivo.
In addition to limiting Mtb replication in macrophages, compounds that target HsaAB may
also inhibit extracellular Mtb replication in tissues where Mtb may potentially rely on an abun-
dant pool of cholesterol within caseating granulomas [46]. Thus, efforts are currently underway
to optimize the compounds, determine the precise molecular mechanism of HsaAB inhibition
by these compounds, and to establish whether HsaAB inhibitors alone or in combination with
frontline TB drugs enhance treatment outcomes in murine chemotherapy models in vivo.
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Regulation of cholesterol utilization by cAMP has not been reported and this regulation
may be governed at the transcriptional level or post-transcriptionally. It is known that cAMP
levels can control Mtb metabolism by protein acetylation through the activity of the cAMP-
dependent protein acetyltransferase Rv0998/PAT [47–49]. Importantly, several mycobacterial

Fig 7. Inhibition of cholesterol utilization by the orphan inhibitor V-12–007958 is dependent on cAMP
levels. (A) Transposon mutants with insertions in the gene rv1625/cya are resistant to V-12–007958 in 7H12
media containing cholesterol (100 μM). The transposon insertion sites in the rv1625/cya coding sequence are
indicated. (B) The compounds V-12–003679, V-12–007958, and V-12–007960 all stimulate cAMP
production in wild type Mtb grown in 7H12 media containing cholesterol (100 μM) and acetate (0.1%). (C)
Cholesterol utilization is restored to levels similar to the uninhibited control in a transposon disrupted mutant
with an insertion in rv1625/cya. Data are representative of at least two independent experiments, * = P<
0.05, and error bars represent s.d.

doi:10.1371/journal.ppat.1004679.g007
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enzymes involved in lipid and propionate metabolism are acetylated by PAT [50,51] in a
cAMP dependent manner, which may limit cholesterol utilization directly or act through feed-
back inhibition [51]. We did not identify transposon insertions in Rv0998/PAT but we cannot
rule out protein acetylation as a mechanism involved here. The enzymes involved in cholesterol
utilization in Mtb may be negatively regulated at the transcriptional level in the presence of
high concentrations of cAMP. At present, the exact molecular target(s) for the orphan choles-
terol utilization inhibitors remain to be determined. Our current model is that this family of
compounds indirectly inhibit cholesterol utilization in Mtb by perturbing an unknown target
or pathway that leads to the enhanced production of cAMP, which down regulates cholesterol
utilization. More work is needed to define the precise role of cAMP in regulating cholesterol
utilization. The ability of acetate to rescue growth inhibition by these compounds without im-
pacting cholesterol utilization implies that these compounds ultimately starve Mtb by limiting
entry of cholesterol-derived carbon into central metabolism.

Previous metabolic studies have shown that Mtb has the capacity to catabolize multiple car-
bon sources simultaneously [41], however the fates of carbons from the simple substrates glu-
cose, glycerol and acetate are highly compartmentalized. The logical extension of this would
predict that, under certain growth conditions, these substrates may not be interchangeable.
Given the ability of acetate to rescue Mtb growth inhibition by these compounds in cholesterol
medium it is puzzling that fatty acids or other nutrients fail to exhibit comparable activity in
the macrophage. The results imply a partitioning of metabolism whereby, within in a macro-
phage, Mtb may preferentially utilize cholesterol for energy production while other nutrients
such as carbohydrates or fatty acids may fulfill separate metabolic requirements [52–54]. Phe-
notypically, this appears as an unusual form of catabolite repression, however additional stud-
ies are needed to investigate this possibility directly.

The majority of compounds identified in this screen result in bacteriostatic phenotypes in
vitro, which may limit their potential as lead compounds for drug development. However, the
surprising diversity of targets, pathways, and mechanisms of action all linking back to cholesterol
metabolism uncovers an extensive, and hitherto unappreciated chink in this bacterium’s armor.

Methods

Bacterial strains and media
M. tuberculosis CDC1551 andM. tuberculosisH37Rv Δicl1 [18] were utilized for all experi-
ments. Bacteria were routinely grown at 37°C in 7H9 (broth) or 7H11 (agar) media supple-
mented containing 0.05% glycerol and OADC enrichment (0.5% bovine serum albumin
fraction V, 0.2% glucose, 0.085% NaCl). Broth cultures also contained 0.05% tyloxapol. E. coli
cultures were grown in LB medium. Antibiotics were added as described [53].

HTS assay
Macrophages (J774 cells from American Type Culture Collection) were seeded into 384-well
black clear bottom plates.M. tuberculosis CDC1551 expressing mCherry was grown to mid-log
phase in Middlebrook 7H9 OADC washed, and syringed 6-times with 25G⅝ tuberculin syringe.
The de-clumped bacteria were diluted into pre-warmed infection media (DMEM, 10% fetal calf
serum, 2.0 mM L-glutamine, and 1.0 mM sodium pyruvate) and were used to infect cells at an
MOI of 4:1. Bacteria were added to the screening plates with a Janus Ministation (Perkin
Elmer). Compounds were added to the screening plates 1 hour after infection to a final concen-
tration of 10 μM. Following a six day incubation period at 37°C and 6% CO2 Mtb mCherry fluo-
rescence was quantified using an Envision Multilabel plate reader (Perkin Elmer). All screening
plates contained negative (DMSO) and positive (10 μM rifampicin) controls. Percent inhibition
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for the experimental compounds was calculated using the formula, percent inhibition = 100x
(DMSO signal—sample signal)/(DMSO signal—rifampicin signal). The Z0 factor, a measure of
variability and reproducibility [21], was determined for each plate using the following formula:
Z0 = 1-[3×(SDrifampicin+SDDMSO)/|Mrifampicin-MDMSO|], where SD denotes the standard devia-
tion andM denotes the mean for the samples and controls, respectively.

Dose response assays against Mtb
To determine compound potency against Mtb in liquid culture an Alamar Blue reduction
assay was used as described [22]. For inhibition assays conducted in Middlebrook 7H9 OADC
the bacteria were cultured to mid-log phase (OD600 of 0.4) in 7H9 OADC and assayed in 96-
well black clear bottom plates. Briefly, 1.0x106 bacteria were added to each well containing 7H9
OADC and experimental compounds or controls to a final volume of 200 ul. For inhibition as-
says in media containing alternative carbon sources Mtb was first cultured to an (OD600 of 0.4)
in 7H12 media (7H9 base, 0.1% casamino acids, 100 mM 2-morpholinoethanesulfonic acid pH
6.6) and 0.1% (wt/vol) acetate as the carbon source and 0.05% tyloxapol [25]. Cholesterol was
added to the culture media at a final concentration of 100 μM as ethanol/tyloxapol micelles ac-
cording to [53]. For the inhibition assay, bacteria were washed in PBS tyloxapol 0.05% twice
and 1.0x106 bacteria were added to 96-well microplates containing 7H12 media to a final vol-
ume of 200 μl containing the experimental compounds, controls, and supplemented with car-
bon substrates at 0.1% (wt/vol) unless otherwise noted. The microplates were incubated for 10
days in humidified, sealed plastic bags at 37°C. To quantify bacterial proliferation 40 ul of an
Alamar Blue solution 50% was added to each well and the plates were re-incubated at 37°C for
16 hr. Alamar Blue reduction was quantified using an Envision Multilabel plate reader (Perkin
Elmer) with λex = 492 nm and λem = 595 nm.

To determine compound potency in the macrophages, J774 cells were infected and using the
HTS protocol and exposed to a dilution series of the experimental compounds. All screening
plates contained DMSO and 10 μM rifampicin control wells and percent inhibition for the ex-
perimental compounds was calculated. IC50 values were determined by fitting the percent inhi-
bition dose response curves in Prism (GraphPad Software), using a sigmoidal variable slope fit
with the maximum% activity and the minimum % activity fixed at 100% and 0%, respectively.

Transcriptional profiling
Bacteria were grown in vented T-25 flasks as described above and treated with the experimental
compounds at 10x IC50 concentration for 4 hours. Bacterial RNA was isolated, amplified, and
labeled for microarray analysis. All the microarray hybridizations and data analyses were per-
formed as described [7]. The entire microarray dataset is publically available on ArrayExpress
database (www.ebi.ac.uk/arrayexpress/) accession number E-MTAB-3142.

Radiorespirometry assays
Cholesterol utilization byMtb was quantifying by monitoring the release of 14CO2 from
[4–14C]-cholesterol by radiorespirometry. Briefly, Mtb cultures were grown in 5 ml 7H9
OADC or 7H12 medium supplemented with indicated carbon substrates in vented standing
T-25 tissue culture flasks. Experimental compounds and 1.0 μCi of the radiolabel were added
to the bacterial cultures at the same time. The culture flasks were placed air-tight vessel with an
open vial containing 0.5 ml NaOH 1.0 M and sealed for incubation at 37°C. After 5 days, the
NaOH vial was recovered, neutralized with 0.5 ml HCl 1.0 M, and the amount of base soluble
Na2

14CO3 was quantified by scintillation counting. Radioactivity signal was normalized to the
relative levels of bacterial growth by determining the OD600 of the bacterial cultures at day 5.
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Recombinant 2-methylcitrate synthase assay
The full-length gene encoding PrpC/Rv1131 was cloned into pET23a (Novagen) creating a C-
terminal fusion with a 6x-His tag. The recombinant PrpC was produced in E. coli BL21 (Nova-
gen) following induction with isopropyl-thiogalactopyranoside 0.25 mM for 16 hours at 15°C.
The His-tagged PrpC was purified from the E. coli lysates as described [55]. Methylcitrate
synthase activity of the Mtb PrpC enzyme was monitored by detecting the release of CoASH,
from propionyl-CoA during the condensation reaction with oxaloacetate, using 5,50-dithiobis-
2-nitrobenzoate as described [19]. The assays were conducted at 37°C in a 96-well black clear
bottom plate containing 50 mMHEPES-NaOH pH 8.0, 0.1 M NaCl, 2 mM EDTA, 0.1 M
DTNB, 0.14 mM propionyl-CoA, and 0.2 mM oxaloacetate. Recombinant PrpC (10 μg) was
added and CoASH production was monitored spectrophotometrically at 412 nm using an En-
vision Multilabel plate reader. Background was subtracted to account for free thiol in the initial
reaction mixture. The percent inhibition at each compound concentration was calculated using
the equation %I = (1-vI/v0)�100 where vI and v0 are the rates observed in the presence and ab-
sence of inhibitor, respectively. The IC50 values were calculated by fitting to the inhibition data
using nonlinear curve fitting.

Analytical methods
Gas chromatography coupled mass spectrometry analyses of TMS-derivatized culture extracts
were performed using an HP 6890 series GC system fitted with an HP 5973 mass-selective de-
tector and a 30 m × 250 μmHP-5MS Agilent column. The operating conditions were: TGC (in-
jector), 280°C; TMS (ion source), 230°C; oven time program T0 min, 104°C, T2 min, 104°C, T14.4

min, 290°C (heating rate 15°C�min-1), T29.4 min; 290°C.

HsaAB inhibition kinetics
HsaA, HsaB, HsaC and HsaD were purified as described previously [29,31,32]. HsaB was recon-
stituted with FMN [29]. 3-Hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione (3-HSA),
3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione (DHSA), and 4,5–9,10-diseco-3-
hydroxy-5,9,17-tri-oxoandrosta-1(10),2-diene-4-oic acid (DSHA) were prepared using previ-
ously described biotransformations [29,31,32]. HsaC and HsaD assays were performed as de-
scribed [31,32]. HsaAB activity was measured spectrophotometrically by following the
hydroxylation of 3-HSA in a coupled assay with HsaC at 25 ± 0.5°C. Reactions were performed
in 200 μl potassium phosphate (I = 0.1 M), pH 7.5 containing 2.5 μMHsaA, 1 μMHsaB, 1 μM
HsaC, 400 μMNADH and 100 μM 3-HSA. Initial rates were determined over a 30 s interval.
The reaction was monitored at 392 nm, the absorbance maximum of DSHA (ε392 = 3.8 mM-1

cm-1). Background ΔA392 was subtracted to account for uncoupled NADH consumption. Stock
solutions were prepared fresh daily. The percent inhibition at each compound concentration
was calculated using the equation %I = (1-vI/v0)�100where vI and v0 are the rates observed in
the presence and absence of inhibitor, respectively. The IC50 values were calculated by fitting
the equation %I = 100–100/(1+[I]/IC50) to the inhibition data using nonlinear curve fitting.

Transposon mutant isolation
To isolate transposon mutants resistant to the inhibitor V-12–007958 a transposon library
(~105) in a wild type Mtb background was propagated for seven days in 7H12 media contain-
ing 100 μM cholesterol and 10 μM compound. Following the growth selection the bacteria
were plated onto 7H11 OADC agar to isolate individual clones. Chromosomal DNA from the
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individual mutants was isolated and the transposon insertion sites were PCR amplified and se-
quenced according to [56].

cAMP determination
Bacteria grown in 7H12 media containing cholesterol 100 μM cholesterol and 0.1% acetate
were exposed to the experimental compounds for 8 hours. To determine intracellular levels of
cAMP, cell suspensions containing 108 cells were isolated by centrifugation. The bacterial pellet
was suspended in 0.5 ml 0.1 M HCl and the cAMP containing lyaste was extracted by vigorous
vortexing for 20 min. Bacterial debris was removed by centrifugation and the supernatants
were used for cAMP estimation using a direct immunoassay kit (Enzo).

Supporting Information
S1 Fig. Whole cell HTS assay against Mtb in macrophages. (A) Dose response curve for the
reference compound rifampicin tested against mCherry Mtb in the 384-well format infection
assay. The data are representative of at least two independent experiments and the titration
curve was fit using the percent inhibition values as described in methods. (B) Percent inhibi-
tion values from experimental compounds observed in a typical screening plate. This plate has
a Z-factor = 0.75 the green line denotes mean percent inhibition and the red line denotes 3 s.d.
from the mean.
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S2 Fig. Chemical rescue of ΔIcl1 Mtb in 7H9 OADC supplemented cholesterol or propio-
nate.Mtb ΔIcl1 mCherry signal was quantified following 12 days incubation in 7H9 OADC
supplemented with 100 μM cholesterol or 100 μM propionate. Experimental compounds were
tested at a concentration was 10 μM and carbon supplements are indicated in parentheses. The
bacterial mCherry signal is expressed on a Log 10 scale and the data represents a single point
read from a screening plate.
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S3 Fig. GC-MS analyses of culture extracts fromMtb cells treated with V-13–011503 or V-
13–012725 detects 3-HAS accumulation. (A) The retention time andMS spectra of Peak 1 (tR
= 14.9 min) corresponds to 3-HSA. The retention time andMS spectra of Peak 2 (tR = 18.9
min) corresponds to that of 3-HSBNC. The retention time andMS spectra of Peak 3 (tR = 19.7
min) is consistent with that of an unsaturated 3-HSBNC although the position of the double
bond could not be determined due to the low yield of metabolite. These three peaks are absent
from DMSO-treated Mtb extracts. (B) Cholesterol catabolic pathway, lower route indicates the
successive actions of HsaAB, HsaC and HsaD on sterol rings A and B. The R at C17 of cholester-
ol indicates that the extent of side chain can vary. The respective substrates of HsaAB, HsaC and
HsaD are 3-HSA, 3,4-DHSA and DSHA. The C4 of cholesterol is indicated, and colored red.
(TIFF)

S4 Fig. Structures of the three orphan cholesterol utilization inhibitors.
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S1 Table. Genes up- and down-regulated in response to the orphan cholesterol utilization
inhibitors.
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