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Abstract

The emergence of ceftriaxone-resistant strains of Neisseria gonorrhoeae may herald an era of untreatable gonorrhea.
Vaccines against this infection are urgently needed. The 2C7 epitope is a conserved oligosaccharide (OS) structure, a part of
lipooligosaccharide (LOS) on N gonorrhoeae. The epitope is expressed by 94% of gonococci that reside in the human genital
tract (in vivo) and by 95% of first passaged isolates. Absence of the 2C7 epitope shortens the time of gonococcal carriage in
a mouse model of genital infection. To circumvent the limitations of saccharide immunogens in producing long lived
immune responses, previously we developed a peptide mimic (called PEP1) as an immunologic surrogate of the 2C7-OS
epitope and reconfigured it into a multi-antigenic peptide, (MAP1). To test vaccine efficacy of MAP1, female BALB/c mice
were passively immunized with a complement-dependent bactericidal monoclonal antibody specific for the 2C7 epitope or
were actively immunized with MAP1. Mice immunized with MAP1 developed a TH1-biased anti-LOS IgG antibody response
that was also bactericidal. Length of carriage was shortened in immune mice; clearance occurred in 4 days in mice passively
administered 2C7 antibody vs. 6 days in mice administered control IgG3l mAb in one experiment (p = 0.03) and 6 vs. 9 days
in a replicate experiment (p = 0.008). Mice vaccinated with MAP1 cleared infection in 5 days vs. 9 days in mice immunized
with control peptide (p = 0.0001 and p = 0.0002, respectively in two replicate experiments). Bacterial burden was lower over
the course of infection in passively immunized vs. control mice in both experiments (p = 0.008 and p = 0.0005); burdens
were also lower in MAP1 immunized mice vs. controls (p,0.0001) and were inversely related to vaccine antibodies induced
in the vagina (p = 0.043). The OS epitope defined by mAb 2C7 may represent an effective vaccine target against gonorrhea,
which is rapidly becoming incurable with currently available antibiotics.
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Introduction

Neisseria gonorrhoeae infection is the second most common

bacterial sexually transmitted infection (STI); the worldwide

incidence is 106 million cases per year [1]. Gonococci cause a

broad spectrum of diseases [2]; HIV co-infection in men enhances

risk of HIV transmission to female sex-partners [3]. Recent,

widespread emergence of resistance to currently used antimicro-

bials [4] and the potential for spread of resistant gonococci

threaten to herald an era of untreatable disease, worldwide.

Uniform vaccination of persons at greatest risk would be an

effective deterrent.

Development of safe effective vaccines against gonococcal

infection is challenging because the correlates of immune

protection are not fully known [5]. Furthermore, gonococcal

surface molecules that may be appropriate targets often are

antigenically variable. Unfortunately, adaptive immune responses

that target highly conserved gonococcal antigens fail to elicit

protection [6].

N. gonorrhoeae lipooligosaccharide (LOS) is an important com-

ponent of the gonococcal outer membrane [7]. Antibodies

directed against LOS engage complement to kill N. gonorrhoeae

directly [8] and also promote opsonophagocytosis [9]. LOS

antibodies may also contribute to protection against re-infection

with the homologous strain in experimental infection of human

male volunteers [10].

Despite antigenic heterogeneity of LOS, we have identified a

common oligosaccharide structure within gonococcal LOS that is

recognized by a murine monoclonal antibody (mAb), called 2C7

[9,11]. This structure (Figure 1) requires the substitution of lactose

onto HepII and at a minimum, substitution of lactose on HepI

[12]. The 2C7 epitope was identified directly in the genital

secretions of 94% of 68 culture-positive subjects and on 95% of

101 strains of N. gonorrhoeae isolated from infected subjects [9].
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Human antibodies against the 2C7 epitope also mediate comple-

ment-dependent bacterial killing and opsonophagocytosis. Com-

pared to purified LOS, the 2C7 epitope selectively elicited a

greater antibody response after gonococcal endometritis and

disseminated infection [9]. Male volunteers immunized with a

gonococcal outer membrane vaccine that contained LOS harbor-

ing the 2C7 epitope developed a 10-fold excess of 2C7 antibody

compared to a rise in antibody against whole LOS [9], thereby

confirming superior immunogenicity of the 2C7 epitope in a

human vaccine trial.

Carbohydrates are poor immunogens and induce T cell-

independent immune responses that may not lead to full affinity

maturation and are poor immunogens [13]. A promising approach

in vaccine design uses peptides that are the structural and/or

functional mimics of carbohydrate antigens [14,15,16]. Peptide

mimics elicit cross-reactive immune responses to the nominal

carbohydrates [17]; when used for immunization they can elicit an

immune response against carbohydrate antigens and lead to

effective immunity [17].

Previously, we selected a peptide mimic of the 2C7 epitope by

screening a random peptide library with mAb 2C7 [11]. We

reconfigured the peptide into a multi-antigenic form, called MAP1

[11]. Immunization of mice elicited cross-reactive anti-LOS

antibodies that possessed dose-responsive direct complement-

dependent bactericidal activity against gonococci [11]. Here, we

further characterized the MAP1 induced antibody responses in

mice and determined the efficacy of both passive immunization

with mAb 2C7 and active vaccination with MAP1 in attenuating

infection in mice following experimental vaginal challenge with N.

gonorrhoeae.

Results

Characterization of LOS structure of gonococcal strains:
FA1090wt and FA1090lgtG2

Figure 1 illustrates gonococcal LOS structure identifying the

innermost oligosaccharide structures that bind mAb 2C7 (shaded

gray) and the phase-variable LOS glycosyl transferases (lgt)

biosynthetic genes. Loss of lactose (Gal-Glc) substitution on HepII

in the FA1090lgtG2 (lgtG2) mutant was confirmed by composi-

tional analysis and by loss of reactivity with mAb 2C7 in western

blot and whole-cell ELISA (data not shown). The ‘‘wild-type’’ (wt)

and lgtG2 mutant expressed similar HepI LOS substituted glycan

extensions, revealed by whole-cell ELISA and western blot using 3

mAbs that recognize distinct HepI glycan extensions (Figure 1):

3F11 (lacto-N-neotetraose), L8 (lactose) and L1 (GalRGalRGlc,

or the PK-like structure [18,19,20,21] (data not shown). Further-

more, DNA sequencing indicated that there was no variation in

the homopolymeric regions of lgtA, lgtC and lgtD (Figure 1) between

the wt and lgtG2 mutant suggesting that expression of HepI glycan

extensions in the wt and mutant were similar (data not shown).

Loss of lgtG expression attenuates N. gonorrhoeae
FA1090 infection

The 2C7 epitope is expressed on most gonococci that infect

humans [9] and we hypothesized that the phase-variable lgtG gene

Figure 1. Simplified schematic of the oligosaccharide (OS) structure of gonococcal LOS. Lipooligosaccharide glycosyl transferase (lgt)
genes that are involved in LOS biosynthesis and are subject to phase variation are indicated in grey italic font. Each transferase catalyzes the
substitution of the next more distal hexose onto the LOS backbone. The grey shaded box represents the minimum OS structure expressed by
naturally occurring gonococcal strains that is required for mAb 2C7 binding.
doi:10.1371/journal.ppat.1003559.g001

Author Summary

Neisseria gonorrhoeae cause a common sexually transmit-
ted infection (ca. 106 million cases per year, worldwide).
Gonococcal organisms have become resistant to almost all
previously effective antibiotics, creating an urgent need for
preventive vaccines. Extreme variability of the gonococcal
surface has precluded identification of common compo-
nents that might be present on a wide variety of isolates/
strains; these might serve as effective vaccine targets. We
identified a common sugar structure, present on 95% of
gonococcal organisms; this structure elicits a large and
specific antibody response in women after natural gono-
coccal infection. Because peptides are more effective than
sugars when used as vaccines, we identified peptide ‘‘look-
alikes’’ that mimicked the sugar; first by using a monoclo-
nal antibody that recognized the sugar, then by screening
trillions of small peptides to identify those also recognized
by the antibody. Mice that were vaccinated with one of
these peptides cleared infection more quickly than animals
vaccinated with an irrelevant peptide. We also found that
administration of antibody from immune to normal,
unimmunized, mice, prior to infection, subsequently
hastened clearance of infection, indicating that the
antibody administered was the protective agent. This
study represents an important step in developing a
vaccine to protect humans from infection caused by a
wide variety of gonococcal strains.

Oligosaccharide Mimotope Gonococcal Vaccine
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remains in-frame (on) because it provides the organism a survival

advantage in its natural (human) host. Growth and viability of

FA1090wt and FA1090lgtG2 were similar in vitro as revealed by

similar growth curves (doubling time and final optical density)

when the strains were grown separately or together in co-culture

(data not shown). To establish the role of lgtG in vivo, mice were

inoculated with a mixture of strains FA1090wt (1.56105 colony

forming units [CFU]) and FA1090lgtG2 (1.66105 CFU). Five of 5

inoculated mice became infected. Kaplan Meier analysis of time to

median clearance of FA1090lgtG2 was 4 days; only one mouse

cleared FA1090wt infection by 10 days, the length of the

experiment (P = 0.04), (Figure S1A). A lower longitudinal trend

in mean log10 CFU colonization over time was measured for the

lgtG2 mutant (Figure S1B) (P,0.001). Cumulative CFU expressed

as area under the curve (AUC) also showed a lower bacterial

burden for the lgtG2 mutant strain (P = 0.04), (Figure S1C). Based

on the in vivo co-culture results, we hypothesized that although

selective (antibody) pressure targeting the 2C7 epitope may serve

to select for phase variation events that yield a 2C7 epitope

negative gonococcal infection, the reduced fitness associated with

loss of the 2C7 epitope would not favor continued infection.

mAb 2C7 accelerates clearance of HepII lactose bearing
gonococci

We examined whether passive administration of mAb 2C7 also

shortens time of FA1090wt infection in mice. Mice were

administered mAb 2C7 or control IgG3l mAb intraperitoneally

(ip) daily for 3 days prior to and including the day of challenge. In

Group 1 (Figure 2), using a vaginal inoculum of 56105 CFU, 16 of

20 (80%) mice administered mAb 2C7 and 16 of 20 mice

administered control IgG3l mAb became infected. In Group 2

(Figure 2), using a 3.66105 CFU inoculum; 18 of 20 (90%) mice

administered mAb 2C7 and 18 of 20 mice given control IgG3l
mAb became infected.

Kaplan Meier analysis showed that mAb 2C7-treated animals

cleared gonococci faster than IgG3l mAb-treated control animals

in both experiments (Experiment 1: median time to clearance; 4

days in mAb 2C7 administered vs. 6 days in the IgG3l mAb

administered group, P = 0.03 [Figure 2A, left panel]; Experiment

2: median time to clearance; 6 days in mAb 2C7 administered vs.

9 days in the IgG3l mAb administered group, P = 0.008

[Figure 2A, right panel]). A diminished longitudinal trend in

mean log10 CFU colonization over time was measured in mAb

2C7 administered mice (P = 0.008 and P = 0.0005 in Experiments

1 and 2, respectively [Figure 2B]). Cumulative CFU expressed as

area under the curve (AUC) was also lower in mAb 2C7

administered mice (P = 0.014 and P = 0.0114 in Experiments 1

and 2, respectively [Figure 2C]). All gonococcal colonies isolated

from the 2 mice that remained infected at 7 days in Experiment 2

after inoculation (75 and 40 colonies per mouse) were detected by

mAb 2C7 in colony blots further emphasizing that the 2C7

structure is important for prolonged survival of FA1090 in the

mouse model.

Clearance of the FA1090lgtG2 mutant occurred similarly in

single infection in the presence of either mAb 2C7 or control

IgG3l mAb (Figure S2). There were no differences between the

two groups in median time to clearance (5 days in both groups;

P = 0.86 by Kaplan Meier analysis [Figure S2A]), mixed model

analysis (P = 0.95) (Figure S2B) and AUC analysis (P = 0.56)

(Figure S2C).

Antibody elicited following MAP immunization
Sera from mice actively immunized with MAP1 or MAP-

control (a peptide that does not bind 2C7), each administered with

a Monophosphoryl Lipid A (MPL) containing adjuvant, were

evaluated for total IgG antibody elicited against LOS of

FA1090wt. Two weeks following the third booster of MAP1

(given in week 14), the median serum anti-LOS IgG antibody level

had risen to 1.018 mg/ml (range 0.353 to 2.204 mg/ml)

(Figure 3A). A mixed model analysis of mean anti-LOS antibody

levels over time showed significant increases between weeks

designated for antibody testing (P,0.001) (Figures 3A and S3).

MAP-control immunization did not yield anti-LOS IgG responses

(,0.001 mg/ml) but showed IgG antibody responses against MAP-

control itself (data not shown). MAP1 immune sera did not contain

detectable IgG antibody (,0.001 mg/ml) against LOS prepared

from FA1090lgtG2, confirming that the LOS antibody response

following MAP1 immunization was 2C7 specific (data not shown).

Samples obtained from vaginal swabs showed median anti-LOS

IgG levels of 0.008 mg/ml (range 0.005–0.015 mg/ml) from MAP1

immunized mice at 14 weeks (data not shown).

Serum anti-LOS IgG subclass levels, anti-LOS IgM and IgA

levels in the 32 mice immunized with MAP1 were quantitated at

week 14 after immunization (Figure 3B). As expected, MAP-

control immunized mice did not yield detectable anti-LOS

antibodies. Subclass analysis of the anti-LOS response suggested

a TH1-biased response (TH1:TH2 index response as defined by the

ratio [(IgG2a+IgG3)60.5]/IgG1 was 1.75; ratios .1 and ,1

indicate TH1 and TH2 responses, respectively [22]).

Immune anti-LOS IgG mediates anti-gonococcal
bactericidal activity

Immunization of the 32 mice with MAP1-MPL elicited a 3.8-

fold higher IgM antibody response against LOS compared to IgG

(Figure 3B). Using 17% added human complement, we measured

the relative contributions of anti-LOS IgG and anti-LOS IgM to

serum bactericidal activity against FA1090wt in serum from 6

separate mice that had been immunized with MAP1-MPL but not

challenged with N. gonorrhoeae. Non-challenged animals were

immunized identically to their challenged counterparts (same lot,

time of immunization and schedule); the mean 6 SE anti-LOS IgG,

IgG subclasses, IgA and IgM levels in the sera of these 6 mice at

week 14 were similar to the corresponding Ig levels in mice used for

challenge (Table S1). Likewise, the mean differences in Ig levels

between the two groups were similar (Table S2). Immune sera from

the 6 mice also lacked IgG antibody against FA1090lgtG2 LOS.

Each of the 6 sera was passed over protein A/G agarose; the

flow-through contained IgM and IgA and was devoid of IgG. IgG

eluted from the protein A/G column contained IgM at 10%–20%

and IgA at 2–15% of serum levels (Table S3). IgG fractions

(Figure 4A; labeled IgG (Eluate)) were more bactericidal (29%

median survival) than corresponding sera devoid of IgG

(Figure 4A; labeled IgM + IgA (Flow-through); 87% median

survival), (P = 0.0001). Percent survival of gonococci in each of the

serum fractions was expressed as a function of the nanomolar

concentrations of anti-LOS IgG in the IgG fraction (Eluate) or

anti–LOS IgM present in the IgM + IgA fraction (Flow-through;

Figure 4B); IgA is not bactericidal. On a nanomolar basis, the anti-

LOS IgG fraction (Figure 4B; labeled IgG (Eluate)) was ,2.9-fold

more bactericidal than the anti-LOS IgM fraction (Figure 4B;

labeled IgM + IgA (Flow-through)). Both anti- LOS IgG and IgM

+ IgA fractions showed a significant inverse correlation with

bacterial survival (R2 = 0.974 for IgG, P = 0.0003 and R2 = 0.877

for IgM, P = 0.006).

Having shown that the majority of the killing activity in each of

the 6 immune sera was mediated by anti-LOS IgG antibody, we

next compared killing by polyclonal immune IgG antibody with

killing by mAb 2C7. In the presence of human complement, mAb

Oligosaccharide Mimotope Gonococcal Vaccine
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2C7 also killed FA1090wt in a concentration-dependent manner

(Figure 4B; R2 = 0.9661, P = 0.0004,). Using 50% survival in the

bactericidal assay as a measure to discriminate bactericidal activity

in the different fractions (Figure 4B), on a nanomolar basis, the

polyclonal IgG fraction in sera from mice immunized with MAP1-

MPL was ,10–12.5-fold more bactericidal against FA1090wt

than mAb 2C7 (Figure 4B).

Gonococcal infection is attenuated in mice immunized
with MAP1

In Groups 1 and 2 (Experimental Design shown in Figure 5),

MAP1 and MAP-control immunized mice (n = 16 in each group in

Group 1 and n = 10 and n = 7 respectively, in Group 2) were

selected/pre-treated as described in Materials and Methods and

then challenged intravaginally with FA1090wt (5.46105 CFU in

Group 1 and 46105 CFU in Group 2). Fourteen of 16 mice from

the MAP1 group in Group 1, 10/10 mice in Group 2 and 15/16

mice from the MAP-control group in Group 1 and 6/7 mice in

Group 2 became infected at the outset (defined by a positive

intravaginal culture for N. gonorrhoeae on Day 1 and/or 2). Time to

clearance of FA1090wt by Kaplan Meier was decreased in MAP1

vs. MAP-control immunized mice (median time of clearance, 5 vs.

9 days) in each experiment (P = 0.0001 and P = 0.002 in Groups 1

and 2, respectively) (Figure 6A). Mixed model analysis indicated

Figure 2. Survival of FA1090wt inoculated into mice passively immunized with mAb 2C7. mAb 2C7 (dashed lines in A. and B.) vs. control
IgG3l mAb (solid lines) treated animals followed by challenge with FA1090wt. Two separate experiments were performed; Group 1 and Group 2
(n = number of infected mice in each group) as indicated. A. Kaplan Meier analysis of time to clearance of FA1090wt showing differences in clearance
of mAb 2C7 vs. control IgG3l mAb treated animals. B. Colonization of FA1090wt (Log10 CFU) measured daily in mAb 2C7 vs. control IgG3l mAb
treated animals. C. Bacterial burdens consolidated over time (Area Under the Curve [log 10 CFU] analysis) of mAb 2C7 vs. control IgG3l mAb treated
animals.
doi:10.1371/journal.ppat.1003559.g002

Oligosaccharide Mimotope Gonococcal Vaccine
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significant differences in colonization trends of FA1090wt over

time between the two groups comparing MAP1 vs. MAP-control

immunized mice in both Groups 1 (P = 0.0001) and 2 (P,0.0001)

(Figure 6B). A significant difference in the Mean Areas Under the

Curve (MAUCs) (log10 CFU vs. time) between groups inoculated

with FA1090wt was seen in each of the challenge experiments:

P = 0.001 in Experiment 1 and P,0.0001 in Experiment 2

(Figure 6C).

Figure 3. Anti-LOS IgG antibody responses induced by MAP1-MPL immunization. 32 BALB/c mice were immunized intraperitoneally (ip)
with MAP1 emulsified with MPL and boosted four times at 3-week intervals. A. Total anti-LOS IgG antibody levels at wk 5, 8,11 and 14 following
immunization. B. Post-immunization (wk 14) anti-LOS IgG subclass, IgM and IgA anti-LOS antibody levels. Results are represented as box plots; the
spots represent outliers beyond the 1.5 IQR (intraquartile range). IgG subclass responses indicate a TH1-biased response (see text, [22]).
doi:10.1371/journal.ppat.1003559.g003

Figure 4. Bactericidal activity of serum fractions directed against FA1090wt from 6 mice immunized with MAP1-MPL. On average, the
serum fractions eluted from Protein A/G plus agarose maintained 96% of the anti-LOS IgG concentrations of whole sera. Flow-through fractions
maintained 92% and 81% of IgM and IgA anti-LOS concentrations, respectively, as compared to whole sera and contained no IgG (Supplemental
Table S3). A. Bactericidal activity of immune Whole serum, IgG-depleted immune serum (labeled IgM + IgA (Flow through)) and immune IgG fraction
(labeled IgG (Eluate)) from 6 mice immunized with MAP1-MPL. Results are expressed as % survival of FA1090wt CFUs surviving incubation for 30 min.
in a reaction mixture containing 20% serum (each of the 6 immune sera were tested separately) or an amount of each of the corresponding
chromatographic fractions that contained the equivalent of the amount of IgG or IgM in 20% of the parent serum. Complement (17% (v/v)) was
added separately. Results are expressed as survival at 30 min. compared to survival at 0 min. B. Immune IgG (Eluate) anti-LOS was more bactericidal
than immune IgM + IgA (Flow-through) anti-LOS and mAb 2C7, on a nanomolar basis. The percent survival of FA1090wt in the presence of serum
fractions from of the each of the 6 mice immunized with MAP1-MPL: (1) immune IgG (Eluate, black circles); (2) IgM + IgA ((Flow-through), red squares)
and separately, (3) serial dilutions of mAb 2C7 (blue triangles). Results of each chromatographic fraction or serial dilution of 2C7 mAb were plotted as
a function of the anti-LOS IgG, IgM or 2C7 (also IgG) concentrations (nM), respectively. Results are expressed as % survival of FA1090wt CFUs in the
presence of immune serum fractions or mAb 2C7 with added complement (17%) at 30 min compared to survival at 0 min. The dashed black vertical
lines show the x-intercepts (abscissae) that indicate the concentration of the Anti-LOS antibody concentration (nM) that yielded 50% survival (shown
by the solid horizontal black line) of FA1090.
doi:10.1371/journal.ppat.1003559.g004
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In the twenty four animals that became infected at the outset, in

Groups 1 and 2 combined, vaginal antibody concentrations varied

inversely with the burden of infection (Area Under the Curve);

p = 0.043.

Discussion

N. gonorrhoeae possess numerous mechanisms to subvert innate

immune mechanisms [23,24] and adaptive immune responses

following natural infection (reviewed in [25]). Lack of serum

bactericidal activity in infected persons [26] may result from the

presence of ‘‘blocking’’ (subversive) antibodies against Rmp, a

conserved antigenic structure in the gonococcal outer membrane

[27]. In addition, engagement of carcinoembryonic antigen

cellular adhesion molecule 1 (CEACAM1) on lymphocytes may

suppress CD4 T cell responses [28] that can augment or suppress

the development of protective immunity. In a murine infection

model [29], gonococci incite a TH17 response that promotes an

influx of PMNs that may serve as sanctuary for live gonococci that

gain entry via opsonic mechanisms [30]. There are a numerous

host factors in humans that influence gonococcal infection and

may restrict infection in the mouse model of infection [31] A

major restriction that is relevant to the IgG antibody protection

model includes complement regulators, such as factor H and C4b-

binding protein (C4BP) that down regulate IgG mediated

complement activation in humans but do not bind to N. gonorrhoeae

in the mouse and therefore do not exhibit regulator function

[32,33].

In vitro correlates of protection of gonococcal vaccines have not

been defined. Antibodies against serovar defining porin (Por) types

may be associated with a decreased risk of re-infection with N.

gonorrhoeae [34], although infected subjects were not fully protected

from re-infection with the same Por type [35]. Antibodies against

gonococcal opacity associated (Opa) proteins, which are phase-

variable and lack serovar specificity [36,37], were associated with

diminished rates of gonococcal salpingitis [37]. In contrast,

antibodies against Rmp, which is conserved, were associated with

enhanced likelihood of gonococcal infection in commercial sex

workers in Kenya [27]. It is noteworthy that anti-Rmp antibodies

block killing of gonococci by bactericidal antibodies [38].

It is no surprise that a safe and effective vaccine against N.

gonorrhoeae has remained elusive. Early efforts using killed bacteria

did not confer protection in humans [39]. Subsequently, pilin (Pil)

derived from a single strain was effective in protecting male human

volunteers from experimental urethral infection, but only against

the homologous strain [40]. This Pil vaccine failed to protect U.S.

military personnel stationed in Korea because of the high degree

of antigenic variation in Pil across strains [41]. An outer

membrane vaccine enriched with porin elicited antibody responses

against Rmp [42] and 2C7 [9] that were disproportionately

increased compared to porin antibody. The vaccine failed to

protect against experimental challenge with the strain used to

prepare the vaccine, principally, it was thought, because of the

excessive/subversive Rmp response [42] Nevertheless, immuno-

genicity of the 2C7 epitope in this vaccine trial and also in natural

infection [9] spurred our efforts to develop a peptide mimic of 2C7

as a vaccine candidate.

The 2C7 mimic displayed as a multi-antigen peptide elicited a

$4-fold increase in anti-LOS titers in 87% of immunized BALB/c

mice [11]. In the current study, we showed that either passive

Figure 5. Experimental design of active immunization with MAP1: Schematic representation. Mice entering the diestrus phase of the
estrous cycle were started on treatment (that day) with 0.5 mg. of water soluble 17b-estradiol (Sigma) given subcutaneously on each of three days;
22, 0 and +2 days (before, the day of and after inoculation) to prolong the estrus phase of the cycle and promote susceptibility to N. gonorrhoeae
infection. Antibiotics ineffective against N. gonorrhoeae were also used to reduce competitive microflora.
doi:10.1371/journal.ppat.1003559.g005
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immunization with mAb 2C7 that targets the epitope or

immunization with the 2C7 mimic, MAP1, shortens the course

of gonococcal infection in the mouse model of genital infection.

Vaginal levels of vaccine induced 2C7 immune antibodies

correlated significantly with reduction in bacterial burden. These

results strongly support an antibody–mediated effect that was

dependent on the presence of local IgG antibody in mouse

vaginas.

Greater specific bactericidal activity of IgG antibody in immune

sera compared to mAb 2C7 (Figure 4B) may have been related to

a predominant complement-activating IgG subclass (IgG2a)

response (Table S3) resulting from TH1-biased immune stimula-

tion elicited by MAP-1 used in combination with MPL, a known

TH1 adjuvant [43]. Simultaneous elicitation of IgG3 LOS

antibody indirectly confirmed that the peptide immunogen indeed

acted as a carbohydrate mimotope [13].

Immunization with MAP-1 MPL also elicited an anti-LOS IgM

response. Specific bactericidal activity of anti-LOS IgM was ,3-

fold less than anti-LOS IgG but accounted for one-third of

bactericidal activity in vaccinated mice. Pentavalent IgM is the

most potent complement activating class of antibody. We

speculate that the lesser role of anti-LOS IgM bactericidal

function, compared to anti-LOS IgG, may have resulted from

the recruitment of complement fixing IgG2b LOS antibodies (in

addition to the predominant IgG2a) by MAP1-MPL. Diminished

bactericidal function of IgM anti-LOS antibody may have also

Figure 6. Survival of FA1090wt inoculated into mice actively immunized with MAP1-MPL. Group 1: MAP1-MPL immunized mice (16
immunized, 14 infected) and MAP-control-MPL immunized mice (16 immunized, 15 infected) were challenged with FA1090wt (5.46105 CFU). Group
2: MAP1 immunized mice (10 immunized, 10 infected) and MAP-control immunized mice (7 immunized, 6 infected were challenged with FA1090wt
(46105 CFU). A. Kaplan-Meier curves indicating time to clearance of challenged N. gonorrhoeae FA1090wt. B. Mean log10 (CFU) isolation trends over
time. Isolation of N. gonorrhoeae from MAP1 and MAP-control immunized mice are represented by dashed and solid lines, respectively. C. Mean area
under the curve (AUC log10 CFU) vs. time computed for each mouse to consolidate cumulative infection; AUC log10 CFU was compared between
groups.
doi:10.1371/journal.ppat.1003559.g006
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resulted from lower affinity of immune IgM to whole bacteria

and/or diminished access of a bulky IgM molecule to the 2C7

epitope, which may be partially obscured by glycose extension that

occurs beyond lactose substitution of HepI within the LOS core

(Figure 1).

2C7 antibodies may shorten infection by enhancing comple-

ment activation on bacteria. Small amounts of complement [44]

on mucosal surfaces may not be sufficient to kill gonococci

directly but killing is amplified when complement receptors on

professional phagocytes, mostly PMNs, are targeted in combina-

tion with Fc receptors to enhance uptake of opsonized gonococci

[45,46]. Although controversy remains about the fate of

gonococci taken up by PMNs, gonococci that resist killing by

PMNs are ingested principally via non-opsonic mechanisms [30];

gonococci that are taken up via opsonic mechanisms are readily

killed [47].

Gonococci possess numerous phase-variable genes [48] that are

responsible for antigenic diversity, a major obstacle for vaccine

development. The 2C7 epitope requires expression of the phase-

variable lgtG gene product (Figure 1). However, the majority of

clinical isolates of N. gonorrhoeae express the 2C7 epitope [9]

suggesting a critical role for this structure in gonococcal survival

and pathogenesis. Our experiments showed durability/persistence

of the 2C7 epitope despite selective immune pressure; FA1090

colonies isolated throughout the course of infection in immune

mice always expressed the 2C7 epitope. Indeed, an lgtG deletion

mutant of FA1090wt was more rapidly cleared in the murine

infection model.

We acknowledge that mice immunized with MAP1 were not

resistant to intravaginal challenge; rather they showed enhanced

clearance of infection and diminished bacterial burdens. We note

that fewer than 50% of immune animals cleared infection in the

first 5 days and accelerated decreases in bacterial loads did not

occur until after the third day of infection.

In conclusion, a vaccine that targets the 2C7 LOS epitope

represents a significant step forward in the development of a

vaccine against gonococcal infection. We are entering an era

where conventional antibiotics against this infection have ceased to

be universally effective. Public health measures, including immu-

nization of high-risk individuals with a safe and effective vaccine to

curb the spread of this disease are critical.

Materials and Methods

Ethics statement
Normal human serum samples were anonymized, pooled and

used as a source of human complement in this study. Collection of

sera and its use were approved by the University of Massachusetts

Medical School Institutional Review Board (IRB) (Docket No. H-

11733). Informed, written consent was obtained from all serum

donors. Use of animals in this study was performed in strict

accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the National Institutes of

Health. The protocol was approved by the Institutional Animal

Care and Use Committee (IACUC) at the University of

Massachusetts Medical School (Docket No. A-1931).

Bacterial strains
N. gonorrhoeae FA1090wt (PorB1B, streptomycin resistant, serum

resistant [SR]) [49], was used for mouse experimental challenge.

To evaluate the contribution of the 2C7 LOS structure to

gonococcal fitness in the mouse, an isogenic mutant that lacked the

2C7 epitope, FA1090lgtG2, lacking HepII glycans and conse-

quently the 2C7 epitope [12], was constructed and used for

comparison. A 1.2 kb fragment of DNA containing lgtG was

amplified from N. gonorrhoeae strain 398079 [50] using the primers

lgtGF530 (CGCATTACCCTACCCCCTCACGCAC) and

lgtGR1729 (TCTGTACGACGTTTTGAAAATTGC). The re-

sultant amplicon was cloned into pCR2.1-TOPO (Invitrogen,

Carlsbad, CA). The plasmid (pRYGW1) that was recovered was

digested with StuI and ligated to a blunt 2.6 kb tetracycline

resistance cassette containing tetM that had been excised from

pHSX-tetM-lacIOP [51] using HincII. Linearized plasmid DNA

was used to transform FA1090wt as described previously [52].

Transformants were selected on GC agar base media (Remel,

Lenexa, KS) containing Isovitalex equivalent and 0.2 mg/ml

tetracycline. PCR was used to confirm the lgtG::tet genotype.

FA1090wt and FA190lgtG2 LOS structures were assessed by:

silver staining of LOS separated by SDS-PAGE; western blot using

mAbs 3F11, L1, L8 and 2C7 [18,19,20,21]; compositional analysis

by negative ion spectrometry and DNA sequencing of the homo-

polymer repeats present in the phase-variable lgtA, lgtC, lgtD and

lgtG genes.

Monoclonal antibody (mAb)
mAb 2C7 (murine isotype IgG3l) [9], directed against the 2C7

epitope was affinity purified as described previously [11].

Human serum
Normal human sera (NHS) obtained from 13 healthy adult

human volunteers were equally distributed into a pool, aliquoted

and stored at 270uC.

Multiple antigen peptide (MAP) synthesis
MAP1 (calculated molecular mass, 15,360 daltons) and MAP-

control peptide (mass,16,176 daltons) were prepared and con-

firmed as described previously [11].

Passive immunization of mice
Female BALB/c mice 5–6 wks of age (Jackson Laboratories) in

the diestrus phase of the estrous cycle were started on treatment

(that day) with 0.5 mg. of water soluble 17b-estradiol (Sigma)

given subcutaneously on each of three days; 22, 0 and +2 days

(before, the day of and after inoculation) to prolong the estrus

phase of the cycle and promote susceptibility to N. gonorrhoeae

infection. Antibiotics ineffective against N. gonorrhoeae were also

used to reduce competitive microflora [53,54] . Estradiol treated

mice were given either mAb 2C7 or control IgG3l mAb

intraperitoneally (ip) at a dose of 20 mg (10 mg twice a day) for 3

consecutive days: 2 days prior to infection and the day of infection.

Dosing of 2C7 mAb was determined a priori and yielded serum

mAb levels of 1.0460.06 mg/ml on the day of infection and the

subsequent 4 days and vaginal levels of 0.0160.004 mg/ml on the

day of infection, the next day and 0.00660.004 mg/ml on the

third day (data not shown). IgG3l mAb was administered using

the same schedule.

Active immunization of mice
Two groups of 32 female BALB/c mice (Jackson Laboratories),

aged 5–6 weeks, were immunized intraperitoneally (ip) on the

same day with either 50 mg of MAP1 or 50 mg of MAP-control,

each emulsified in 75 mg of Monophosphoryl Lipid A (MPL)-

containing adjuvant (Sigma Adjuvant System). Primary immuni-

zation was followed by 3 booster doses at 3 weekly intervals

(Figure 2) and blood was collected 2 weeks following each boost for

serology. These mice were used for studies of experimental

infection.
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Fractionation of mouse immune serum
We passed aliquots (250 ml) of sera from 6 additional uninfected

mice immunized with MAP1 over Protein A/G-agarose (Pierce).

Flow through and eluent fractions were dialyzed (0.9% saline;

Amicon 15 ultra device [30 kDa cutoff]) and concentrated back to

original volumes. Anti-LOS IgG, IgM and IgA concentrations

were determined by ELISA.

Measurement of anti-LOS antibodies (mouse serum,
vaginal washings and mAb 2C7) by ELISA

Mouse immune serum or mAb 2C7 each diluted in PBS

containing 0.05% Tween 20 was dispensed into microtiter wells

(Immulon 1B.) coated with whole bacterial lysates of FA1090wt (or

mutant F1090lgtG2) and ELISA performed [11]. Mouse vaginal

cavities were swabbed with sterile polyester tipped applicators

(Solon Manufacturing Company) that were rinsed/eluted in

100 ml normal saline and dispensed onto microtiter wells coated

with whole bacterial (FA1090wt) lysates and ELISA performed

[11].

Measurement of LOS IgG subclass antibodies
LOS IgG subclass antibodies were quantified using a mouse

isotype-specific ELISA kit (Bethyl Laboratories). Diluted immune

serum was added to microtiter wells coated with whole bacterial

lysates of FA1090wt and ELISA performed [11].

Serum bactericidal assays
Serum bactericidal assays against FA1090wt [55] were

performed with: i) mAb 2C7, ii) sera from 6 MAP1 immunized

mice not challenged with N. gonorrhoeae, iii) immune serum IgG

fractions eluted from protein A/G-agarose and iv) flow through

fractions devoid of immune containing residual IgM + IgA. Pooled

NHS was used as a source of complement.

Intravaginal challenge
Non-immune mice. A dual/competitive infection experi-

ment was performed using a mixture of FA1090wt and

FA1090lgtG2 to determine if the 2C7 LOS structure provided

gonococci a survival advantage. Female BALB/c mice 5–6 wks of

age (Jackson Laboratories) in the diestrus phase of the estrous cycle

were treated with water soluble 17b-estradiol (Sigma) and

antibiotics as described previously [53,54] and the following day

were vaginally inoculated with a mixture of FA1090wt

(1.56105 CFU) and FA1090lgtG2 (1.66105 CFU) on Day 0 and

colony forming counts (CFUs) performed daily by duplicate

plating. 100 ml vaginal swab rinses were quantitatively cultured for

N. gonorrhoeae daily (43) onto GC agar supplemented with

vancomycin, colistin, nystatin, trimethoprim and streptomycin

(GC-VCNTS) and GC-VCNTS plus tetracycline (0.2 mg/ml); the

latter permitted growth of FA1090 lgtG2 but not the wt strain.

2C7 mAb passively immunized animals. Female BALB/c

mice 5–6 wks of age (Jackson Laboratories) in the diestrus phase of

the estrous cycle were treated with water soluble 17b-estradiol

(Sigma) and antibiotics as described above [53]. Mice were

passively immunized with mAb 2C7 or IgG3l mAb and were

challenged intravaginally with FA1090wt (5.76105 CFU) on the

following day (Day 0) and colony forming counts (CFUs)

determined daily by duplicate plating of vaginal swab rinses as

described above. A replicate experiment was performed on a

second group a week later using the same number of animals and

protocol used in the first group; animals were challenged with

3.66105 CFU of FA1090wt. Results in the two groups were

analyzed separately. To assess durability of the 2C7 epitope under

antibody pressure, colony blots were performed on all gonococcal

colonies isolated from animals that remained infected in the

replicate experiment on day 7 after inoculation. Colony containing

agar plates were overlayed with nitrocellulose and transfer of

colony material was allowed to proceed for at least 2 minutes or

until the membranes were totally wet. Then the membranes were

blotted gently with kimwipes 3 times using a fresh kimwipe each

time. Membranes were then blocked with PBS-1% dry milk for

30 min at 24C and incubated with mAb 2C7 for 15 h at 4uC.

Membrane-bound mAb 2C7 was incubated for one hour with

alkaline phosphatase-conjugated anti-mouse IgG (Sigma) used at

1:1000 dilution in PBS-1% dry milk followed by 5-bromo-4-

chloro-3-indolyl phosphate/nitro blue tetrazolium (BCIP/NBT)

for detection.

To test mAb 2C7 specificity, passively immunized mice

inoculated with mutant FA1090lgtG2 were also examined.

MAP1 actively immunized animals. At fourteen weeks

after immunization, we identified immunized mice that had

entered the diestrus phase the day before challenge was to be

performed; diestrus is asynchronous and not all of the animals

entered the diestrus phase at the same time. Immune mice that

were in the diestrus phase of the cycle were treated with water

soluble 17b-estradiol (Sigma) as above to prolong the estrous phase

of the cycle and promote susceptibility to N. gonorrhoeae. Antibiotics

were also used to reduce competitive microflora [53,54]. Half [16

animals] of each group that had been immunized with MAP1 or

MAP-control, were challenged at this time (Group 1 in Figure 5)

and colony forming counts (CFUs) determined daily by duplicate

plating of vaginal swab rinses as described above. A week later,

using the identical protocol that identified and treated Group 1

animals, we challenged as many of the remaining immunized

mice; 10 immunized with MAP1 and 7 with MAP-control, that

had entered the diestrus phase the day before challenge (Group 2

in figure 5). Results in the two groups were analyzed separately. By

performing challenge experiments at two separate times, we used

more animals, thereby gaining maximum usage of the immunized

animals.

Group 1 animals consisted of estrogen treated immune mice

(MAP1 (n = 16) and MAP-control (n = 16)) that were challenged

intravaginally with FA1090wt (5.46105 CFU) that expresses the

2C7 epitope (Figure 5). Group 2 animals, MAP1 (n = 10) and

MAP-control (n = 7)) immunized mice were similarly treated with

estrogen and were challenged intravaginally with FA1090wt

(46105 CFU) (Figure 2). In all experiments, vaginal mucus was

quantitatively cultured on GC-VCNTS daily for N. gonorrhoeae as

described above [53].

Statistical analysis
Experiments that compared time to clearance of N. gonorrhoeae

CFU in two independent groups of mice estimated and tested

three characteristics of the data: Time to clearance, longitudinal

trends in mean log10 CFU and the cumulative CFU as area under

the curve (AUC). Statistical analyses were performed using mice

that initially yielded bacterial colonies on Days 1 and/or 2.

Median time to clearance was estimated using Kaplan-Meier

survival curves; the times to clearance were compared between

groups using a log-rank test. Mean log10 CFU trends over time

were compared between groups using a linear mixed model with

mouse as the random effect using both a random intercept and a

random slope. A quadratic function in time was determined to

provide the best fit; random slopes were also quadratic in time. A

likelihood ratio test was used to compare nested models (with and

without the interaction term of group and time) to test whether the

trend differed over time between the two groups. The mean area
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under the curve (log10CFU vs. time) was computed for each mouse

to estimate the bacterial burden over time (cumulative infection);

the means under the curves were compared between groups using

the nonparametric rank sum test because distributions were

skewed or kurtotic.

In the experiment that used unimmunized animals challenged

with strains FA1090 wt and FA1090 lgtG2 simultaneously and in

passive and active immunization experiments that used strains

individually the data were paired. Individual Kaplan-Meier curves

were estimated with median time to clearance. Paired times to

clearance were tested using a signed rank to test the paired

differences. Mean log10 CFU trends over time were compared by

taking the difference between wt and mutant within each mouse at

each day and modeling the difference over time, testing if the

difference was significantly different than zero using a mixed

model with mouse as a random effect. The mean area under the

curve for wt and mutant were computed separately and paired

differences were compared using a signed rank test.

Measurement and comparison of serum IgG anti-LOS levels at

weeks 5, 8, 11 and 14 after immunization with MAP1 were carried

out using linear mixed models with mouse as the random effect

(random intercept and slope). A Wald chi-square tested the overall

significance of antibody levels at each of the weeks when

measurements were made; estimates of differences in levels

between adjacent times (weeks) used the coefficients of the model.

The association of burden of infection as measured by AUC of

log10CFU vs. time with vaginal antibody concentration in the

combined experiments was tested using linear regression analysis

stratified by experiment.

Supporting Information

Figure S1 Selective survival of FA1090wt (1.56105 CFU)
and FA1090lgtG 2 (1.66105 CFU) mixed in equal pro-
portions and inoculated into mice. A. Kaplan Meier analysis

of time to clearance showing differences in clearance of FA1090wt

(red solid line) and FA1090lgtG2 (blue dotted line) mixed together;

B. Colonization (Log10 CFU) at daily intervals of FA1090wt and

FA1090lgtG 2 , limit of detection, ,5 CFUs; C. Bacterial burdens

consolidated over time (Area Under the Curve analysis) of

FA1090wt and FA1090lgtG2.

(TIF)

Figure S2 Survival of FA1090lgtG 2 inoculated into mice
passively immunized with mAb 2C7 (dashed line) vs.
control immunization (solid line). A. Kaplan Meier analysis

of time to clearance showing differences in clearance of mAb 2C7

(dashed line) vs. control IgG3l mAb (solid line) treated animals; B.

Colonization (Log10 CFU) at daily intervals of mAb 2C7 (dashed

line) vs. control IgG3l mAb (solid line) treated animals; C.
Bacterial burdens consolidated over time (Area Under the Curve

analysis) of mAb 2C7 vs. control IgG3l mAb treated animals.

(TIF)

Figure S3 Anti-IgG LOS antibody responses induced by
MAP1-MPL immunization. 32 BALB/c mice were immu-

nized intraperitoneally (ip) with MAP1 emulsified with MPL and

boosted four times at 3-week intervals. Total anti-LOS IgG

antibody levels at wks 5, 8, 11 and 14 following primary

immunization are shown. Mixed model analysis of mean anti-

LOS antibody levels over time showed significant increases

between weeks designated for antibody testing, comparing

antibody levels on week 5 vs. 8, week 8 vs.11 and week 11 vs.

14 (p,0.001).

(TIF)

Table S1 Comparison of serum immunoglobulin iso-
type-specific anti-LOS concentrations of immunized
mice used for challenge versus identically immunized
mice used only for anti-LOS measurements and bacte-
ricidal assays.

(DOC)

Table S2 Mean Differences (and 95% CI) of serum
immunoglobulin isotype-specific anti-LOS concentra-
tions between immunized mice used for challenge
versus identically immunized mice used only for anti-
LOS measurements and bactericidal assays.

(DOC)

Table S3 Anti-LOS IgG, IgM and IgA concentrations in
sera of 6 mice immunized with MAP1-MPL and their
protein A/G fractionates.

(DOC)
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