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Abstract

Effective T cell responses can decisively influence the outcome of retroviral infection. However, what constitutes protective
T cell responses or determines the ability of the host to mount such responses is incompletely understood. Here we studied
the requirements for development and induction of CD4+ T cells that were essential for immunity to Friend virus (FV)
infection of mice, according to their TCR avidity for an FV-derived epitope. We showed that a self peptide, encoded by an
endogenous retrovirus, negatively selected a significant fraction of polyclonal FV-specific CD4+ T cells and diminished the
response to FV infection. Surprisingly, however, CD4+ T cell-mediated antiviral activity was fully preserved. Detailed
repertoire analysis revealed that clones with low avidity for FV-derived peptides were more cross-reactive with self peptides
and were consequently preferentially deleted. Negative selection of low-avidity FV-reactive CD4+ T cells was responsible for
the dominance of high-avidity clones in the response to FV infection, suggesting that protection against the primary
infecting virus was mediated exclusively by high-avidity CD4+ T cells. Thus, although negative selection reduced the size and
cross-reactivity of the available FV-reactive naı̈ve CD4+ T cell repertoire, it increased the overall avidity of the repertoire that
responded to infection. These findings demonstrate that self proteins expressed by replication-defective endogenous
retroviruses can heavily influence the formation of the TCR repertoire reactive with exogenous retroviruses and determine
the avidity of the response to retroviral infection. Given the overabundance of endogenous retroviruses in the human
genome, these findings also suggest that endogenous retroviral proteins, presented by products of highly polymorphic HLA
alleles, may shape the human TCR repertoire that reacts with exogenous retroviruses or other infecting pathogens, leading
to interindividual heterogeneity.
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Introduction

Adaptive immunity to viral infection relies on appropriate

activation of T cells by complexes of viral peptides with MHC

molecules. The host MHC haplotype, the nature of the viral

peptide targeted and the T cell receptor (TCR) repertoire of

responding T cells are three interconnected parameters that play a

decisive role in the outcome of infection. Indeed, the MHC is the

predominant genetic factor affecting susceptibility to many

infectious diseases [1–4]. For example, the HLA locus shows the

strongest genetic association with control of HIV infection, with

certain HLA alleles having been consistently found to confer a

protective advantage [3,5,6]. Although the precise underlying

mechanism is not completely understood, T cell responses

restricted by protective HLA/MHC alleles often comprise narrow-

er TCR repertoires, dominated by public TCR sequences, and

exhibit higher magnitude, avidity or depth, and thus greater

contribution to HIV or SIV control, than those restricted by non-

protective HLA/MHC alleles [7–9].

Bias in the use of certain TCRVa (Va) or TCRVb (Vb) chains

has been frequently observed in the T cell response to several

antigenic epitopes, and public T cell responses with identical or

similar TCRs have been found to dominate the response of

different individuals to a given epitope. Skewed TCR usage has

often correlated with higher functional avidity to a given antigenic

epitope, and, in diverse systems, also translated into more efficient

protection against infection [10–12]. Despite the potential

importance in cellular immunity to infection, however, the

mechanisms by which TCR biases (and particularly high-avidity

T cell responses to viral infections) are generated and maintained

remains incompletely understood. The mechanisms leading to bias

in the T cell response will vary considerably depending on the

antigenic peptide and MHC combination. TCR repertoire bias

can be generated during thymic selection, leaving only certain Va
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or Vb chains able to respond to a given antigen [10]. It can also be

generated at the initiation of the immune response, where clones

using particular Va or Vb chains may have a recruitment or

proliferative advantage and can quickly dominate the response

[10]. Lastly, bias can also be generated during chronic viral

infection either due to preferential maintenance of certain T cell

clones or differential margins for cross-reactivity with viral escape

mutations [10] or by prior or concurrent infection with

heterologous viruses, sharing cross-reactive epitopes [13].

We have previously described the TCRb-transgenic strain EF4.1,

which generates increased frequencies of CD4+ T cells reactive with

the H2-Ab-restricted env122-141 epitope of Friend murine leukemia

virus (F-MLV) [14]. Virus-specific EF4.1 CD4+ T cells show bias in

the use of endogenous Va2 chains in their response to infection with

Friend virus (FV), a retroviral complex of F-MLV and spleen focus-

forming virus (SFFV) [14,15]. Use of Va2 chains by virus-specific

CD4+ T cells creates higher avidity for the same epitope than use of

other Va chains, and although they represent a minority in the

naı̈ve repertoire, high-avidity Va2 T cells become the dominant

subset at the peak of the response [15]. Here we have examined the

potential mechanisms underlying the formation of TCR repertoire

diversity in this system, which might be responsible for the high-

avidity response to FV infection. We have found that a thymic

selection event was necessary for the dominance of Va2 virus-

specific CD4+ T cells during the response to FV infection. Selection

of virus-specific CD4+ T cells was mediated by a self peptide

encoded by an endogenous retrovirus with substantial similarity to

F-MLV. Unexpectedly, despite deleting a sizeable fraction of virus-

specific CD4+ T cells, negative selection by this endogenous

retrovirus was necessary for a predominantly high-avidity response

to FV infection.

Results

Higher functional avidity of Va2 F-MLV env122-141-specific
CD4+ T cells

On average, 4% of EF4.1 CD4+ T cells in virus-naı̈ve mice

react with the env122-141 peptide, of which approximately 25%

stain positive with the anti-Va2 monoclonal antibody B20.1

[14,15]. Va2 env-specific CD4+ T cells were previously [14,15]

found to be .30-fold more sensitive than non-Va2 T cells to

stimulation with a 20-mer env122-141 peptide spanning the core

env128-134 epitope [16]. This higher avidity of Va2 CD4+ T cells

was not due to recognition of the core epitope-flanking residues by

this family of Va chains, as has been described for other TCR –

epitope combinations [17], since it was maintained against a series

of N-terminal truncated peptide epitopes (Figure S1A). Thus, Va2

CD4+ T cells would recognize with higher avidity all the nested

peptides of variable lengths likely to be generated during in vivo

processing of env [18].

To examine whether the polyclonal Va2 CD4+ T cell

population displayed higher affinity for F-MLV env-derived

epitopes even at the clonal level, we generated hybridoma cell

lines from primary EF4.1 CD4+ T cells stimulated in vitro with

either a low (1027 M) or a high (1025 M) peptide dose. In

agreement with our previous findings [14,15], 71% (20/28) and

30% (9/30) of hybridoma cell lines derived from CD4+ T cells

stimulated with the low or high peptide dose, respectively, were

Va2+. Similarly to primary EF4.1 CD4+ T cells, randomly selected

Va2 T cell hybridomas were more sensitive to stimulation with all

the peptides tested than non-Va2 ones, irrespective of whether a

high or low peptide dose was used for their generation (Figure

S1B). Thus, the higher avidity of Va2 CD4+ T cells for F-MLV

env-derived epitopes was also observed at the level of individual

clones.

To assess whether low-avidity F-MLV env-reactive CD4+ T

cells were characterized by expression of any particular family of

endogenous Va chains, we screened env122-141-specific non-Va2

CD4+ T cells for expression of Trav transcripts encoding different

Va families. Although this analysis indicated enrichment for

Trav9 expression (encoding Va3), only a small percentage of

env122-141-reactive non-Va2 CD4+ T cells stained positive with

the anti-Va3.2 monoclonal antibody RR3-16 (unpublished data),

and only 2 out of 4 F-MLV env-reactive non-Va2 T cell

hybridomas were positive for Va3.2 (Table S1). However, Va3.2

is used preferentially in CD8+ T cells in B6 mice, whereas the

other three of the four expressed Va3 family members are

preferentially expressed in CD4+ T cells [19]. It was therefore

possible that env122-141-reactive non-Va2 CD4+ T cells that did

not stain positive with the RR3-16 antibody were also expressing

Va3. Indeed, cloning and sequencing of expressed endogenous

Trav genes from theses hybridomas revealed that they were all

members of the Trav9 family (Table S1). Thus, similarly to

selective usage of Va2 chains in high-avidity cells, low-avidity F-

MLV env122-141-reactive CD4+ T cells selectively used Va3

chains. However, in the absence of a Va3-specific antibody that

can detect all Va3 family members, these cells were referred to

here as non-Va2 cells.

Lastly, we tested whether biased use of Va2 chains also

characterized the response of non-transgenic CD4+ T cells to F-

MLV env. CD4+ T cells from wild-type (wt) C57BL/6 (B6) mice 7

days post FV infection were stained with an env123-141-presenting

tetramer (Ab-env123-141). In comparison with a control tetramer,

staining with Ab-env123-141 tetramer identified a measurable

population of env122-141-specific CD4+ T cells in all infected mice

(Figure 1A), in agreement with published data [20,21]. FV

infection had no impact on the frequency of Va2 cells in naı̈ve

(CD44lo) and total memory (CD44hi) CD4+ T cells (15% and 12%,

respectively), with minimal variation between individual mice

(Figure 1B). In contrast, the frequency of Va2 cells in Ab-env123-141

tetramer+ CD4+ T cells varied considerably between 4% and 23%.

These results revealed substantial deviation in Va2 usage in Ab-

Author Summary

Our immune systems defend against viral infection.
However, the immune response to a virus often differs
substantially between individuals, as does the outcome of
infection. The antiviral immune response relies on recog-
nition of viral proteins by T lymphocytes using T cell
antigen receptors (TCRs). TCRs are created randomly in an
individual and each T lymphocyte has a different TCR. T
lymphocytes with TCRs that recognize our own (self)
proteins are removed during development, to prevent
autoimmunity. Our cells can also make proteins that
belong to endogenous retroviruses (ERVs), relics of
ancestral retroviral infection that accumulated during
evolution to constitute a large proportion of our genomes.
The impact of ERVs on lymphocyte development and the
subsequent influence on antiviral immunity is incomplete-
ly understood. Here, we use a mouse model to investigate
this link and show that the T lymphocyte response to
exogenous retrovirus infection is heavily influenced by an
ERV. Surprisingly, we find that ERVs do not always have a
negative impact on immunity, and in our model they
improve the sensitivity with which T lymphocytes react to
retroviral infection. This work may thus provide a basis for
the understanding of the heterogeneity in immunity to
retroviral infections in genetically diverse individuals.
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env123-141 tetramer+ CD4+ T cells from the same usage in total

CD4+ T cells, but also indicated substantial heterogeneity.

However, this particular tetramer is known to bind only some

env122-141-specific T cell clones but not others [14,22]. Further-

more, at the peak of their response, env122-141-specific CD4+ T cell

reversibly downregulate up to 70% of their surface TCR [15,23],

which could prevent tetramer binding. Indeed, combining

adoptive transfer of EF4.1 CD4+ T cells and tetramer staining

revealed that Ab-env123-141 tetramer staining was restricted to

env122-141-reactive CD4+ T cells with above-average TCR levels,

independently of Va usage, and TCR re-expression improved

tetramer staining (Figure 1C–F). Thus, detection of env122-141-

reactive CD4+ T cells by Ab-env123-141 tetramer staining was

eclipsed by in vivo antigen-induced TCR downregulation. Collec-

tively, these results both validated and necessitated the use of

env122-141-reactive EF4.1 CD4+ T cells that can be indelibly

identified, independently of Ab-env123-141 tetramer binding, to

study the requirements for induction of a high-avidity CD4+ T cell

response to F-MLV env.

Deletion of F-MLV env122-141-specific CD4+ T cells by
Emv2-encoded env

F-MLV env122-141-reactive CD4+ T cells in EF4.1 mice have a

naı̈ve phenotype [14], and it was therefore likely that the F-MLV

env122-141-reactive TCR repertoire and associated avidity differ-

ences were the result of thymic selection events. We searched the

mouse proteome for the presence of self-derived epitopes with

homology to F-MLV env122-141. This approach identified the

single-copy endogenous ecotropic MLV at the Emv2 locus [24].

Emv2 shares 80% homology with F-MLV at the DNA sequence

level, and although it represents a full-length provirus, it is unable

to produce infectious particles due to a single inactivating point-

mutation in the pol gene [24]. Nevertheless, Emv2 has full potential

for env expression, and, importantly, the env122-141 epitope is

almost identical between Emv2 and F-MLV, with the exception of

a Y instead of an L at position 128 (Figure S2A). For this reason,

Emv2 and F-MLV env-derived epitopes were referred to here as

env122-141Y and env122-141L, respectively. Position 128, together

with 129 and 133, have been previously mapped as important

Figure 1. Detection of env-specific CD4+ T cells by Ab-env123-141 tetramer eclipsed by antigen-induced TCR downregulation. (A) Ab-
hCLIP (control) or Ab-env123-141 tetramer staining in total CD4+ T cells isolated from the spleen of wild-type B6 mice 7 days post FV infection. Plots are
representative of 7 mice. (B) Frequency of Va2 cells in either bulk naı̈ve (CD44lo), bulk memory (CD44hi) or Ab- env123-141 tetramer+ CD4+ T cells from
the same FV infected mice. Horizontal short lines in naı̈ve and memory subsets denote the mean frequency of Va2 cells in the same populations from
uninfected mice. Each symbol represents an individual mouse. (C–F) CD45.1+ EF4.1 CD4+ T cells were adoptively transferred into wild-type B6
recipients that were infected with FV the same day. (C) Ab-env123-141 tetramer staining in host (CD45.12) or donor (CD45.1+) CD4+ T cells according to
TCRa or TCRb staining. Gates in donor CD4+ T cells are set around the median TCRa and TCRb staining, respectively. (D) Percentage of Ab-env123-141

tetramer+ cells in donor CD4+ T cells with TCRb (left) or TCRa (right) staining below or above the median. (E) Ab-hCLIP or Ab-env123-141 tetramer
staining in host or donor CD4+ T cells from the same recipients assessed directly ex vivo (top) or following 3-day in vitro culture in the absence of
antigenic stimulation (bottom). (F) Percentage of Ab-env123-141 tetramer+ cells in donor CD4+ T cells before and after in vitro culture. In (D) and (F) each
symbol represents an individual mouse from one of two experiments.
doi:10.1371/journal.ppat.1002709.g001
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contact residues for the SB14-31 TCR (Figure S2B), which was the

donor of the TCRb chain transgene used in EF4.1 mice [16].

We next investigated whether or not Emv2 could be involved in

T cell selection. In vitro stimulation with the env124-138Y epitope

activated a fraction of EF4.1 CD4+ T cells, which was however

smaller than the fraction activated by the env124-138L epitope

(Figure 2A). As EF4.1 mice generate a polyclonal TCR repertoire,

it was unclear whether the same CD4+ T cells could respond to

both epitopes. However, analysis of env124-138L-reactive T cell

hybridomas revealed the same TCR could be activated by both

env124-138L and env124-138Y epitopes, albeit less potently by the

latter peptide (Figure 2B). Thus, F-MLV env124-138-reactive TCRs

have the potential to recognize Emv2 env. This analysis also

revealed that Emv2 was not causing complete tolerance of either

env124-138L or env124-138Y epitopes. We then confirmed that Emv2

was expressed in primary and secondary lymphoid organs. Using

primers specific to the spliced env mRNA that could distinguish

between genuine transcripts and contaminating genomic DNA,

Emv2 was found to be expressed at low levels in the majority of

mice tested (Figure 2C). This low level of expression was further

confirmed by comparison with a newly-generated B6 congenic

strain lacking Emv2 (Figure S3). To evaluate the extent of Emv2-

mediated deletion of env-reactive CD4+ T cells more directly, we

generated B6-Emv22/2 EF4.1 mice and compared them with

Emv2-expressing EF4.1 mice. Emv2-deficient EF4.1 mice con-

tained a significantly higher frequency of env124-138L-reactive

CD4+ T cells than Emv2-sufficient EF4.1 mice, with Emv2, when

present, being responsible for the deletion of approximately 35%

of these cells (Figure 2D). Thus, albeit low, expression of Emv2 in

B6 mice significantly impacted on the frequency of env124-138L-

reactive EF4.1 CD4+ T cells.

The Emv2-selected CD4+ T cell repertoire retains full
antiviral activity

Emv2-mediated deletion of a proportion of env124-138L-reactive

EF4.1 CD4+ T cells suggested that Emv2 may impinge on

resistance to FV infection. We therefore examined the possible

effect of Emv2 expression on FV control. Firstly, we infected non-

transgenic B6 and Emv2-deficient B6 mice and measured the levels

of infected cells in the spleen. B6 mice are relatively resistant to FV

infection due to genetic resistance at the Fv2 locus and due to

mounting a strong adaptive immune response [1,25], resulting in

control of the infection by the third week. Percentages of FV-

infected (glyco-Gag+) erythroid precursor (nucleated Ter119+) cells

were significantly lower in B6-Emv22/2 mice than in wt

counterparts at day 7 of infection (Figure 3A). Nevertheless, wt

B6 mice effectively controlled FV infection to levels comparable

with those in B6-Emv22/2 mice by the second week of infection

(Figure 3A). Thus, Emv2 deficiency did not extensively increase the

natural resistance of B6 mice to FV infection.

The modest increase in resistance to FV infection in B6-

Emv22/2 mice suggested that this low Emv2 expression was

immunologically relevant, but did not indicate if any arm of the

adaptive immune response was affected. We thus measured the

FV-specific CD4+ T cell, CD8+ T cell and antibody responses in

these mice. In contrast to the MHC class II-restricted env122-141L

epitope, the FV-derived MHC class I-restricted epitopes that have

been described do not share extensive homology or cross-reactivity

with those derived from Emv2 [26–28]. We examined the CD8+ T

cell response to FV by measuring numbers of activated

CD44hiCD43+CD8+ T cells, irrespective of antigen specificity, in

the spleens of B6 and B6-Emv22/2 mice 7 days post FV infection

(Figure S4A). The two types of host showed comparable expansion

of CD44hiCD43+CD8+ T cells, suggesting they mounted a CD8+

T cell response of similar magnitude (Figure S4A). We further

measured the CD8+ T cell response to the immunodominant Db-

restricted epitope from the leader sequence gPr80gag85-93 encoded

by the F-MuLV gag gene [28]. CD8+ T cells specific to the

gPr80gag85-93 epitope display strong bias for the use of Va3.2 and

Vb5.2 in combination, which allows their identification by flow

cytometry [29]. Expectedly, FV infection led to an increase in the

percentage of Va3.2+Vb5.2+ cells in antigen-experienced

(CD44hi), but not naı̈ve (CD44lo) CD8+ T cells (Figure S4B).

However, this expansion of Va3.2+Vb5.2+CD44hiCD8+ T cells

was comparable in B6 and B6-Emv22/2 mice 7 days post FV

infection (Figure S4B).

We next examined the FV-specific antibody response of B6 and

B6-Emv22/2 hosts. As FV-neutralizing antibodies are not readily

Figure 2. Emv2 selects against a fraction of env124-138L-specific CD4+ T cells. (A) Dilution of prior CFSE label by primary EF4.1 CD4+ T cells
incubated for three days in vitro in the absence of peptide stimulation (-) or in the presence of 1025 M env124-138L or env124-138Y peptides. Numbers
within the plots denote the percentage of CFSE2 cells and are representative of 4 mice per condition. (B) IL-2 production by three env124-138L-specific
hybridoma T cell lines in response to in vitro stimulation with the same peptides at 561026 M. (C) Emv2 transcription, relative to Hprt transcription, in
thymi (Th) and spleens (Sp) of wild-type B6 or Emv2-deficient B6 mice (B6-Emv22/2). Each symbol is an individual mouse. The dashed line represents
the limit of detection. (D) Frequency of env124-138L-specific cells in primary CD4+ T cells from B6 (B6-EF4.1) or Emv2-deficient B6 (B6-EF4.1 Emv22/2)
EF4.1 mice. Data are the means 6 SEM (n = 9) from 3 experiments.
doi:10.1371/journal.ppat.1002709.g002
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detected in B6 mice on day 7 post FV infection [25], we measured

titers of antibodies that were able to bind F-MLV-infected cells

(Figure S4C). On day 7 post FV infection all mice produced both

IgG and IgM F-MLV-infected cell-binding antibodies that could

be measured by flow cytometry (unpublished data). However, titers of

these antibodies were low at this early time-point and in a

proportion of FV-infected mice they were below 50, a value that

we set as the detection limit (Figure S4C). Importantly, serum

titers of both IgG and IgM F-MLV-infected cell-binding

antibodies were similar between B6 and B6-Emv22/2 hosts (Figure

S4C).

Lastly, the frequency of Ab-env123-141 tetramer+ CD4+ T cells as

well as the frequency of Va2 cells within this population was highly

variable between individual mice and as a result not statistically

different between groups of B6 and B6-Emv22/2 hosts on day 7

post FV infection (Figure S4D). However, staining with the Ab-

env123-141 tetramer may have underestimated the frequency of

env122-141L-reactive CD4+ T cells (Figure 1) and it was also

possible that env122-141L-reactive CD4+ T cells selected in the

presence or absence of Emv2 expressed TCRs with distinct Ab-

env123-141 tetramer-binding properties. Furthermore, virus-specific

CD4+ T cells can mediate both direct and indirect protection

against FV infection [15,23,30], and env122-141-specific CD4+ T

cells have been shown to mediate direct cytotoxic activity [31]. It

was thus uncertain whether weakened immunity in Emv2-

expressing mice was directly linked to a potentially less effective

CD4+ T cell response. We therefore examined the effect of Emv2

expression on the FV-specific CD4+ T cell response functionally

and directly. To this end, equal numbers of Emv2-selected or -

nonselected EF4.1 CD4+ T cells were transferred into the same

type of host. This approach ensured that only donor EF4.1 CD4+

T cells differed with respect to exposure to Emv2. Surprisingly, the

two types of donor CD4+ T cells provided comparable and almost

complete protection of wild-type B6 hosts, at the peak of FV

replication on day 7 post infection (Figure 3B, C). To rule out that

differences in antiviral activity between the two types of donor

CD4+ T cells were not missed because this activity was already

maximal, we have additionally used B6.A-Fv2s hosts, expressing

the susceptibility allele at the Fv2 locus, which confers susceptibility

to FV infection by enhancing proliferation of infected erythroid

Figure 3. Emv2-selected CD4+ T cells retain full antiviral activity. (A) Mean frequency (6 SEM, n = 8–19) of FV-infected (glyco-Gag+) Ter119+

cells in the spleens of FV-infected B6 or Emv2-deficient B6 mice (B6-Emv22/2). (B–C) CD4+ T cells isolated from either B6 (B6-EF4.1) or Emv2-deficient
B6 (B6-EF4.1 Emv22/2) EF4.1 mice were adoptively transferred into B6 or B6.A-Fv2s recipients that were infected with FV the same day and analyzed 7
days later. (B) Flow cytometric example of FV-infected Ter119+ cells from B6 recipients and (C) frequency of FV-infected cells in Ter119+ cells from the
spleens of B6 or B6.A-Fv2s recipients of CD4+ T cells. Control B6 and B6.A-Fv2s mice that received no CD4+ T cells (-) are also included. Each symbol is
an individual mouse. (D) Spleen index (left) and RBC count (right) of B6-Rag12/2Fv2s mice that were infected with FV and either received the same day
CD4+ T cells isolated from either B6 (B6-EF4.1) or Emv2-deficient B6 (B6-EF4.1 Emv22/2) EF4.1 mice or no cells (-). Each symbol is an individual mouse
analyzed 3 weeks post infection. (E) Titers of FV-neutralizing antibodies during the course of FV infection (left) and titers of F-MLV-infected cell-
binding IgG (middle) and IgM (right) 7 days post FV infection, in the sera of B6-Tcra2/2 mice that either received CD4+ T cells isolated from either B6
(B6-EF4.1) or Emv2-deficient B6 (B6-EF4.1 Emv22/2) EF4.1 mice or no cells (-) the day of the infection. Dashed lines represent the limit of detection.
Data are the means 6 SEM (n = 11–12) from 2 experiments.
doi:10.1371/journal.ppat.1002709.g003
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precursors [25]. The two types of donor CD4+ T cells provided

significant, suboptimal and, importantly, comparable protection in

B6.A-Fv2s hosts, at the peak of FV replication and expansion of

infected erythroid precursors on day 7 post infection in this strain

(Figure 3C). Thus, Emv2-mediated selection did not impair the

antiviral activity of CD4+ T cells exerted in wt hosts. To further

examine direct CD4+ T cell-mediated protection we transferred

equal numbers of Emv2-selected or -nonselected EF4.1 CD4+ T

cells into T and B cell-deficient Rag12/2 Fv2s hosts. Both types of

donor CD4+ T cells were similarly protective against severe FV-

induced splenomegaly (Figure 3D) that otherwise develops in these

hosts [15]. In addition, the two types of donor CD4+ T cells caused

comparable levels of anemia in these T and B cell -deficient hosts

(Figure 3D), which results from bone marrow pathology [14].

Lastly, FV-neutralizing antibodies were similarly and efficiently

induced in T cell-deficient Tcra2/2 hosts by transfer of either type

of donor CD4+ T cells, although they were slightly, but not

significantly higher in hosts of Emv2-nonselected CD4+ T cells on

day 7 post infection (Figure 3E). Nevertheless, at this time-point,

the two types of donor CD4+ T cells induced comparable titers of

IgG or IgM antibodies that were able to bind F-MLV-infected

cells, which also included antibodies potentially mediating

antibody-dependent cell-mediated cytotoxicity (Figure 3E). Col-

lectively, these results demonstrated that despite selecting against a

significant fraction of env124-138L-reactive CD4+ T cells, Emv2

expression did not compromise CD4+ T cell function against FV

infection.

Selection by Emv2 promotes a higher-avidity response to
F-MLV

Retention of full CD4+ T cell-mediated antiviral activity, despite

deletion of over a third of env124-138L-reactive CD4+ T cells in

Emv2-expressing mice, suggested that the deleted cells were not

contributing to immunity against FV infection. We therefore

assessed the impact of Emv2 expression on both the magnitude and

composition of the CD4+ T cell response to FV. Equal numbers of

EF4.1 CD4+ T cells from either Emv2-sufficient or -deficient donor

B6 mice, positive for CD45.2 (encoded by the Ptprc2 allele), were

adoptively transferred into Ptprc1/2 syngeneic B6 recipients that

were positive for both CD45.1 and CD45.2. Recipient mice were

infected with FV on the day of T cell transfer and FV-responding

donor CD4+ T cells were identified as CD44hiCD45.2+CD45.12

cells (Figure S5). Consistent with increased precursor frequency in

Emv2-deficient donor mice, significantly higher numbers of total

responding CD4+ T cells could be recovered at the peak of the

response from secondary recipients that received Emv2-nonselect-

ed than those that received Emv2-selected donor CD4+ T cells

(Figure 4A). Notably, the two types of donor CD4+ T cells

generated comparable numbers of high-avidity responding CD4+

T cells, and the numerical increase in total numbers of responding

CD4+ T cells from Emv2-nonselected donors was due to

significantly higher expansion of low-avidity non-Va2 responding

CD4+ T cells from these donors in comparison with the expansion

of non-Va2 responding CD4+ T cells from Emv2-selected donors

(Figure 4A). As a result, peak expansion of Emv2-selected CD4+ T

cells was dominated by high-avidity Va2 CD4+ T cells, whereas

that of Emv2-nonselected CD4+ T cells was dominated by low-

avidity non-Va2 CD4+ T cells (Figure 4B, C). Thus, Emv2

expression converted a predominantly low-avidity response to FV

to a predominantly high-avidity response.

Emv2-encoded env preferentially deletes non-Va2 CD4+ T
cells

The shift from a predominantly Va2 response of Emv2-selected

CD4+ T cells to a predominantly non-Va2 response of Emv2-

nonselected CD4+ T cells could be the result of Emv2-induced

modulation of either the relative frequency in the naı̈ve repertoire

of the two subsets of env124-138L-reactive CD4+ T cells, or their

relative avidity for env124-138L (or both). We first measured the

overall functional avidity to env124-138L of EF4.1 CD4+ T cells

selected with or without Emv2 as an indicator of potential avidity

repertoire changes. Surprisingly, although the presence of Emv2

reduced the precursor frequency of env124-138L-reactive CD4+ T

cells, it had no effect on the avidity with which they responded to

env124-138L stimulation (Figure 5A). This result suggested that

Emv2-mediated selection either affected high- and low-avidity cells

similarly, or that potential loss of higher-avidity T cells was

compensated by an increase in average avidity of the remaining T

cells. To examine whether Emv2 preferentially selected against

high-avidity env124-138L-reactive cells, we measured their frequen-

cy separately in either Va2 or non-Va2 CD4+ T cells from EF4.1

mice. Notably, Emv2 expression significantly reduced the frequen-

cy of non-Va2, but not Va2 env124-138L-reactive cells in EF4.1

CD4+ T cells (Figure 5B), indicating that it only selected against

Figure 4. Emv2-selected CD4+ T cells mount a predominantly high-avidity response. (A–C) CD45.2+ (Ptprc2/2) CD4+ T cells isolated from
either B6 (B6-EF4.1) or Emv2-deficient B6 (B6-EF4.1 Emv22/2) EF4.1 donor mice were adoptively transferred into Ptprc1/2 B6 recipients that were
infected with FV the same day and analyzed 7 days later. (A) Absolute number of total, Va2 or non-Va2 FV-responding (CD44hi) donor
(CD45.2+CD45.12) CD4+ T cells isolated from the spleens of recipient mice according to donor type. (B) Flow cytometric example and (C) frequency of
high-avidity Va2 cells in responding CD4+ T cells according to donor type. In (A) and (C) each symbol is an individual mouse.
doi:10.1371/journal.ppat.1002709.g004
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non-Va2 CD4+ T cells. Correspondingly, the avidity of Va2 CD4+

T cells to env124-138L was not altered by Emv2 expression, whereas

the avidity of non-Va2 CD4+ T cells was 3-fold higher in the

absence than in the presence of Emv2 (Figure 5C). Nevertheless,

non-Va2 CD4+ T cells from Emv2-deficienct mice still displayed

lower avidity than Va2 CD4+ T cells from either Emv2-deficienct

or -sufficient mice (Figure 5C).

To test whether Emv2-mediated changes in the frequency and

avidity for env124-138L of non-Va2 CD4+ T cells could account

for the dominance of this subset in the in vivo response to FV of

Emv2-nonselected CD4+ T cells, we examined the in vitro response

of Emv2-selected or -nonselected primary naı̈ve EF4.1 CD4+ T

cells to env124-138L stimulation. As a result of differences in initial

frequency and functional avidity between virus-naı̈ve Va2 and

non-Va2 env122-141-specific cells, the composition of the respond-

ing population varied according to the amount of env122-141

presentation [14] and Va2 T cells dominated the response at

doses lower than 1027 M (Figure 5D). Importantly, this

percentage of Va2 cells was significantly lower at all peptide

doses in CD4+ T cells selected in the absence than in the presence

of Emv2 (Figure 5D), demonstrating that selection by this single

provirus heavily influenced the clonal composition of env124-138L-

reactive CD4+ T cells, in favor of high-avidity cells. We further

confirmed that this effect of Emv2 expression of reducing the

overall frequency of env124-138L-reactive cells, but significantly

increasing the percentage of high-avidity Va2 cells in the

env124-138L-reactive population was already evident in

CD4+CD82 thymocytes (Figure S6), consistent with a thymic,

rather than peripheral event.

Preferential deletion by Emv2 of non-Va2 CD4+ T cells, which

had low avidity for F-MLV env124-138L raised the possibility that

these cells may have been cross-reactive with Emv2-encoded

env124-138Y. Indeed, lack of Emv2 expression in EF4.1 mice had a

small, non-significant effect on env124-138Y-reactive Va2 CD4+ T

cells, but caused a significant 3.5-fold increase in the frequency of

env124-138Y-reactive non-Va2 CD4+ T cells (Figure 5E). Further-

more, Va2 CD4+ T cells from either Emv2-deficient or -sufficient

EF4.1 mice could only react with env124-138Y at the highest dose of

1025 M, whereas non-Va2 CD4+ T cells from Emv2- deficient

mice were markedly more sensitive to env124-138Y than those from

Emv2-sufficient mice (and as sensitive as Va2 CD4+ T cells to

env124-138L) (Figure 5F). Together, these findings indicated that

Emv2 expression was not affecting env124-138L-reactive Va2 CD4+

T cells because they displayed low avidity for env124-138Y, but was

deleting a significant proportion of non-Va2 CD4+ T cells that

could react with either env124-138L or env124-138Y.

Figure 5. Emv2 preferentially selects against non-Va2 env-specific CD4+ T cells. (A) Dose-response to env124-138L stimulation of CD4+ T cells
isolated from either B6 (B6-EF4.1) or Emv2-deficient B6 (B6-EF4.1 Emv22/2) EF4.1 mice. (B) Frequency of env124-138L-specific cells in Va2 or non-Va2
primary CD4+ T cells from the same donors. (C) Functional avidity of Emv2-selected (B6-EF4.1) or -nonselected (B6-EF4.1 Emv22/2) EF4.1 CD4+ T cells
for env124-138L. (D) Frequency of Va2 cells in env124-138L-specific CD4+ T cells from the same donors as a function of peptide concentration. (E)
Frequency of env124-138Y-specific cells in Va2 or non-Va2 primary CD4+ T cells from the same donors. (F) Functional avidity of Emv2-selected (B6-
EF4.1) or -nonselected (B6-EF4.1 Emv22/2) EF4.1 CD4+ T cells for env124-138Y. Numbers in (C) and (F) represent the ED50. Data in (A–F) are the means 6
SEM (n = 9–12) of 18-hr stimulations from 3 experiments.
doi:10.1371/journal.ppat.1002709.g005

Negative Selection Promotes High-Avidity T Cells

PLoS Pathogens | www.plospathogens.org 7 May 2012 | Volume 8 | Issue 5 | e1002709



Shaping of env-reactive CD4+ T cell repertoire depth by
Emv2

Although EF4.1 CD4+ T cells selected by Emv2 mounted high-

avidity responses to the index env124-138L sequence in vitro, and to

FV infection in vivo, and retained full antiviral activity, counter-

selection of env124-138Y-reactive clones indicated that this reper-

toire would be less able to respond to viral escape mutations, and

especially to an L128Y mutation. To extend these findings, we

used another variant of env, which differed from F-MLV env in

two of the three putative TCR-binding residues. This variant has

Y and S in positions 128 and 129, respectively (referred to as

env124-138YS) and is a naturally-occurring functional form of

ecotropic env, encoded by the Fv4 locus in certain strains and

species of mouse, other than the B6 strain [32,33]. Again, a very

small fraction of EF4.1 Va2 CD4+ T cells could react to

env124-138YS, regardless of the presence or absence of Emv2

(Figure 6A). In contrast, lack of Emv2 led to a 7-fold increase in the

frequency of env124-138YS-reactive EF4.1 non-Va2 CD4+ T cells,

which now made a sizable fraction (Figure 6A). Thus, non-Va2

CD4+ T cells from Emv2-deficient EF4.1 mice could react with the

index sequence and the two env variants and with high avidity to

env124-138Y, suggesting that Emv2-mediated selection significantly

reduced the ability of CD4+ T cells, at the population level, to

recognize these env variants.

This analysis of polyclonal cells from Emv2-deficient EF4.1 mice

did not reveal whether the same T cell could react to all three env

variants or if env124-138L-, env124-138Y- and env124-138YS-reactive

non-Va2 CD4+ T cells were distinct. We therefore tested the

reactivity of hybridoma cell lines generated from env124-138L-

reactive EF4.1 CD4+ T cells that developed either in the presence

or the absence of Emv2 expression to other env variants. Similarly

to non-Va2 CD4+ T cell hybridomas from Emv2-sufficient donors,

all 4 non-Va2 CD4+ T cell hybridomas tested from Emv2-deficient

donors used members of the TCRVa3 family (encoded by the

Trav9 gene family; Table S2). Notably, neither Emv2-selected nor -

nonselected env124-138L-reactive non-Va2 CD4+ T cell hybrid-

omas responded to env124-138Y more potently than Va2 CD4+ T

cell hybridomas from the same donor strain, and only 1 out of 4

had a measureable response to env124-138YS (Figure 6B, C). These

findings suggested that the env124-138L-reactive non-Va2 CD4+ T

cells that developed in Emv2-deficient EF4.1 mice were largely

distinct from env124-138Y- and env124-138YS-reactive T cells in the

same mice. They also indicated that env124-138L-reactive non-Va2

CD4+ T cells were not inherently more cross-reactive than env124-

138L-reactive Va2 CD4+ T cells at the clonal level.

To gain a more detailed view of the depth, defined here as the

ability to tolerate epitope mutations, of env124-138L-reactive Va2

or non-Va2 TCRs, we screened Emv2-selected or -nonselected

env124-138L-reactive T cell hybridomas for reactivity against a

library of env126-138 peptide variants carrying all possible single

mutations in each of the amino acid residues in positions 128, 129

and 133 (Figure S7). Amino acids that elicited at least 40% of the

maximal response were listed in the order they were preferred by

the individual TCRs (Figure 7). All Va2 T cell hybridomas

displayed strong preference for L at position 128 and also

recognized similar amino acids with hydrophobic side chains,

namely F, I, M and V, but not the less hydrophobic Y (Figure 7A).

Va2 T cell hybridomas also showed strong preference and

specificity for the amino acid residues of the index sequence

against which they were derived, T or highly similar S at position

129, and N at position 133 (Figure 7B, C). Overall, the depth of

Va2 T cell hybridomas was highly homogeneous and unaffected

by Emv2 expression. In contrast to Va2 T cell hybridomas, and as

expected by their low avidity for the index env124-138L sequence,

none of the non-Va2 T cell hybridomas derived from Emv2-

deficient mice displayed strong preference for L at position 128

(Figure 7A). The latter hybridomas did, however, respond strongly

to env variants with a different amino acid residue at this position,

most frequently V or I, or in the case of clone E2H10 the

unrelated S (Figure 7A). Non-Va2 T cell hybridomas selected by

Emv2 were also heterogeneous, with two clones showing similar

preference and specificity for V or I, and two other clones showing

much wider reactivity to at least 10 different amino acid residues,

including L (Figure 7A). Furthermore, the low reactivity to the

index env124-138L sequence of two of the four non-Va2 T cell

hybridomas derived from Emv2-deficient mice, but not those

derived from Emv2-sufficient mice, could be enhanced by

substitutions at another position (C for clone E2H10, and S or

T for clone E2L18, instead of N at position 133) (Figure 7C). Non-

Va2 T cell hybridomas that could recognize L at position 128 also

preferred the amino acid residue of the index env124-138L sequence

at the two other positions (T and N for positions 129 and 133,

respectively) (Figure 7B, C). Collectively, these results confirmed

the differential preference for L at position 128 between Va2 and

Figure 6. Cross-reactivity of individual Va2 or non-Va2 CD4+ T cells. (A) Frequency of env124-138YS-reactive cells in Va2 or non-Va2 CD4+ T
cells isolated from either B6 (B6-EF4.1) or Emv2-deficient B6 (B6-EF4.1 Emv22/2) EF4.1 mice. Data are the means 6 SEM (n = 9) of 18-hr stimulations
from 3 experiments. (B–C) IL-2 production in response to stimulation with 561026 M env124-138L (L), env124-138Y (Y) or env124-138YS (YS) in comparison
with the absence of peptide stimulation (-) of Va2 or non-Va2 env124-138L-reactive hybridoma T cell lines derived from Emv2+/+ (B) or Emv22/2 (C)
EF4.1 mice.
doi:10.1371/journal.ppat.1002709.g006
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non-Va2 T cell hybridomas and further suggested that selection

by Emv2 enriched the non-Va2 repertoire for clones with relative

indifference for this position.

Genetic contribution to a high-avidity env124-138L-
reactive CD4+ T cell repertoire

Analysis of the env-reactive CD4+ T cell repertoire in B6 mice

revealed a clear effect of Emv2-mediated selection. However, in

addition to Emv2, the presence of numerous other endogenous

retroviruses could affect the formation of the env124-138L-reactive

CD4+ T cell repertoire, even if their primary amino acid sequence

is not closely homologous with that of F-MLV env. Furthermore,

the functional avidity of env124-138L-reactive CD4+ T cells could

also be affected by additional genetic determinants other than

endogenous retroviruses. To address this question we generated

congenic EF4.1 mice on the 129S8 background. 129S8 mice share

the same MHC class II allele with B6 mice (H2-Ab), thus allowing

restriction of env124-138L-specific EF4.1 CD4+ T cells. However,

they do differ substantially with respect to the composition of

endogenous retroviruses and, importantly, 129S8 mice are

naturally devoid of endogenous ecotropic MLVs [34,35]. Similar

frequency of env124-138L-reactive Va2 CD4+ T cells developed in

B6 and 129S8 EF4.1 mice (Figure 8A). In contrast, the frequency

of env124-138L-reactive non-Va2 CD4+ T cells was significantly

higher on the 129S8 than on the B6 background (Figure 8A), and

was comparable with that on the Emv2-deficient B6 background

Figure 7. Depth of Va2 or non-Va2 env-specific CD4+ T cell repertoires. (A–C) Va2 or non-Va env124-138L-reactive hybridoma T cell lines were
derived from Emv2+/+ (B6-EF4.1) or Emv22/2 (B6-EF4.1 Emv22/2) EF4.1 mice and tested for reactivity against a library of env126-138 peptide epitopes.
The amino acid residues in positions 128 (A), 129 (B) and 133 (C) that elicited at least 40% of the maximal response are listed in the order of
preference by the individual clones.
doi:10.1371/journal.ppat.1002709.g007
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(Figure 5B), as was their functional avidity (Figure 8B). This

finding indicated that deletion of env124-138L-reactive non-Va2

CD4+ T cells in B6, but not in B6-Emv22/2 or 129S8 mice was

mediated primarily by Emv2. Surprisingly, however, the functional

avidity of env124-138L-reactive Va2 CD4+ T cells in 129S8 mice

was very much reduced in comparison with that of Va2 CD4+ T

cells in B6 mice (Figure 8B), and was as low as that of low-avidity

non-Va2 CD4+ T cells. As, a result of differences in frequency and

functional avidity, the env124-138L-specific response of 129S8 mice

was dominated by non-Va2 CD4+ T cells at all peptide doses, in

contrast to that of B6 mice, which was dominated by Va2 CD4+ T

cells at low peptide doses (Figure 8C).

To further explore the origin of high-avidity env124-138L-

reactive Va2 CD4+ T cells in B6, but not in 129S8 mice, we

tested the response of a series of B66129S8-EF4.1 F1 mice. In

comparison with B66129S8-EF4.1 F1 mice, which inherited Emv2

from the B6 parent, B6-Emv22/26129S8-EF4.1 F1 mice, which

lacked ecotropic MLVs, had elevated frequencies of env124-138L-

reactive non-Va2 CD4+ T cells, whereas frequencies of env124-

138L-reactive Va2 CD4+ T cells were similar (Figure 8D). These

results confirmed that elevated frequencies of env124-138L-reactive

non-Va2 CD4+ T cells in 129S8 mice were indeed due to lack of

Emv2-mediated selection. Interestingly, both B66129S8-EF4.1

and B6-Emv22/26129S8-EF4.1 F1 mice generated env124-138L-

reactive Va2 CD4+ T cells with higher avidity than those of 129S8

mice (Figure 8E), suggesting that a genetic contribution of the B6

parent, other than Emv2, was necessary for the development of

high-avidity env124-138L-reactive Va2 CD4+ T cells. To assess

whether this genetic contribution arose from polymorphisms in the

Trav locus itself, we tested B6-Tcra2/26129S8-EF4.1 F1 mice,

which inherited Emv2 from the B6 parent, but could generate

endogenous Va chains only from the locus inherited from the

129S8 parent. The presence of Emv2 in B6-Tcra2/26129S8-EF4.1

F1 mice had the predicable effect on the frequency of env124-138L-

reactive non-Va2 CD4+ T cells (Figure 8D), which displayed

comparably low avidity in all three F1 strains tested (Figure 8E).

Surprisingly, however, env124-138L-reactive Va2 CD4+ T cells that

had developed in B6-Tcra2/26129S8-EF4.1 F1 mice were also

low-avidity, which was comparable with that of Va2 CD4+ T cells

in 129S8 mice (Figure 8E), suggesting that the ability of B6 mice to

generate high-avidity env124-138L-reactive Va2 CD4+ T cells was

germline-encoded. Consequently, the env124-138L-specific response

of B66129S8-EF4.1 F1 mice, but not of isogenic mice lacking

either Emv2 or the B6-origin Trav, was dominated by Va2 CD4+ T

Figure 8. Genetic contribution to a high-avidity env-reactive CD4+ T cell repertoire. (A) Frequency of env124-138L- reactive cells in Va2 or
non-Va2 primary CD4+ T cells isolated from either B6 (B6-EF4.1) or 129S8 (129S8-EF4.1) EF4.1 mice. (B) Functional avidity of env124-138L-reactive Va2 or
non-Va2 primary CD4+ T cells from the same donors in A. (C) Frequency of Va2 cells in env124-138L-reactive CD4+ T cells from the same donors in A as
a function of peptide concentration. (D) Frequency of env124-138L- reactive cells in Va2 or non-Va2 primary CD4+ T cells isolated from either
B66129S8-EF4.1 F1, B6-Emv22/26129S8-EF4.1 F1 or B6-Tcra2/26129S8-EF4.1 F1, EF4.1 mice. (E) Functional avidity of env124-138L-reactive Va2 or non-
Va2 primary CD4+ T cells from the same donors in D. (F) Frequency of Va2 cells in env124-138L-reactive CD4+ T cells from the same donors in D as a
function of peptide concentration. Numbers in (B) and (E) represent the ED50. In (C) and (F) the CD4+ T cell response elicited by the last peptide dose
(1028 M) was too small to allow accurate measurement of the frequency of Va2 cells and was therefore omitted. Data in (A–F) are the means 6 SEM
(n = 4–8) of 18-hr stimulations from 3 experiments.
doi:10.1371/journal.ppat.1002709.g008
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cells at low peptide doses (Figure 8F). The peak percentage of Va2

CD4+ T cells in the env124-138L-reactive population was lower in

B66129S8-EF4.1 F1 mice than in B6 mice, as the former were

expressing endogenous Va chains from both parental Trav loci.

Thus, the combined effect of Emv2 on the frequency of non-Va2 T

cells and of Trav on the avidity of Va2 T cells was necessary for the

dominance of high-avidity Va2 CD4+ T cells in the response to

env124-138L.

Discussion

As a result of the combinatorial process that creates TCRs, their

specificity is random and has to undergo selection. Thymic

positive and negative selection of developing T cells ensures that

mature T cells in the periphery have a functional TCR and

minimal reactivity to self proteins, respectively [36]. Negative

selection is thought to decrease the frequency, avidity and cross-

reactivity of the developing TCR repertoire specific to foreign

epitopes that may be similar to self-derived epitopes presented in

the thymus [36] and promote peptide specificity [37]. Here we

used a well-characterized molecular system to show that negative

selection by a defined self peptide from Emv2 env indeed decreased

the frequency in the naı̈ve CD4+ T cell repertoire of clones specific

to a range of foreign env epitopes, thus reducing the magnitude of

the CD4+ T cell response to all env epitope variants. However,

negative selection counter-intuitively also promoted the avidity of

the CD4+ T cell response to F-MLV env by shifting the clonal

composition of responding CD4+ T cells in favor of high-avidity

cells.

CD4+ T cells play a central coordinating role in the

orchestration of adaptive immunity to infection, and may also

mediate direct antiviral activity. Recent studies in diverse systems

have indicated an essential role for the CD4+ T cell response in the

control of retroviral infection [15,38–42]. We have previously

shown that protection of wt mice against acute FV infection is

proportional to the frequency of virus-specific CD4+ T cells [23].

Surprisingly, we found that although negative selection signifi-

cantly reduced both the precursor frequency and peak expansion

of F-MLV env-specific CD4+ T cells, it did not compromise CD4+

T cell-mediated antiviral activity. This finding suggested that not

all virus-specific CD4+ T cells were equal in their ability to

mediate antiviral functions. Indeed, negative selection by Emv2 env

affected CD4+ T cells with low avidity for F-MLV env, but not

those with high avidity for the same epitope. Preservation of full

antiviral activity in the Emv2-selected CD4+ T cell repertoire

therefore indicated that this activity is primarily, if not exclusively,

exerted by high-avidity CD4+ T cells.

High-avidity virus-specific CD4+ T cells may be superior in

certain direct antiviral or indirect helper functions than low-avidity

ones, but there may also be important exceptions. High-avidity

CD4+ T cells responding to FV infection have been reported to

show enhanced ex vivo production of IFN-c and IL-21 cytokines

and reduced expression of PD-1 inhibitory receptor [15] than low-

avidity counterparts, properties that may contribute to superior

antiviral activity. However, T follicular helper (Tfh) differentiation

and function were previously found to be similar between high-

and low-avidity virus-specific CD4+ T cells [15], suggesting that

provision of T cell help for the production of virus-neutralizing

antibodies may be more sensitive to the frequency of virus-specific

CD4+ T cells, rather than their avidity. However, in addition to

the frequency of virus-specific CD4+ T cells, the virus-specific

antibody response is also proportional to the frequency of rare

antigen-specific B cells. Thus, when availability of T cell help is

abundant, the virus-specific antibody response may be limited by

the frequency of antigen-specific B cells and additional T cell help

would not be expected to enhance antibody production. Consis-

tent with this idea, adoptive transfer of virus-specific EF4.1 CD4+

T cells into wt B6 mice did not accelerate the virus-neutralizing

antibody response [23]. In addition to an effect of Emv2 on the

availability of T cell help for the FV-specific antibody response,

Emv2 could in principle also directly affect the development of

virus-specific B cells [43]. Although we observed comparably low

FV-specific antibody responses between B6 and B6-Emv22/2 mice

at the peak of FV infection, our results did not exclude a potential

direct effect of Emv2 on FV-specific B cell and antibody responses

at later time-points, when these responses are fully induced.

Indeed, Emv2-encoded env shares 79% amino acid identity with F-

MLV env and it is therefore possible that Emv2 expression,

especially when upregulated, might affect the FV-specific antibody

response.

As previously shown, high-avidity F-MLV env122-141L-specific

Va2 CD4+ T cells are a minority subset in the naı̈ve repertoire and

only dominate the immune response to FV as a result of their

preferential expansion during infection [15]. We have now found

that for this ability of high-avidity F-MLV env122-141L-specific

Va2 CD4+ T cells to dominate the peak response, negative

selection by Emv2 of at least some of the competitor low-avidity F-

MLV env122-141L-specific non-Va2 CD4+ T cells is necessary.

These findings indicate that even subtle thymic events can have

profound effects on the induction of an effective T cell response to

retroviral infection. Recently, a comprehensive theoretical study

has indicated that HLA class I alleles that associated with control of

HIV infection, such as HLA-B*5701, sample far fewer self peptides

than other HLA alleles [5]. As a result of less stringent negative

selection, a higher frequency of CD8+ T cells restricted by these

protective alleles were predicted to recognize viral peptide epitopes

and to cross-react with variants of the targeted epitopes [5].

Our results with a single self peptide provide further experi-

mental confirmation of negative selection reducing both the

precursor frequency and cross-reactivity of env-specific CD4+ T

cells, although in this case the effect on cross-reactivity was more

pronounced at the population, rather than the single-cell level.

These results also suggest that from the thousands of self peptides

that can mediate thymic selection of retrovirus-specific T cells, the

main effects may be mediated by only a few self peptides.

Moreover, self peptides with such strong influence may also be

polymorphic between different individuals, which might contrib-

ute to the partial association of HLA polymorphisms with virus

control [3,5,6].

In addition to polymorphisms at the MHC/HLA locus or of self

peptides mediating thymic selection, the Trav/TRAV and Trbv/

TRBV loci may also display allelic sequence variation. A

polymorphism in the TRBV9 gene has been shown to affect

TCR affinity for and functional recognition of an HLA-B*3501-

restricted epitope from the EBNA-1 protein of Epstein-Barr virus

(EBV), leading to a public T cell response dominated by the high-

affinity variant [44]. Similarly, we found that the ability of Va2

chains to confer high avidity for env122-141L in EF4.1 mice seems

to be germline-encoded, as only Va2 chains encoded by the B6,

but not the 129 Trav locus had this ability. It is tempting to

speculate that amino acid residues unique to the B6-germline

Trav14-encoded Va2 chains participate in recognition of the

strongly interacting L (or a limited set of amino acids with similar

properties) at env position 128. Notably, the CD8+ T cell response

to an HLA-B8-restricted epitope from the latent antigen EBNA

3A of EBV uses almost exclusively identical Va and Vb, as well as

other TCR-region sequences, and comprehensive structural

studies have shown that a unique amino acid residue in the
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germline-encoded complementarity-determining region 2 (CDR2)

of the preferred Va chain, encoded by TRAV26-2, is critically

required for binding to a residue from the peptide epitope [45].

Despite the vast number of somatically-generated random TCRs

that can arise during T cell development, these studies highlight

the potential for germline-encoded residues to provide exquisite

specificity and competitive advantage to the TCRs that carry

them.

In addition to likely representing the best-fit for recognition of Ab-

restricted env122-141L, the dominance of Va2 EF4.1 CD4+ T cells

could also result from preferential pairing of the transgenic TCRb
chain with Va2 chains in general. This is unlikely to be the case as

the usage of Va2 cells was not increased in either total or

env122-141L-reactive EF4.1 CD4+ T cells, and indeed in the env122-

141L-reactive preimmune repertoire clones using other Va chains

were at least 3 times more frequent than those using Va2. However,

although non-Va2 env122-141L-reactive CD4+ T cells were still the

majority in Emv2-expressing mice, their ability to participate in the

response to FV and compete with env122-141L-reactive Va2 CD4+ T

cells was severely compromised by Emv2. Thus, the dominance of

Va2 CD4+ T cells in the response to FV infection can be seen as a

combination of germline-encoded advantage in Ab-restricted

env122-141L recognition conferred to Va2 CD4+ T cells and of

Emv2-mediated self-tolerance of other non-Va2 CD4+ T cells

capable of recognizing Ab-restricted env122-141L.

One important novel insight of the current study is the proof of

principle that negative selection is not necessarily always impairing

high-avidity T cell responses. By counter-selecting some cross-

reactive CD4+ T cells, negatively selecting self peptides have the

ability to significantly enhance the avidity for the response to at

least some epitope variants. Higher precursor frequency and cross-

reactivity with emerging epitope variants seem to be the best

correlates for an effective cytotoxic CD8+ T cell response [5].

Whether higher avidity for the primary infecting epitope, rather

than cross-reactivity with epitope variants better describes an

effective CD4+ T cell response to retroviral infection needs to be

further addressed.

It should be noted that differences in avidity for antigen in this

system were defined functionally. Indeed, Va2 env122-141L-specific

primary CD4+ T cells or hybridomas reacted to much lower

concentrations of env122-141L peptide stimulation in vitro than their

non-Va2 counterparts. Furthermore, this higher sensitivity trans-

lated to higher in vivo expansion and increased potential for

cytokine production [15]. It is currently unclear whether

differences in functional avidity between Va2 and non-Va2

env122-141L-specific CD4+ T cells resulted from overall higher

affinity of individual TCRs of these polyclonal populations for the

peptide-MHC class II complex. Although dissociation kinetics

between TCRs and peptide-MHC class II tetramers are often

informative with respect to the biochemical affinity of these TCRs,

they may not be universally useful. For example, the available

env123-141-Ab tetramer (Ab-env) is known to bind only some

env124-138L-specific CD4+ T cell clones but not others, irrespective

of their functional avidity or Va usage [14,22]. Therefore, this

reagent could not be used to access the biochemical affinity of all

env124-138L-specific CD4+ T cells in the polyclonal repertoire.

Furthermore, identification of antigen-specific cells using a

sensitive two-dimensional binding assay has recently demonstrated

that the affinity of many CD4+ T cells that participate in the

response to two separate antigens is below detection with peptide-

MHC class II tetramers [46]. Thus, peptide-MHC class II

tetramers may generally only detect some but not all antigen-

specific CD4+ T cells. In addition, such detection is conditional on

expression of sufficient TCR levels. Indeed, we have found that the

extensive, antigen-induced downregulation of their TCR in vivo,

eclipses detection with the Ab-env123-141 tetramer of even the

env122-141L-reactive CD4+ T cells that could otherwise bind this

reagent. Similar observations have been recently made with

peptide-MHC class I tetramer staining of virus-specific effector

CD8+ T cells [47], suggesting that the inability of peptide-MHC

multimers to identify antigen-specific effector T cells that have

downregulated their TCRs may be a general problem for T cells

restricted by both classes of MHC molecules.

Negative selection ensures minimal reactivity of developing

thymocytes to self proteins. However, endogenous retroviruses are a

large constituent of mammalian genomes and thus represent a

potentially large pool of self proteins able to mediate selection, both

positive and negative. Self peptides encoded by endogenous MLVs

have been shown to mediate positive selection of CD4+ T cells with

specificity for an unrelated H2-Ek-restricted moth cytochrome C

peptide, and to enhance the response of mature CD4+ T cells with

this specificity in the periphery [48]. We found that Emv2 was

expressed at very low levels in the thymus of B6 mice, in agreement

with a previous report [49], and was undetectable by qRT-PCR in

some of the mice. It should be noted, however, that the qRT-PCR

method employed was specific only for the spliced env mRNA that is

transcribed by Emv2. This was chosen to eliminate the possibility of

detecting contaminating genomic DNA or viral genomic RNA, but

may underestimate the total amount of spliced and unspliced

mRNA that leads to the production of other viral proteins.

Nevertheless, as demonstrated by its effect on thymic development,

this low level of Emv2 expression was clearly functional.

Endogenous retroviruses have been known for many years to

cause a range of different diseases in mice, including cancer,

immunodeficiency and autoimmunity, although a similar causal

effect in humans has been questioned [50]. Immune reactivity to

endogenous retroviruses has been amply demonstrated in mice

where is has been strongly associated with the development of

spontaneous autoimmune conditions [51,52]. Interestingly, immune

reactivity to endogenous retroviruses has also been frequently

observed in humans during infection, inflammation, autoimmunity

and cancer [50,53–56]. Expression of human endogenous retrovi-

ruses, as well as CD8+ T cell responses against their antigens, have

been documented in HIV infection [57,58]. Furthermore, a whole-

genome association study has suggested that part of the effect of the

protective HLA-B*5701 allele during the asymptomatic period of

HIV infection may be mediated by a linked human endogenous

retrovirus at the same locus [59]. Human endogenous retroviral

antigens have also been reported to serve as targets for CD8+ T cell-

mediated rejection of cancer cells [60]. It might be evident from the

studies in humans and the results of the current study that peptide

epitopes encoded by endogenous retroviruses have a strong influence

on T cell thymic selection and may also participate in the shaping of

the peripheral T cell response. It is also clear that endogenous

retroviruses do not always cause immunological tolerance, and

although their activation in infected or transformed cells may

provide a non-mutable target for immune attack, activation of

endogenous retroviruses may also trigger inflammatory or autoim-

mune phenomena frequently associated with infection and cancer.

Further study of endogenous retrovirus regulation during infection,

autoimmunity or cancer, and of the immune responsiveness to them

should shed more light into their pathogenic potential.

Materials and Methods

Ethics statement
All animal experiments were approved by the ethical committee

of the NIMR, and conducted according to local guidelines and
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UK Home Office regulations under the Animals Scientific

Procedures Act 1986 (ASPA).

Mice
Inbred C57BL/6J (B6), A/J and B6.SJL-Ptprca Pep3b/BoyJ

(CD45.1+ B6) mice were originally obtained from The Jackson

Laboratory (Bar Harbor, Maine, USA) and were subsequently

maintained at NIMR animal facilities. Inbred 129S8/SvEvNimrJ

(129S8) mice were developed from an 129/Sv substrain, maintained

at NIMR animal facilities, and were subsequently deposited at The

Jackson Laboratory. The B6 TCRb-transgenic strain EF4.1,

expressing a transgenic TCRb chain from a T cell clone specific

to F-MuLV env122-141 presented by H2-Ab, has been described

[14]. 129S8-congenic EF4.1 mice were generated by serial

backcrossing of B6-EF4.1 mice for 10 nuclear generations onto

the 129S8 genetic background. B6-backcrossed Rag1-deficient

(Rag12/2) mice [61] and T cell receptor a-deficient (Tcra2/2) mice

[62] were also maintained at NIMR animal facilities. Fv2s-congenic

B6 (Fv2s) and Rag12/2 (Fv2s Rag12/2) mice have been previously

described [25]. Emv2-deficient (Emv22/2) B6 mice were created by

introducing the Emv2 integration site of chromosome 8 from the A/J

strain, which lacks this proviral integration, by serial backcrossing

for at least 12 nuclear generations onto the B6 genetic background.

Lack of Emv2 was validated by PCR for both the D8Mit49

microsatellite marker close to the locus that detects polymorphisms

in A/J (Emv22) and B6 (Emv2+) strains of mice (D8Mit49 forward 59-

TCTGTGCATGGCTGTGTATG-39 and D8Mit49 reverse 59-

TGGTGTGCTGCTGATGCT-39), and also for the actual inte-

gration site using three primers, two of which were flanking the

integration site (forward 59-ACCCACTAAGTAACCCAG-

GCTGCCTCAGCT-39 and reverse 59-GACCAGAATAGAAA-

GACGTTCAAGTGAGCT-39) and one located in the Emv2 LTR

(59-ATCAGCTCGCTTCTCGCTTCTGTACCCGCG-39) (Fig-

ure S3).

In vitro T cell activation
Spleen or lymph node single-cell suspensions were prepared

from EF4.1 mice and 56105 cells per well were stimulated in 96-

well plates with the indicated amount of env peptide variants. The

frequency of env-reactive cells in stimulated CD4+ T cells was

defined as the frequency of cells that responded to 18-hr

stimulation, before cell division or death had occurred, by

upregulating CD69 expression. Correct identification of env-

reactive CD4+ T cells by CD69 upregulation was confirmed in

control experiments by co-staining for CD154 (CD40L) expression

in stimulated T cells. Both antibodies were obtained from

eBiosciences. For assessment of T cell activation on day 3, cells

were labeled with CFSE before stimulation and responding cells

were identified by CFSE dilution.

Hybridoma cell line generation and stimulation
Single-cell suspensions were prepared from spleens and lymph

nodes from Emv2-sufficient or -deficient EF4.1 mice and stimu-

lated in vitro with 1027 M or 1025 M env122-141L peptide and

4 ng/ml recombinant human IL-2 for 4 days. CD4+ T cells were

subsequently purified from stimulated cultures using immuno-

magnetic positive selection (StemCell Technologies, Vancouver,

BC, Canada) and fused to TCRab-negative BW5147 thymoma

cells to produce hybridoma cell lines. Established hybridoma cell

lines were stimulated with a range of env peptide variants

presented by dendritic cells. Dendritic cells were obtained from

cultures of bone marrow cells isolated from B6 mice and

supplemented with granulocyte macrophage colony-stimulating

factor (GM-CSF). GM-CSF was obtained from culture superna-

tant of663 cells transfected with mouse Csf2 and was used at 1:10

dilution. Bone marrow cells were culture in these conditions for 7

days, at which point they consisted of 50–70% dendritic cells.

These cells were then used to stimulate hybridoma cells at a ratio

of 56104 dendritic cells to 16105 hybridoma cells, for 18 hrs, in

the presence or absence of env peptide variants. Dendritic cell-

hybridoma cell co-cultures were plated in flat-bottom 96-well

plates in 200 ml final volume. The concentration of peptides used

is indicated in individual figures and figure legends. In additional

experiments peritoneal macrophages were also used as antigen-

presenting cells with results comparable to the use of dendritic

cells. Macrophages were isolated from B6 mice following plating of

the peritoneal cavity exudate cells for 1 hr and washing off the

non-adherent fraction. Env-specific responses were assessed by

measuring the amount of IL-2 secreted in co-culture supernatants

using an AlamarBlue (Invitrogen, Carlsbad, CA, USA)-based

CTLL-2 assay.

Tra gene usage
Trav and Traj usage by T cell hybridomas was probed by

staining with an anti-Va2 (clone B20.1) or anti-Va3.2 (clone RR3-

16) monoclonal antibodies, and by reverse transcription (RT)-PCR

amplification and sequencing of expressed Trav genes, using

previously described primers [63]. Trav and Traj segment

identification and alignment, and confirmation of productive

rearrangements were performed on the International Immunoge-

netics Information System website (http://www.imgt.org).

Viruses and infections
The FV used in this study was a retroviral complex of a

replication-competent B-tropic F-MuLV and a replication-defec-

tive polycythemia-inducing spleen focus-forming virus (SFFVp).

Stocks were propagated in vivo and prepared as 10% w/v

homogenate from the spleen of 12-day infected BALB/c mice.

Mice received an inoculum of ,1,000 spleen focus-forming units

of FV. All viral stocks were free of Sendai virus, Murine hepatitis

virus, Parvoviruses 1 and 2, Reovirus 3, Theiler’s murine

encephalomyelitis virus, Murine rotavirus, Ectromelia virus,

Murine cytomegalovirus, K virus, Polyomavirus, Hantaan virus,

Murine norovirus, Lymphocytic choriomeningitis virus, Murine

adenoviruses FL and K87, and Lactate dehydrogenase-elevating

virus. Virus inocula were injected via the tail vein in 0.1 ml of

phosphate-buffered saline. FV-infected cells were detected by flow

cytometry using surface staining for the glycosylated product of the

viral gag gene (glyco-Gag), using the matrix (MA)-specific

monoclonal antibody 34 (mouse IgG2b), followed by an anti-

mouse IgG2b-FITC secondary reagent (BD, San Jose, CA, USA).

For the assessment of anemia, mice were bled by a small incision

of the tail vein and blood was collected into heparinized capillary

tubes. Complete blood counts were measured on a VetScan HMII

hematology analyzer (Abaxis, CA, USA), following the manufac-

turer’s instructions. RBC counts of uninfected mice were

,9.956106 per mm3 of blood. FV-induced splenomegaly in

infected mice was expressed as spleen index, which is the ratio of

the weight of the spleen (in mg) to the weight of the rest of the

body (in g).

FV-neutralizing and F-MLV-infected cell-binding antibody
assays

Serum titers of FV-neutralizing antibodies were measured as

previously described [25]. The dilution of serum which resulted in

75% neutralization was taken as the neutralizing titer. Serum titers

of F-MLV-infected cell-binding antibodies were determined by
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flow cytometry following primary staining of F-MLV-infected Mus

dunni cells with serial dilutions of serum samples and secondary

staining with fluorescently labeled anti-mouse IgG1 (clone A85-1),

anti-mouse IgG2a/c (clone R19-15), anti-mouse IgG2b (clone

R12-3) or anti-mouse IgM (clone R6-60.2) antibodies (BD). B6

mice express the IgG2c isotype, which may not be efficiently

detected by anti-IgG2a reagents [64]. Although the R19-15

monoclonal antibody has higher affinity for IgG2a, it can be

effectively used for detection of IgG2c. This was confirmed by

staining of F-MLV-infected Mus dunni cells that were first

incubated with serum from FV-infected mice, with the anti-IgG1

or anti-IgG2a/c or anti-IgG2b reagents separately (Figure S8A).

The three reagents used separately resulted in comparable staining

intensity, which allowed us to use all three IgG subclass-specific

antibodies in combination. For IgG titers, F-MLV-infected Mus

dunni cells were first incubated with serum samples and then with

anti-IgG1, anti-IgG2a/c and anti-IgG2b antibodies mixed togeth-

er. Serum samples were 2-fold serially diluted, starting from an

initial dilution of 1:50. The last positive serum dilution resulting in

staining intensity at least twice the background level was taken as

the binding titer (Figure S8B).

T cell purification and adoptive transfer
Single-cell suspensions were prepared from the spleens and

lymph nodes of donor CD45.2+ EF4.1 mice by mechanical

disruption. Spleen suspensions were treated with ammonium

chloride for erythrocyte lysis. CD4+ T cells were enriched using

immunomagnetic positive selection (StemCell Technologies)

according to the manufacturer’s instructions. Purity of the isolated

CD4+ T-cell population was routinely higher than 92%. A total of

approximately 16106 EF4.1 CD4+ T cells were injected in B6-

congenic CD45.1+CD45.2+ recipients via the tail vein in 0.1 ml of

air-buffered Iscove’s Modified Dulbecco’s Media. When adoptive

transfer of CD4+ T cells was combined with FV infection, purified

CD4+ T cells and virus stocks were injected separately into

recipient mice within a 24 hour-period.

Flow cytometry
Spleen-cell suspensions were stained with directly-conjugated

antibodies to surface markers, obtained from eBiosciences (San

Diego, CA, USA), CALTAG/Invitrogen, BD Biosciences (San

Jose, CA, USA) or BioLegend (San Diego, CA, USA). Donor-type

env-specific CD4+ T cells were identified as

CD44hiCD45.2+CD45.12CD4+ cells. Four- and 8-color cytome-

try were performed on FACSCalibur (BD Biosciences) and CyAn

(Dako, Fort Collins, CO) flow cytometers, respectively, and

analyzed with FlowJo v8.7 (Tree Star Inc., Ashland, OR, USA)

or Summit v4.3 (Dako) analysis software, respectively.

Emv2 expression by quantitative reverse transcription
(qRT)-PCR

Total RNA was extracted from whole organs using TRI-reagent

(Sigma-Aldrich, St. Louis, US) according to the manufacturer’s

instructions, precipitated with isopropanol and washed in 75%

ethanol before being dissolved in water. DNase digestion and

cleanup was performed with the RNeasy Mini Kit (Qiagen,

Hilden, Germany) and cDNA produced with the high capacity

reverse transcription kit (Applied Biosystems, Carlsbad, US) with

an added RNase inhibitor (Promega Biosciences, Madison, US). A

final clean-up was performed with the QIAquick PCR purification

kit (Qiagen). Level of expression of Emv2 RNA was determined by

qRT-PCR using DNA Master SYBR Green I kit (Roche,

Mannheim, Germany) and the ABI Prism 7000 or 7900HT

Detection System (TaqMan, Applied Biosystems, Foster City, CA).

The following primers were used for the amplification of target

transcripts: Hprt: forward 59-TTGTATACCTAATCATTA-

TGCCGAG-39 and reverse 59- CATCTCGAGCAAGTCT-

TTCA-39; Emv2: forward 59-CCAGGGACCACCGACCCA-

CCGT-39 and reverse 59-TAGTCGGTCCCGGTAGGCC-

TCG-39. Emv2-specific primers amplified only the spliced form

of env mRNA, thus eliminating the possibility of residual genomic

DNA or RNA contamination contributing to Emv2 signal. The

housekeeping gene Hprt was used to normalize the Critical

Threshold (CT) values for Emv2. Analysis was conducted with the

DCT method [65] and Emv2 expression corresponding to an Emv2

CT value of 40 (the total number of amplification cycles used) was

set at 1 arbitrary unit. A theoretical detection limit of 2 arbitrary

units was also used, which represents the detectable Emv2 signal in

the penultimate cycle of amplification.

Statistical analysis
Statistical comparisons were made using SigmaPlot 12.0 (Systat

Software Inc., Germany). Parametric comparisons of normally-

distributed values that satisfied the variance criteria were made by

unpaired Student’s t-tests. Linear percentages of FV-infected cells,

spleen indices and nAb titers, which did not pass the variance test,

were compared with non-parametric two-tailed Mann-Whitney

Rank Sum or Wilcoxon Signed Rank tests.

Accession numbers

N Cd4 cluster of differentiation 4 antigen [Mus musculus]; Gene

ID: 12504; Protein ID: NP_038516.1

N Rag1 recombination activating gene 1 [Mus musculus]; Gene ID:

19373; Protein ID: NP_033045.2

N Fv2 Friend virus susceptibility 2 [Mus musculus]; Gene ID:

19882; Protein ID: NP_033100.1

N Tcra T cell receptor alpha chain [Mus musculus]; Gene ID:

21473

N Tcrb T cell receptor beta chain [Mus musculus]; Gene ID: 21577

N Emv2 endogenous ecotropic MuLV 2 [Mus musculus]; Gene ID:

111372

N env envelope protein [Friend murine leukemia virus]; Gene ID:

1491875; Protein ID: NP_040334.1

Supporting Information

Figure S1 Effect of N-terminal epitope length on TCR
recognition by primary and hybridoma EF4.1 envL-
specific CD4+ T cells. (A) Frequency of CD69+ cells in Va2 or

non-Va2 CD4+ T cells (expressed as percentage of the maximal

response elicited by the env122-141L peptide), following 18-hr in

vitro stimulation of spleen cell suspensions from EF4.1 mice with

the indicated range of N-terminal truncated envL peptides. (B) IL-

2 production in the supernatant of hybridoma cells lines

established from Va2 or non-Va2 env-specific EF4.1 CD4+ T

clones following 24-hr in vitro stimulation with the indicated range

of N-terminal truncated envL peptides. Data are pooled from 3

separate experiments.

(PDF)

Figure S2 Sequence and TCR SB14-31 contact residues
of F-MLV- and Emv2-encoded env123-140. (A) Amino acid

sequence, in single-letter code, of env123-140 encoded by either F-

MLV or Emv2. Differences in sequence are indicated by red color.

(B) Important contact residues for the SB14-31 TCR (indicated in
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red) and for H2-Ab (indicated in blue) in F-MLV-encoded env123-

140L. Numbers underneath amino acid residues correspond to

amino acid positions in env.

(PDF)

Figure S3 Chromosomal location of Emv2 in B6 mice
and screening of Emv22/2 B6 mice. Emv2 is integrated near

the telomere of Chromosome 8 of B6 mice in reverse orientation

relative to the forward strand, between the Tubb3 and Def8 genes

(Search for Mela on http://www.ncbi.nlm.nih.gov/mapview), and

it is absent from A/J mice. Lack of Emv2 on Emv22/2 congenic B6

mice is shown by PCR for the actual integration site (red arrows) or

for the polymorphic D8Mit49 microsatellite marker that is further

telomeric with respect to Emv2 (not shown on map).

(PDF)

Figure S4 Effect of Emv2 on the endogenous CD4+ T
cell, CD8+ T cell and antibody responses. B6 and B6-

Emv22/2 mice were infected with FV and their adaptive responses

were measured 7 days later. T cell responses were measured in

cells isolated from the spleens and antibody responses from the

sera of these mice. (A) Percentage of CD44hiCD43+ cells in total

CD8+ T cells. (B) Percentage of Va3.2+Vb5.2+ cells in either

CD44hi (left) or CD44lo (right) CD8+ T cells. The dashes horizontal

line represents the same frequency in uninfected control mice. The

dashed horizontal lines in (A) and (B) represent the depicted

frequencies in uninfected control mice. (C) Serum titers of F-

MLV-infected cell-binding IgG (left) and IgM (right). Dashed lines

represent the limit of detection. (D) Percentage of Ab-env123-141

tetramer+ cells in total CD4+ T cells. Horizontal short lines denote

the median frequencies and the dashed line denotes the median

frequency of Ab-hCLIP (control) tetramer+ cells in the same

populations. (E) Percentage of Va2 cells in Ab-env123-141 tetramer+

CD4+ T cells from the same mice. The dashed horizontal line

represents the frequency of Va2 cells in total CD4+ T cells from

the same mice. In (A) to (E) each symbol represents an individual

mouse.

(PDF)

Figure S5 Gating strategy for the identification of env-
specific donor CD4+ T cells. CD45.2+ (Ptprc2/2) EF4.1 CD4+

T cells (106) were adoptively transferred into wild-type Ptprc1/2 B6

recipients that were infected with FV the same day. Host cells were

identified as CD45.1 CD45.2 double-positive whereas donor cells

were CD45.2 single-positive.

(PDF)

Figure S6 Effect of Emv2 on the frequency and compo-
sition of env124-138L-specific CD4+ thymocytes. Thymo-

cytes from Emv2+/+ or Emv22/2 EF4.1 mice were stimulated for

18 hrs in vitro with the indicated amount of env124-13L peptide

presented by bone marrow-derived dendritic cells and responding

cells were identified by upregulation of CD69 expression.

Frequency of responding (CD69+) cells in gated CD4+ thymocytes

(left) and frequency of Va2 cells in env124-13L-specific cells (right) is

shown, with p,0.006 and p,0.002, respectively, for 1026 M

peptide concentration. Results are the means 6 SEM (n = 8–10).

(PDF)

Figure S7 Depth of env epitope recognition by Emv2-
selected and -nonselected T cell hybridomas. Va2 or non-

Va2 (Va3) env124-138L-reactive T cell hybridomas were established

from Emv2+/+ or Emv22/2 EF4.1 mice and tested for reactivity

against a library of env126-138 peptide epitopes (at 561026 M

concentration), in which positions 128, 129 and 133 were

individually replaced by all natural amino acids. The response of

each clone was measured by secretion of IL-2 and is expressed as a

percentage of the maximal response obtained with the most potent

variant. Results are the means of triplicate cultures.

(PDF)

Figure S8 Determining titers of F-MLV-infected cell-
binding antibodies. (A) Mus dunni cells, chronically infected

with F-MLV, were stained with an 1:50 dilution of pooled serum

samples from wt B6 mice that were infected with FV 35 days

earlier (serum sample) or with a dilution of the anti-gp70 of F-

MLV monoclonal antibody 48 (mAb 48; IgG2a) that gives similar

in vitro FV neutralization as 1:50 dilution of the serum sample.

Cells stained with the serum sample were subsequently stained

with anti-IgG1, anti-IgG2a/c or anti-IgG2c antibodies separately

or with all three antibodies mixed together, and cells stained with

mAb 48 were stained with anti-IgG2a/c. Black-filled histograms

show staining with both primary and secondary antibodies, and

gray-shaded histograms show staining with the secondary antibody

only. Note comparable staining intensity between all three IgG

subclass-specific antibodies used separately as secondary reagents

in combination with the serum sample and also in comparison

with the mAb 48. (B) Example of titer determination. Experimen-

tal serum samples were serially diluted 2-fold (starting from 1:50)

and used for staining F-MLV-infected Mus dunni cells. The median

fluorescent intensity (MFI) of co-staining with all three IgG

subclass-specific antibodies at the same time is plotted against the

serum dilution. The horizontal dashed line represents the MFI of

unstained cells. Data were fitted to a sigmoidal curve. The red

lines connect the MFI that is twice the background level and the

serum dilution that results in that MFI. The inverse of the serum

dilution that results in an MFI at least twice the background level

was taken as the titer. This was preferred over titer determination

based on half the maximal response, as in none of the samples

were an obvious maximum (plateau of the curve) reached.

(PDF)

Table S1 Va3.2 expression (determined by FACS), Trav
and Traj segment usage, and amino acid residues at the
VJ junction of env124-138L-reactive hybridoma T cell lines
generated from Emv2+/+ EF4.1 mice.

(PDF)

Table S2 Va3.2 expression (determined by FACS), Trav
and Traj segment usage, and amino acid residues at the
VJ junction of env124-138L-reactive hybridoma T cell lines
generated from Emv22/2 EF4.1 mice.

(PDF)

Acknowledgments

We wish to thank Kim Hasenkrug for critical reading of the manuscript.

We are grateful for assistance from the Division of Biological Services and

the Flow Cytometry Facility at NIMR.

Author Contributions

Conceived and designed the experiments: GK JPS GRY. Performed the

experiments: GRY MJYP UE MW. Analyzed the data: GRY MJYP UE

MW GK. Wrote the paper: GK JPS GRY.

References

1. Hasenkrug KJ, Chesebro B (1997) Immunity to retroviral infection: The Friend

virus model. Proc Natl Acad Sci U S A 94: 7811–7816.

2. Miyazawa M, Tsuji-Kawahara S, Kanari Y (2008) Host genetic factors that

control immune responses to retrovirus infections. Vaccine 26: 2981–2996.

Negative Selection Promotes High-Avidity T Cells

PLoS Pathogens | www.plospathogens.org 15 May 2012 | Volume 8 | Issue 5 | e1002709



3. McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF (2010) The

immune response during acute HIV-1 infection: clues for vaccine development.

Nat Rev Immunol 10: 11–23.

4. Handunnetthi L, Ramagopalan SV, Ebers GC, Knight JC (2010) Regulation of

major histocompatibility complex class II gene expression, genetic variation and

disease. Genes Immun 11: 99–112.

5. Kosmrlj A, Read EL, Qi Y, Allen TM, Altfeld M, et al. (2010) Effects of thymic

selection of the T-cell repertoire on HLA class I-associated control of HIV

infection. Nature 465: 350–354.

6. The International HIV Controllers Study (2010) The Major Genetic

Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation.

Science 330: 1551–1557.

7. Berger CT, Frahm N, Price DA, Mothe B, Ghebremichael M, et al. (2011)

High-Functional-Avidity Cytotoxic T Lymphocyte Responses to HLA-B-

Restricted Gag-Derived Epitopes Associated with Relative HIV Control.

J Virol 85: 9334–9345.

8. Iglesias MC, Almeida JR, Fastenackels Sn, van Bockel DJ, Hashimoto M, et al.

(2011) Escape from highly effective public CD8+ T-cell clonotypes by HIV.

Blood 118: 2138–2149.

9. Price DA, Asher TE, Wilson NA, Nason MC, Brenchley JM, et al. (2009) Public

clonotype usage identifies protective Gag-specific CD8+ T cell responses in SIV

infection. J Exp Med 206: 923–936.

10. Turner SJ, Doherty PC, McCluskey J, Rossjohn J (2006) Structural determinants

of T-cell receptor bias in immunity. Nat Rev Immunol 6: 883–894.

11. Bridgeman JS, Sewell AK, Miles JJ, Price DA, Cole DK (2011) Structural and

biophysical determinants of alphabeta T-cell antigen recognition. Immunology

135: 9–18.

12. Davenport MP, Price DA, McMichael AJ (2007) The T cell repertoire in

infection and vaccination: implications for control of persistent viruses. Curr

Opin Immunol 19: 294–300.

13. Welsh RM, Che JW, Brehm MA, Selin LK (2010) Heterologous immunity

between viruses. Immunol Rev 235: 244–266.

14. Antunes I, Tolaini M, Kissenpfennig A, Iwashiro M, Kuribayashi K, et al.

(2008) Retrovirus-specificity of regulatory T cells is neither present nor required

in preventing retrovirus-induced bone marrow immune pathology. Immunity

29: 782–794.

15. Ploquin MJ, Eksmond U, Kassiotis G (2011) B cells and TCR avidity determine

distinct functions of CD4+ T cells in retroviral infection. J Immunol 187:

3321–3330.

16. Shimizu T, Uenishi H, Teramura Y, Iwashiro M, Kuribayashi K, et al. (1994)

Fine structure of a virus-encoded helper T-cell epitope expressed on FBL-3

tumor cells. J Virol 68: 7704–7708.

17. Carson RT, Vignali KM, Woodland DL, Vignali DA (1997) T cell receptor

recognition of MHC class II-bound peptide flanking residues enhances

immunogenicity and results in altered TCR V region usage. Immunity 7:

387–399.

18. Rudensky AY, Preston-Hurlburt P, Hong SC, Barlow A, Janeway CA, Jr. (1991)

Sequence analysis of peptides bound to MHC class II molecules. Nature 353:

622–627.

19. Sim BC, Wung JL, Gascoigne NRJ (1998) Polymorphism within a TCRAV

family influences the repertoire through Class I/II restriction. J Immunol 160:

1204–1211.

20. Robertson SJ, Ammann CG, Messer RJ, Carmody AB, Myers L, et al. (2008)

Suppression of acute anti-friend virus CD8+ T-cell responses by coinfection with

lactate dehydrogenase-elevating virus. J Virol 82: 408–418.

21. Nair SR, Zelinskyy G, Schimmer S, Gerlach N, Kassiotis G, et al. (2010)

Mechanisms of control of acute Friend virus infection by CD4+ T helper cells

and their functional impairment by regulatory T cells. J Gen Virol 91: 440–451.

22. Schepers K, Toebes M, Sotthewes G, Vyth-Dreese FA, Dellemijn TA, et al.

(2002) Differential kinetics of antigen-specific CD4+ and CD8+ T cell responses

in the regression of retrovirus-induced sarcomas. J Immunol 169: 3191–3199.

23. Pike R, Filby A, Ploquin MJ, Eksmond U, Marques R, et al. (2009) Race

between retroviral spread and CD4+ T-cell response determines the outcome of

acute Friend virus infection. J Virol 83: 11211–11222.

24. King SR, Berson BJ, Risser R (1988) Mechanism of interaction between

endogenous ecotropic murine leukemia viruses in (BALB/c X C57BL/6) hybrid

cells. Virology 162: 1–11.

25. Marques R, Antunes I, Eksmond U, Stoye J, Hasenkrug K, et al. (2008) B

lymphocyte activation by coinfection prevents immune control of friend virus

infection. J Immunol 181: 3432–3440.

26. Green WR (1999) Cytotoxic T lymphocytes to endogenous mouse retroviruses

and mechanisms of retroviral escape. Immunol Rev 168: 271–286.

27. Ruan KS, Lilly F (1991) Identification of an epitope encoded in the env gene of

Friend murine leukemia virus recognized by anti-Friend virus cytotoxic T

lymphocytes. Virology 181: 91–100.

28. Chen W, Qin H, Chesebro B, Cheever MA (1996) Identification of a gag-

encoded cytotoxic T-lymphocyte epitope from FBL- 3 leukemia shared by

Friend, Moloney, and Rauscher murine leukemia virus-induced tumors. J Virol

70: 7773–7782.

29. Brawand P, Biasi G, Horvath C, Cerottini JC, MacDonald HR (1998) Flow-

Microfluorometric Monitoring of Oligoclonal CD8+ T Cell Responses to an

Immunodominant Moloney Leukemia Virus-Encoded Epitope In Vivo.

J Immunol 160: 1659–1665.

30. Hasenkrug KJ, Brooks DM, Dittmer U (1998) Critical Role for CD4+ T Cells in

Controlling Retrovirus Replication and Spread in Persistently Infected Mice.

J Virol 72: 6559–6564.

31. Iwanami N, Niwa A, Yasutomi Y, Tabata N, Miyazawa M (2001) Role of

natural killer cells in resistance against friend retrovirus-induced leukemia. J Virol

75: 3152–3163.

32. Goff SP (2004) Retrovirus Restriction Factors. Molecular Cell 16: 849–859.

33. Nethe M, Berkhout B, van der Kuyl AC (2005) Retroviral superinfection

resistance. Retrovirology 2: 52.

34. Lowy DR, Chattopadhyay SK, Teich NM, Rowe WP, Levine AS (1974) AKR

murine leukemia virus genome: frequency of sequences in DNA of high-, low-,

and non-virus-yielding mouse strains. Proc Natl Acad Sci U S A 71: 3555–3559.

35. Chattopadhyay SK, Lander MR, Rands E, Lowy DR (1980) Structure of

endogenous murine leukemia virus DNA in mouse genomes. Proc Natl Acad

Sci U S A 77: 5774–5778.

36. Jenkins MK, Chu HH, McLachlan JB, Moon JJ (2010) On the composition of

the preimmune repertoire of T cells specific for Peptide-major histocompatibility

complex ligands. Annu Rev Immunol 28: 275–294.

37. Huseby ES, Crawford F, White J, Kappler J, Marrack P (2003) Negative

selection imparts peptide specificity to the mature T cell repertoire. Proc Natl

Acad Sci U S A 100: 11565–11570.

38. Virgin HW, Walker BD (2010) Immunology and the elusive AIDS vaccine.

Nature 464: 224–231.

39. Chevalier MF, Julg B, Pyo A, Flanders M, Ranasinghe S, et al. (2011) HIV-1-

Specific Interleukin-21+ CD4+ T Cell Responses Contribute to Durable Viral

Control through the Modulation of HIV-Specific CD8+ T Cell Function. J Virol

85: 733–741.

40. Yue FY, Lo C, Sakhdari A, Lee EY, Kovacs CM, et al. (2010) HIV-Specific IL-

21 Producing CD4+ T Cells Are Induced in Acute and Chronic Progressive

HIV Infection and Are Associated with Relative Viral Control. J Immunol 185:

498–506.

41. Vingert B, Perez-Patrigeon S, Jeannin P, Lambotte O, Boufassa F, et al. (2010)

HIV controller CD4+ T cells respond to minimal amounts of gag antigen due to

high TCR avidity. PLoS Pathog 6: e1000780.

42. Ortiz AM, Klatt NR, Li B, Yi Y, Tabb B, et al. (2011) Depletion of CD4+ T cells

abrogates post-peak decline of viremia in SIV-infected rhesus macaques. J Clin

Invest 121: 4433–4445.

43. Portis JL (1994) Endogenous retroviral envelope antigens recognized by B

lymphocytes during graft-versus-host reaction. Tohoku J Exp Med 173: 83–89.

44. Gras S, Chen Z, Miles JJ, Liu YC, Bell MJ, et al. (2010) Allelic polymorphism in

the T cell receptor and its impact on immune responses. J Exp Med 207:

1555–1567.

45. Kjer-Nielsen L, Clements CS, Purcell AW, Brooks AG, Whisstock JC, et al.

(2003) A structural basis for the selection of dominant alphabeta T cell receptors

in antiviral immunity. Immunity 18: 53–64.

46. Sabatino JJ, Jr., Huang J, Zhu C, Evavold BD (2011) High prevalence of low

affinity peptide-MHC II tetramer-negative effectors during polyclonal CD4+ T

cell responses. J Exp Med 208: 81–90.

47. Munitic I, Decaluwe H, Evaristo C, Lemos S, Wlodarczyk M, et al. (2009)

Epitope specificity and relative clonal abundance do not affect CD8

differentiation patterns during lymphocytic choriomeningitis virus infection.

J Virol 83: 11795–11807.

48. Ebert PJR, Jiang S, Xie J, Li QJ, Davis MM (2009) An endogenous positively

selecting peptide enhances mature T cell responses and becomes an autoantigen

in the absence of microRNA miR-181a. Nat Immunol 10: 1162–1169.

49. Pothlichet J, Mangeney M, Heidmann T (2006) Mobility and integration sites of

a murine C57BL/6 melanoma endogenous retrovirus involved in tumor

progression in vivo. Int J Cancer 119: 1869–1877.

50. Stoye JP (1999) The pathogenic potential of endogenous retroviruses: a sceptical

view. Trends Microbiol 7: 430.

51. Baudino L, Yoshinobu K, Morito N, Santiago-Raber ML, Izui S (2010) Role of

endogenous retroviruses in murine SLE. Autoimmun Rev 10: 27–34.

52. Nakagawa K, Harrison LC (1996) The potential roles of endogenous

retroviruses in autoimmunity. Immunol Rev. pp 193–236.

53. Christensen T (2005) Association of human endogenous retroviruses with

multiple sclerosis and possible interactions with herpes viruses. Rev Med Virol

15: 179–211.

54. Perl A, Nagy G, Koncz A, Gergely P, Fernandez D, et al. (2008) Molecular

mimicry and immunomodulation by the HRES-1 endogenous retrovirus in SLE.

Autoimmunity 41: 287–297.

55. Kleiman A, Senyuta N, Tryakin A, Sauter M, Karseladze A, et al. (2004)

HERV-K(HML-2) GAG/ENV antibodies as indicator for therapy effect in

patients with germ cell tumors. Int J Cancer 110: 459–461.

56. Humer J, Waltenberger A, Grassauer A, Kurz M, Valencak J, et al. (2006)

Identification of a melanoma marker derived from melanoma-associated

endogenous retroviruses. Cancer Res 66: 1658–1663.

57. Contreras-Galindo R, Kaplan MH, Markovitz DM, Lorenzo E, Yamamura Y

(2006) Detection of HERV-K(HML-2) viral RNA in plasma of HIV type 1-

infected individuals. AIDS Res Hum Retroviruses 22: 979–984.

58. Garrison KE, Jones RB, Meiklejohn DA, Anwar N, Ndhlovu LC, et al. (2007) T

Cell Responses to Human Endogenous Retroviruses in HIV-1 Infection. PLoS

Pathog 3: e165.

Negative Selection Promotes High-Avidity T Cells

PLoS Pathogens | www.plospathogens.org 16 May 2012 | Volume 8 | Issue 5 | e1002709



59. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, et al. (2007) A Whole-

Genome Association Study of Major Determinants for Host Control of HIV-1.
Science 317: 944–947.

60. Takahashi Y, Harashima N, Kajigaya S, Yokoyama H, Cherkasova E, et al.

(2008) Regression of human kidney cancer following allogeneic stem cell
transplantation is associated with recognition of an HERV-E antigen by T cells.

J Clin Invest 118: 1099–1109.
61. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, et al. (1992)

RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68: 869–877.

62. Philpott KL, Viney JL, Kay G, Rastan S, Gardiner EM, et al. (1992) Lymphoid
development in mice congenitally lacking T cell receptor alpha beta-expressing

cells. Science 256: 1448–1452.

63. Casanova JL, Romero P, Widmann C, Kourilsky P, Maryanski JL (1991) T cell

receptor genes in a series of class I major histocompatibility complex-restricted

cytotoxic T lymphocyte clones specific for a Plasmodium berghei nonapeptide:

implications for T cell allelic exclusion and antigen-specific repertoire. J Exp

Med 174: 1371–1383.

64. Martin RM, Brady JL, Lew AM (1998) The need for IgG2c specific antiserum

when isotyping antibodies from C57BL/6 and NOD mice. J Immunol Methods

212: 187–192.

65. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 2(2Delta Delta C(T)) Method. Methods 25:

402–408.

Negative Selection Promotes High-Avidity T Cells

PLoS Pathogens | www.plospathogens.org 17 May 2012 | Volume 8 | Issue 5 | e1002709


