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Abstract

Influenza A virus (IAV) infection is normally controlled by adaptive immune responses initiated by dendritic cells (DCs). We
investigated the consequences of IAV infection of human primary DCs on their ability to function as antigen-presenting
cells. IAV was internalized by both myeloid DCs (mDCs) and plasmacytoid DCs but only mDCs supported viral replication.
Although infected mDCs efficiently presented endogenous IAV antigens on MHC class II, this was not the case for
presentation on MHC class I. Indeed, cross-presentation by uninfected cells of minute amounts of endocytosed, exogenous
IAV was ,300-fold more efficient than presentation of IAV antigens synthesized by infected cells and resulted in a
statistically significant increase in expansion of IAV-specific CD8 T cells. Furthermore, IAV infection also impaired cross-
presentation of other exogenous antigens, indicating that IAV infection broadly attenuates presentation on MHC class I
molecules. Our results suggest that cross-presentation by uninfected mDCs is a preferred mechanism of antigen-
presentation for the activation and expansion of CD8 T cells during IAV infection.
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Introduction

Influenza A virus (IAV) infection is one of the oldest and most

common diseases known to mankind, estimated to cause 500,000

deaths per year, primarily in infants and elderly [1]. In healthy

humans, IAV infection typically causes brief but often severe

illness. Normally, IAV infection is confined to the airways where

the virus replicates in respiratory epithelial cells [2]. Rapidly,

alveolar macrophages produce pro-inflammatory cytokines and

chemokines, which promote infiltration of peripheral blood

leukocytes to the site of infection [3]. While influx of neutrophils

and secretion of cytokines and chemokines in the lung is a

fundamental defense during the initial stage of infection, the

resulting ‘‘cytokine storm’’ may also contribute to pathogenesis

[4]. However, control and clearance of IAV infection depend on

pathogen-specific adaptive immune responses [5].

The initiation of adaptive immunity relies on dendritic cells

(DCs), professional antigen-presenting cells (APCs) with the capacity

to activate naı̈ve T cells [6]. The two major subsets of human DCs,

myeloid and plasmacytoid DCs (mDCs and pDCs, respectively)

both have antigen-presenting capacity although mDCs are

generally considered to be superior. pDCs are of central importance

in virus infections since they respond rapidly to viruses and secrete

high levels of anti-viral type I interferons [7]. DCs reside in the

epithelia of the upper respiratory tract, the site of entry for IAV, and

are also rapidly mobilized to this site following inhalation of

microbial agents [8–9]. Since there is little evidence of viral

replication in lymphoid tissue, the main source of IAV antigen is

thought to be DCs that exit the respiratory tract and travel to

lymphoid tissue where immune responses are initiated [10–11].

During acute viral infections, activation and expansion of

antigen-specific CD8 T cells are crucial for control and clearance

of infection [5,12–13]. In general, MHC class I molecules (MHCI)

present peptides derived from endogenously synthesized proteins.

Viruses that replicate in DCs can therefore be detected by the

immune system by direct presentation of viral antigens. Since not

all viruses infect DCs, antigen-presentation by uninfected DCs is

thought to occur via cross-presentation, a poorly understood

process unique to DCs where exogenous antigen is loaded on

MHCI in the ER or possibly other intracellular compartments

[14]. Mice lacking CD8a+ DCs are deficient in their capacity to

mount an anti-viral immune response [15] suggesting that cross-

presentation is crucial for a CD8 T cell response against viruses.

On the other hand, it could also suggest that direct presentation by

virus infected CD8a+ DCs is required for CD8 T cell responses.

The relative contributions of direct versus cross-presentation for

the induction of anti-viral CD8 T cell responses have been a topic

of discussion for several years [16–19], and have been compared in

mouse models [19–22]. However, the efficiency of direct versus

cross-presentation of IAV and the potential IAV-mediated
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suppression of antigen-presentation in human DCs remains an

unresolved topic.

IAV infection often predisposes individuals to secondary

infections, usually bacterial, with higher lethal outcomes than

either infection alone, suggesting that the initial infection affects

the host’s ability to respond to a second pathogen. While the

connections between viral and bacterial infections have been

known for decades [23], the mechanism(s) and modes of

interaction contributing to these effects are poorly understood.

IAV infection clearly suppresses innate immune responses [24–

27], but the extent to which adaptive immune responses are also

affected, and why, remains unclear.

While IAV infection has been studied extensively in animal

models, relatively little is known about how IAV infection affects

the function of human DC subsets due in part to their limited

availability, making such experiments challenging. In mice,

mDCs, rather than pDCs, appear to be responsible for presenting

IAV antigen to CD8 T cells for the priming of anti-IAV immune

responses [28–31]. In humans, it is much less clear what subset(s)

of DCs are important in antigen-presentation during IAV

infection. Human DCs infected with infectious IAV or exposed

to inactivated IAV can activate IAV-specific T cells [32–36],

however, it remains unclear if or how IAV infection of human

DCs affects their function. Here, we investigated the consequences

of IAV infection on the ability of DCs to present IAV antigen, or

other antigens, to autologous T cells using relevant subsets of

primary human DCs.

Results

mDCs but not pDCs are susceptible to influenza A virus
infection

pDCs are known to be more resistant to the cytopathic effect of

IAV than mDCs, suggesting that pDCs are resistant to infection

[36,37]. To extend this observation and to determine any possible

consequences for antigen-presentation, primary human mDCs

and pDCs were exposed to IAV and the frequency of IAV+ DCs

was analyzed. While the frequency of IAV+ mDCs increased over

time, infection in pDCs remained undetectable (Figure 1A). The

IAV+ mDCs reflected the production of newly synthesized viral

proteins rather than enhanced virion uptake since adding the virus

at 4uC, or blocking virus endosomal egress with NH4Cl, inhibited

the appearance of IAV+ DCs (Figure 1B). Interestingly, infectious

IAV was not detected in the supernatant even after 24 hr,

indicating that despite high viral protein production, mDCs did

not support generation of infectious particles (Figure S1A). These

observations were confirmed for several IAV strains (Figure S1B).

To assess whether the lack of infection in pDCs reflected poor

endocytosis of virus, human mDCs and pDCs were exposed to

IAV and analyzed by confocal microscopy. After 1 hr, the

majority of both DC subsets displayed internalized virus

(Figures 1C–D), suggesting that other factors blocked pDC

infection, such as the pDCs’ constitutive expression of the

interferon-inducible antiviral protein MxA (Figures 1E and S2)

[37]. It has previously been shown that expression of MxA renders

cells resistant to IAV infection [38]. We were unable to

knockdown MxA in pDCs using siRNA while maintaining pDC

viability (data not shown). Still, the constitutive high expression of

MxA in pDCs suggests that this protein could aid in the observed

resistance to IAV infection, despite efficient IAV internalization by

pDCs.

pDCs, like mDCs, were nevertheless found to respond to the

presence of IAV even in the absence of the synthesis of virus-

encoded proteins. This was illustrated by comparing the ability of

infectious IAV and non-infectious heat-inactivated (HI) IAV to

trigger DC maturation. Both replicating and HI IAV were

internalized equivalently. In addition, both could fuse with the

endosomal membrane at low pH, as indicated by agglutination

and acid-dependent lysis of chicken red blood cells (data not

shown). As expected, HI IAV did not infect DCs, and infection of

mDCs by replication-competent IAV was blocked by NH4Cl

(Figures 2A–B). Yet, both pDCs and mDCs upregulated MHCI

and MHCII in response to infectious and HI IAV (Figure 2C).

Furthermore, pDCs responded by secreting large amounts of

IFNa (Figure 2D). This was true for several IAV strains (Figure

S3). mDCs also secreted IFNa in response to IAV, although the

levels were 100–1000 fold lower than for pDCs (Figure 2E). pDCs

recognize IAV via TLR [39] while most cells respond to single

stranded RNA viruses via the RIG-I pathway [40]. Human

primary mDCs express TLR7 and TLR8 that recognize single-

stranded RNA. The virus-related TLRs can be stimulated by

inactivated viruses, however, the barely detectable amount of

IFNa secreted by mDCs in response to TLR7/8L suggests that

this was a consequence of signaling via cytoplasmic receptors

rather than via TLRs (Figure 2E). In addition, pDCs secreted

TNFa, IL-6 and MIP-1a in response to IAV, while mDCs

required stimulation with purified TLR7/8 ligand (TLR7/8L) to

secrete significant amounts of cytokines and chemokines (Figure

S4). Thus, IAV enters both mDCs and pDCs and triggers their

maturation, but only mDCs support viral protein synthesis.

mDCs are superior at MHCI restricted
antigen-presentation of IAV compared to pDCs

To determine if infected human mDCs and pDCs could present

antigen to and activate IAV-specific CD8 T cells, we exposed DCs

from HLA-A2+ donors to either infectious IAV or non-infectious

HI IAV and co-cultured them with autologous CFSE-labeled CD8

T cells. After 10 days, the frequency of memory CD8 T cells

specific to the immunodominant influenza M1 (58–66) epitope was

determined and the overall CD8 T cell response assessed by CFSE

dilution. While both mDCs and pDCs could expand IAV-specific

CD8 T cells, mDCs were superior (Figures 3A–B). This difference

Author Summary

Although the interactions between viruses and dendritic
cells (DCs) have been studied for many years, surprisingly
little is known on the functional relationship between
infection and antigen presentation in primary human DCs.
Here, we asked specifically whether Influenza A virus (IAV)
infection of human primary plasmacytoid DCs and myeloid
DCs (pDCs and mDCs, respectively) affected their ability to
function as antigen-presenting cells and activate T cells
specific to IAV or other antigens. Our data confirm that
pDCs are poorly infected and also present IAV antigens
poorly. mDCs, on the other hand, are readily susceptible to
IAV infection and present IAV antigen to T cells. However,
we found that MHC class I presentation by mDCs infected
with IAV are ,300-fold less efficient relative to what mDCs
are capable of achieving by cross-presentation following
the endocytosis of only a very few non-infectious virions.
Importantly, IAV infection of mDCs not only reduces the
efficiency of IAV presentation but also reduces their ability
to cross-present antigens from other viruses encountered
subsequently. The reduced overall antigen processing
capacity of mDCs describes a mechanism that may
contribute to the suppression of immunity to secondary
pathogens that appear during the course of IAV infection.

IAV Infection of DCs Impairs Cross-Presentation
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likely reflected different capacities for antigen-processing since

both subsets presented pre-processed peptide (that does not

require cellular processing) similarly (Figure 3C). IAV presentation

to CD8 T cells by pDCs was the same for both infectious and non-

infectious virus, strongly suggesting that pDCs were only capable

of cross-presenting IAV antigens, albeit inefficiently from virions

internalized by endocytosis.

Presentation on MHCI is a hallmark of viral immunity since

infected cells express virus-derived peptides recognized for

elimination by cytotoxic CD8 T cells. In DCs, it is unclear if the

generation of CD8 T cell responses reflects the formation of

peptide-MHCI complexes from endogenously synthesized viral

proteins or the cross-presentation of antigens from exogenous

sources (e.g. internalized virions or infected cells) [41]. Indeed,

Figure 1. mDCs but not pDCs are susceptible to IAV infection. (A) pDCs (red) and mDCs (blue) were continuously exposed to IAV for 1, 6 or
24 hr and the frequency of IAV+ DCs was measured by flow cytometry using a rabbit polyclonal antibody raised against IAV/X31. Graph shows
mean6SD percent of IAV+ CD123+ CD142 pDCs and CD11c+ CD142 mDCs (n = 7). Differences between IAV infection of mDCs and pDCs were
assessed using paired t test: n.s. no significant difference, ** p,0.01, *** p,0.001. (B) DCs were treated with NH4Cl, then exposed to IAV for 24 hr at
4uC or 37uC. The frequency of IAV+ DCs and level of CD86 expression was determined by flow cytometry. One representative experiment of six is
shown. Dot plots show live DCs and numbers in each quadrant depict the frequency of positive DCs. (C) DCs were exposed to IAV for 1 hr, washed 3
times to remove free virus and allowed to adhere to coverslips. Surface HLA-DR (red) was labeled before fixation to visualize the plasma membrane.
After permeabilization, virus was stained using an anti-IAV antibody (green) and the nucleus was stained using DAPI (blue). The entire volume of each
cell was analyzed using confocal microscopy (10061.47NA oil objective, 66digital zoom) and one single optical slice through the center of the cell is
shown with arrowheads pointing to virus structures. Scale bar 10 mm. (D) The frequency of IAV+ DCs after 1 hr of virus exposure was determined by
analyzing entire z-stacks of DCs and counting the number of cells that had virus associated with them, either on the membrane (white) or
intracellularly (black). The graph shows average frequency of IAV+ DCs6SD, with 100–300 DCs analyzed per donor and condition (n = 4). (E) DCs were
treated with LPS, TLR7/8L, IFNa or nothing for 24 hr and the MxA expression was determined by flow cytometry using intracellular staining with a
monoclonal anti-MxA antibody. Graph shows MFI6SD of MxA with isotype control subtracted (n = 3).
doi:10.1371/journal.ppat.1002572.g001
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DCs are well known to have an enhanced capacity for cross-

presentation, which requires that internalized antigens exit the

endosomal pathway for peptide cleavage in the cytosol and

subsequent loading onto MHCI molecules in the ER or elsewhere

[14]. Although HI IAV cannot infect DCs, it retains the capacity

to fuse with the endosomal membrane [32] thus providing an

intrinsic capacity to reach the cytosol, which is possibly the rate-

limiting step in the cross-presentation [42].

Strikingly, mDCs exposed to HI IAV induced a statistically

significant, two-fold more effective expansion of IAV-specific CD8

T cells than mDCs infected with IAV (Figures 3A–B). This was

surprising because it is generally assumed that presentation of

peptides from endogenously synthesized proteins is more efficient

than cross-presentation [19]. In addition, IAV infected DCs

expressed far greater amounts of IAV proteins than DCs exposed

to HI IAV. This was readily apparent (Figures 3D and 2A);

Figure 2. Both infectious IAV and HI IAV induce maturation and cytokine secretion in mDCs and pDCs in a pH-dependent manner.
mDCs (A) or pDCs (B) were exposed to infectious IAV or HI IAV in the absence or presence of NH4Cl for 24 hr. The frequency of IAV+ DCs and their
CD86 expression was determined. Dot plots show live DCs and numbers in each quadrant depict the frequency of positive DCs. One representative
donor of eight is shown. (C) The surface expression of CD86, CD40, MHCI (HLA-ABC) and MHCII (HLA-DR) on mDCs (blue) and pDCs (red) was
determined after 24 hr of exposure to infectious IAV, HI IAV or TLR7/8L in the absence or presence of NH4Cl. Bar graphs show MFI6SD (n = 3). The
levels of secreted IFNa from supernatants of pDCs (D) or mDCs (E) after 24 hr were determined by ELISA. The graphs show mean6SD (n = 9).
doi:10.1371/journal.ppat.1002572.g002

IAV Infection of DCs Impairs Cross-Presentation
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Figure 3. Cross-presentation is more efficient than direct presentation of IAV. (A) DCs were exposed to infectious IAV, HI IAV or left
untreated for 4 hr, washed and co-cultured with autologous CFSE labeled CD8 T cells at 1:30 DC:T cell ratio. After 10 days of co-culture, cells were
harvested and stained with an HLA-A2 Influenza A M1 pentamer to detect M1-specific CD8 T cells by flow cytometry. T cell proliferation was detected
by CFSE dilution. Dot plots show live CD8 T cells and numbers indicate frequency of positive CD8 T cells in each quadrant. One representative donor
of four is shown. (B) Frequency of live CFSElow CD8 T cells co-cultured with mDCs (blue) and pDCs (red) for 10 days, as described in (A), as a
measurement of the total CD8 T cell response to IAV. Graph shows mean6SD from four donors. Differences were assessed using paired t test: n.s. no
significant difference, * p,0.05, ** p,0.01. (C) DCs were exposed to increasing doses of pre-processed CMV pp65 peptide for 3 hr, washed and co-
cultured with autologous CFSE-labeled CD8 T cells. After 10 days of co-culture, cells were harvested and stained with a CMV pp65 pentamer to detect
CMV pp65-specific CD8 T cells by flow cytometry. The graph shows frequency of CMV pentamer+ CFSElow CD8 T cells after co-culture with mDCs
(blue) or pDCs (red) from one representative donor of five. (D) After 4 hr of exposure to infectious IAV or HI IAV, the expression of Influenza A protein
was assessed using an anti-IAV polyclonal antibody (green) in HLA-DR (red) expressing MDCs and PDCs by confocal microscopy. Nuclei were stained
using DAPI (blue). Scale bar 5 mm. (E) mDCs were exposed to infectious IAV or HI IAV for 8 hr and IAV+ mDCs were measured by MFI. The graph
represents average MFI 6 SD (n = 3) where 50–100 mDCs were analyzed for each donor. (F) mDCs were exposed to infectious IAV or HI IAV for 8 hr.
Cells were lysed and analyzed by Western blot for viral protein content using a rabbit anti-IAV polyclonal antibody. The relative expression of IAV HA
(51 kDa) and IAV M1 (28 kDa) was determined using ImageJ after normalizing the samples to GAPDH.
doi:10.1371/journal.ppat.1002572.g003

IAV Infection of DCs Impairs Cross-Presentation
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although infected cells stained heavily for IAV proteins, cells

exposed to HI IAV contained only 4–5 virions (defined as IAV+
puncta) per cell (Figure S5). We determined the mean fluorescence

intensity (MFI) of the IAV staining in IAV+ mDCs and found that

mDCs infected with infectious IAV displayed 10-fold more IAV

staining than mDCs exposed to HI IAV (Figure 3E). To more

accurately determine the relative content of IAV proteins, we next

analyzed cell lysates of mDCs exposed to infectious or HI IAV by

Western blot. Due to continued synthesis in the infected cells, and

continued degradation of virions in the HI IAV exposed cells, a

quantitative comparison was no more than an estimate. Yet,

influenza proteins were present at 100–1000 fold higher amounts

in infected cells as compared to cells that had internalized HI IAV

(Figure 3F). The 28 kDa band most likely corresponds to the M1

protein, ,3000 copies of which are contained within each virion,

or 15,000 copies per cell after endocytosis of 5 virions. Assuming

all of the HI IAV fuse with the endosome membrane releasing all

of the incoming M1 into the cytosol, we estimate that the

uninfected DCs are at least 300-fold more efficient at stimulating

M1-specific CD8 T cells than infected DCs: i.e. despite vastly

greater amounts of cytosolic M1, IAV infected DCs process and

present M1-derived peptides to CD8 T cells less well. This

difference in antigen processing and presentation translates into

the observed difference in frequency of proliferating IAV-specific

CD8 T cells depicted in Figure 3B.

On the other hand, pDCs exposed to either infectious IAV or

HI IAV were comparable in their ability to expand IAV-specific

CD8 T cells (Figures 3A–B). Comparing presentation of HI IAV

by mDC and pDCs, pDCs were 10–20 fold less effective at cross-

presentation than mDCs (Figures 3A–B). This difference was

consistent over a range of IAV concentrations and DC:T cell

ratios (Figure S6).

Contrary to CD8 T cell responses, CD4 T cells responded

comparably to mDCs exposed to either infectious or HI IAV. As

with presentation on MHCI, mDCs were superior to pDCs for

MHCII-restricted presentation (Figure 4). Thus, IAV infection did

not diminish the efficiency of presentation to CD4 T cells, showing

that the effect on the MHCI pathway was selective.

IAV infected mDCs have an impaired capacity to cross-
present other viral antigens

IAV infection often predisposes individuals to secondary

infections, suggesting that infection history affects the ability to

mount adaptive responses to new pathogens. Therefore, we

investigated if uninfected and IAV infected DCs were comparable

in their ability to present a second antigen to CD8 T cells and

support their activation and expansion. The most common

secondary infection in IAV infected individuals is Streptococcus

pneumoniae. However, in the absence of tools to look at potential T

cell responses against S. pneumoniae, we made use of existing

immunodominant CD8 T cell memory responses against EBV and

CMV in HLA-A2+ donors as model antigens. Since pDCs were

not susceptible to IAV infection, we focused on mDCs.

Uninfected and HI IAV exposed mDCs had similar capacities

to cross-present CMV to antigen-specific CD8 T memory cells. In

contrast, IAV infected mDCs consistently produced several-fold

lower frequency of proliferating CMV pp65-specific CD8 T cells

(Figure 5A). The impaired ability of IAV infected mDCs to cross-

present inactivated CMV to CD8 T cells was apparent over a

range of CMV concentrations (Figure 5B) and DC:T cell ratios

(Figure 5C). Analysis of the CMV pentamer-negative, CFSElow

population in the absence of exogenous CMV also showed that the

overall T cell response was more pronounced to HI IAV (48.6%)

than to infectious IAV (15.9%) (Figure 5A, left panel). Further-

more, IAV infected and HI IAV stimulated mDCs loaded with

pre-processed CMV peptide were comparable or superior to

uninfected mDCs in their ability to expand CMV-specific CD8 T

cells, consistent with a defect in antigen-processing capacity rather

than in antigen-presentation (Figure 5D). Similar results were

observed for cross-presentation of HI EBV or EBV infected cell

extract (Figure S7). This suggests that IAV infected mDCs have an

impaired capacity to cross-present both different sources of antigen

(CMV and EBV) as well as different forms of antigen (inactivated

virus and virus infected cells) to CD8 T cells as compared to

uninfected mDCs.

We also compared the ability of uninfected, IAV infected, and

HI IAV stimulated mDCs to present CMV to autologous CD4 T

cells. Unlike cross-presentation to CD8 T cells, IAV infected and

HI IAV exposed mDCs stimulated CMV-specific CD4 responses

similarly (Figure 5E). This again indicates that IAV infected mDCs

can function as APCs in general but that IAV infection selectively

impairs the ability to cross-present antigen on MHCI to CD8 T

cells.

Neither differential cellular viability nor antigen load
explain the decreased ability of IAV infected mDCs to
cross-present

One explanation for the decreased ability of IAV infected

mDCs to cross-present could be IAV-induced DC death. This

explanation appeared unlikely since presentation of pre-processed

peptide was similar between uninfected and IAV infected mDCs

(Figure 5D), and IAV infected mDCs could activate CD4 T cells

(Figures 4A and 5A). Assessing the viability of the mDCs in the co-

cultures after 10 days, the time at which we measure T cell

activation, is a challenge since DCs are in great minority and the

majority of T cells that have not seen their cognate antigen have

died. To investigate the role of IAV mediated cell death, mDCs

were exposed to infectious IAV or HI IAV and the frequency of

dead mDCs was compared to untreated mDCs by Annexin V

staining. The viability of all mDCs was comparable at 2 hr and

6 hr after virus exposure (Figure 6A). At later time points (days),

the viability of IAV infected mDCs was reduced compared to

Figure 4. DCs exposed to infectious IAV and HI IAV are similar
in MHCII restricted antigen-presentation. pDCs (red) and mDCs
(blue) were exposed to infectious IAV, HI IAV or left untreated for
4 hours, washed and co-cultured with autologous CD4 T cells at a 1:30
DC:T cell ratio. After 1 hr of co-culture brefeldin A was added. After
another 16 hr of co-culture, cells were harvested and stained with
antibodies to detect cytokine-producing CD4 T cells and analyzed by
flow cytometry. Graph shows mean6SD percent of live, IFNa, TNFa, IL-
2+ CD4 T cells (n = 3).
doi:10.1371/journal.ppat.1002572.g004

IAV Infection of DCs Impairs Cross-Presentation
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untreated or HI IAV exposed mDCs (Figure 6A), in line with the

cytopathic effects of IAV and similar to what has been described

by others [36–37]. However, as most of the antigen processing and

presentation to CD8 T cells probably occurs within the first 24 hr

of antigen capture [43], these data suggest that IAV induced cell

death alone is not a likely explanation for the difference in cross-

presentation observed.

Another way to address the role of DC viability in the observed

difference in cross-presentation is to stop antigen processing after

8 hr by fixing the DCs with paraformaldehyde (PFA) and then

analyze CD8 T cell expansion. Since fixed cells do not present

antigen as effectively as viable cells, the overall frequency of

expanded CMV pp65-specific CD8 T cells was lower than in the

cultures with live DCs (Figure 6B). Nevertheless, the relative

difference remained the same: fixed IAV infected mDCs were

poorer at expanding CD8 T cells than fixed uninfected mDCs. In

contrast, fixed IAV infected mDCs loaded with pre-processed

peptide were better than fixed uninfected mDCs at expanding

CD8 T cells (Figure 6C). This is in agreement with IAV induced

mDC maturation and MHCI upregulation (Figure 2C).

Another explanation for the reduced ability of IAV infected

mDCs to expand CMV-specific CD8 T cells could be poorer

uptake of CMV particles. To address this possibility, we exposed

uninfected, IAV infected and HI IAV stimulated mDCs to

inactivated CMV particles and quantified the frequency of CMV-

containing DCs by immunofluorescence (Figure 7A). The

frequency of mDCs containing CMV particles was very similar

over a range of CMV doses, irrespective of IAV infectivity

(Figure 7B). We counted the number of CMV pp65-positive

puncta per mDC in each condition. Again, uninfected, IAV

infected and HI IAV stimulated mDCs were comparable,

although there was a slight tendency for IAV infected mDCs to

exhibit a higher average number of CMV pp65+ particles per cell

(Figure 7C). These results suggested that there was no difference in

antigen load between uninfected and IAV infected mDCs. Taken

together, we conclude the reduced ability of IAV infected mDCs

to cross-present likely depends on interference downstream of

antigen uptake induced by viral replication and independent of

DC maturation.

Discussion

We have investigated the susceptibility of human primary DC

subsets to IAV infection, including the functional consequences of

IAV infection on their ability to process and present antigens to

activate T cells. Although both mDCs and pDCs could internalize

Figure 5. Uninfected mDCs are superior at cross-presentation than IAV infected mDCs. (A) mDCs were exposed to infectious IAV, HI IAV
or left untreated for 4 hr and washed, then exposed to whole, c-irradiated CMV for an additional 3 hr, washed and co-cultured with autologous CFSE-
labeled CD8 T cells. After 10 days of co-culture, cells were harvested and stained with an HLA-A2 CMV pp65 pentamer to detect CMV pp65-specific
CD8 T cells and analyzed by flow cytometry. Dot plots show live CD8 T cells and numbers indicate frequency of positive CD8 T cells. One
representative experiment of five is shown. (B) Frequency of live CMV pentamer+ CFSElow CD8 T cells co-cultured with uninfected mDCs (blue), IAV
infected mDCs (black) or HI IAV stimulated mDCs (white) for 10 days, as described in (A) where mDCs were fed increasing doses of whole, c-irradiated
CMV before co-culture with CD8 T cells. (C) Frequency of live CMV pentamer+ CFSElow CD8 T cells co-cultured with uninfected mDCs (blue), IAV
infected mDCs (black) or HI IAV stimulated mDCs (white) for 10 days, as described in (A) after co-culture at different DC:CD8 T cells ratios. (D)
Uninfected mDCs (blue), IAV infected mDCs (black) or HI IAV stimulated mDCs (white) were exposed to increasing doses of pre-processed CMV pp65
peptide for 3 hr, washed and co-cultured with autologous CFSE-labeled CD8 T cells for 10 days. The graph shows frequency of live CMV pentamer+
CFSElow CD8 T. One representative experiment of five is shown. (E) mDCs were exposed to infectious IAV, HI IAV or left untreated for 4 hr, washed to
remove non-cell associated virus and exposed to 100 mL whole, c-irradiated CMV for an additional 3 hr. mDCs were then washed and co-cultured
with autologous CD4 T cells at a 1:30 DC:T cell ratio. After 1 hr brefeldin A was added and the cells were further incubated overnight. Cells were
harvested and stained with antibodies to detect cytokine-producing CD4 T cells and analyzed by flow cytometry. Dot plots show live CD4 T cells and
numbers indicate frequency of IFNa, TNFa, IL-2+ CD4 T cells. One representative experiment of four is shown.
doi:10.1371/journal.ppat.1002572.g005
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IAV, only mDCs supported IAV protein synthesis. Yet, IAV

infected mDCs were less efficient at stimulating CD8 T cell

responses in vitro when compared to uninfected mDCs. Indeed,

cross-presentation of exogenous IAV M1 derived from internal-

ized HI IAV was ,300-fold more efficient when normalized to the

total amount of mDC-associated antigen in infected vs. uninfected

DCs. In addition, IAV infected mDCs also had a reduced capacity

to present a second exogenous antigen, either inactivated CMV or

EBV virions or infected cells, to CD8 T cells as compared to

uninfected mDCs. Furthermore, we found that mDCs were more

efficient at activating and expanding IAV-specific CD8 T cells

than pDCs after exposure to either infectious or HI IAV.

Although previous studies have demonstrated that human DCs

present infectious and inactivated IAV to CD4 and CD8 T cells

[32–33,36,44], the relative efficiency of these two processes and

the functional implication of any difference have not been studied

in detail. In mouse models, the importance of CD8a+ DCs and

cross-presentation in control of virus infection is well-established

Figure 6. IAV-induced cell death does not explain difference in ability between IAV infected and uninfected mDCs to cross-present
antigen to CD8 T cells. (A) mDCs were exposed to infectious IAV, HI IAV or left untreated. mDCs were collected at different time points and stained
with Annexin V to assess cell viability. Graph shows average frequency 6 SD of Annexin V negative (live) mDCs treated with nothing (blue), infectious
IAV (black) or HI IAV (white) (n = 3). (B) mDCs were infected or not with infectious IAV for 2 hr, washed and exposed to 700 mg/mL whole, c-irradiated
CMV for an additional 6 hr. mDCs were then washed, split in two, and half of the DCs were fixed with 0.5% PFA for 10 min and washed extensively to
remove any residual PFA before co-culture with autologous CFSE-labeled CD8 T cells at a 1:30 DC:T cell ratio for 10 days. Cells were harvested and
stained with an HLA-A2 CMV pp65 pentamer and analyzed by flow cytometry. Dot plots show live CD8 T cells and numbers indicate frequency of
positive CD8 T cells. One representative experiment of two is shown. (C) Same experiment as described in (B) but uninfected or IAV infected mDCs
were loaded with 25 ng/mL pre-processed CMV peptide before fixation (or not) and co-cultured with autologous CD8 T cells at a 1:30 DC:T cell ratio.
Dot plots show live CD8 T cells and numbers indicate frequency of positive CD8 T cells. One representative experiment of two is shown.
doi:10.1371/journal.ppat.1002572.g006
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[15]. Furthermore, different virus infections in mouse including

vaccinia [20], MCMV [22] and HSV-1 [21] have been reported

to rely on cross-presentation rather than direct presentation for

CD8 T cell responses and clearance of infection, although this

conclusion has recently been challenged [19]. Our observation

that cross-presentation can be more efficient than direct

presentation on MHCI to CD8 T cells also in a human system

extends earlier findings and underscores their relevance. The

fusogenic capacity of IAV is required for optimal CD8 T cell

activation [32], and may be crucial for efficient cross-presentation,

since it likely removes the rate limiting step of endosomal egress.

Our work further shows that IAV infected mDCs are impaired in

their ability to cross-present a second antigen to CD8 T cells when

compared to uninfected mDCs or mDCs exposed to replication-

incompetent HI IAV. Importantly, it seems that replicating IAV,

rather than the mere presence of IAV and subsequent DC

maturation, affects the ability of mDCs to process and present

antigen on MHCI for activation and expansion of CD8 T cells. To

pinpoint which viral protein(s) and what specific cellular target(s) is

affected will be key in future studies.

We have also demonstrated that in physiologically relevant

DCs, cross-presentation can provide a more effective strategy for

CD8 T cell stimulation than presentation of endogenous antigen

by infected DCs, similar to what has been observed for other

viruses in mouse experimental models [20–22]. Thus, not only is

there no need for DCs to be infected by the viruses whose antigens

they present, but also infection may actually suppress the initiation

of adaptive responses. In future studies, it will be important to

verify the relevance of our data using human lung DCs and/or in

clinical studies that take into account the complex interaction of

cells during IAV infection in vivo.

We found that pDCs were resistant to IAV infection despite

significant virus internalization, confirming and extending previ-

ous reports [33–34,36–37,45–46]. pDCs responded to IAV

Figure 7. IAV infected and uninfected mDCs have similar CMV antigen load. (A) mDCs were exposed to infectious IAV, HI IAV or untreated
for 4 hr, washed and exposed to increasing doses of whole, c-irradiated CMV for an additional 3 hr. DCs were then washed, adhered to coverslips and
fixed with PFA. After permeabilization, samples were stained for CMV pp65 (green), IAV (red) and HLA-DR (blue). The entire volume of each cell was
analyzed using confocal microscopy (10061.47NA oil objective, 76digital zoom) and one single optical slice is shown through the center of the cell
with arrowheads pointing to CMV pp65+ structures. Scale bar 5 mm. (B) The frequency of CMV pp65+ uninfected mDCs (blue), IAV infected mDCs
(black) or HI IAV stimulated mDCs (white) after 3 hr of CMV exposure was determined by analyzing entire z-stacks of DCs and counting the number of
cells that had virus associated with them. The graph shows average frequency of CMV positive DCs 6 SD, with 100 cells analyzed per donor and
condition (n = 3). (C) The average number of CMV pp65+ puncta per cell after 3 hr of CMV exposure was determined by analyzing entire z-stacks of
DCs and counting the number of green (CMV) puncta per nucleated cell, assessed by DAPI staining. The graph shows average frequency of CMV
positive DCs 6 SD, with 100 cells analyzed per donor and condition (n = 3).
doi:10.1371/journal.ppat.1002572.g007
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exposure by secreting large amounts of IFNa, but showed only

modest upregulation of co-stimulatory molecules compared to

TLR7/8L stimulation. In our hands, pDCs were less potent than

mDCs at inducing CD8 T cell activation after acquiring a large

antigen that requires processing into peptides before loading onto

MHCI. This was probably due to a lower expression of co-

stimulatory molecules and therefore weaker DC-T cell interaction

and/or a reduced capacity to process large antigens compared to

mDCs, rather than a lack of viral antigen available for

presentation, as pDCs carrying abundant IAV NP are unable to

activate IAV-specific T cells [30]. Previous studies have reported

that human pDCs are similar [36] or superior [35] in their ability

to present antigen to CD8 T cells as compared to human mDCs.

The lack of clear consensus may partly be explained by differences

in maturation/phenotype of the pDCs as well as length of

exposure, and dose of IAV, as it has recently been reported that

the timing of pDC stimulation and route of antigen uptake affect

the ability of pDCs to present antigens [47].

It is well documented that IAV infection renders infected

individuals more prone to secondary bacterial infections, but the

importance of CD8 T cell response to control and clear

extracellular bacterial infections is unclear. IAV infection has an

immunomodulatory effect that is thought to promote an increased

susceptibility to secondary infections [24,26]. The impact of IAV

induced immunomodulation combined with an impaired ability to

cross-present subsequently encountered antigens might act

together to compromise a proper immune response to secondary

pathogens. Systemic injection of TLR ligands results in reduced

cross-presentation of a subsequently encountered antigen [18].

While this was suggested to be a consequence of systemic DC

maturation, we recently showed that reduced antigen-presentation

in vivo after systemic TLR injection could also be a consequence

of the antigen not reaching DCs in the spleen due to alterations in

splenic blood flow [48]. Previous studies using monocyte-derived

DCs have shown that IAV infection induces suboptimal

maturation of the cells with respect to upregulation of co-

stimulatory molecules and secretion of cytokines as compared to

LPS stimulation [49]. Using recombinant IAV that did not encode

the multifunctional viral protein NS1, the authors found that NS1

has an inhibitory effect on expression of several genes involved in

monocyte-derived DC maturation and migration, including the

pro-inflammatory cytokines IL-6 and TNFa [49]. In our hands,

primary mDCs do not show a defect in their ability to upregulate

co-stimulatory molecules in response to IAV as compared to TLR

stimulation, but did indeed show lower secretion of pro-

inflammatory cytokines. In any event, altered DC maturation

seems unlikely to fully explain the defect in mDC cross

presentation of a second antigen, since mDCs stimulated with

HI IAV, which mature to the same extent as IAV infected mDCs,

were found to retain their ability to cross-present. In future studies,

it will be important to use recombinant IAV strains in which

different viral proteins have been mutated or deleted to study their

potential impact on DC maturation and antigen-presentation on

the protein level, as well as in functional assays as outlined in the

present study.

Finally, our findings shed light on how uninfected human DCs,

rather than IAV infected DCs, may be crucial for processing and

presentation of IAV antigen to initiate anti-viral immunity. Even if

infected DCs can present antigen, cross-presentation facilitated by

uninfected DCs may be sufficient or even required for induction of

anti-viral immune responses. While the in vivo situation is much

more complicated, the in vitro results presented here do create the

conceptual possibility that the same situation applies in vivo.

Indeed, it was unexpected that uninfected mDCs cross-present

viral antigens more efficiently than IAV infected DCs present

endogenously synthesized antigens. Thus, IAV infection not only

inhibits cross-presentation of subsequently encountered antigens,

but also acts to diminish direct presentation. As a result, it is now

of interest to determine the mechanism of both forms of inhibition.

Besides DC death, other potential contributors may include the

partial reduction in host cell protein synthesis following IAV

infection or a direct inactivation of the antigen processing

machinery, as observed for medium to large DNA viruses that

cause chronic infections [50–51]. As discussed above, the

multifunctional IAV protein NS1 is an important virulence factor

associated with the suppression of innate immunity [52–54]. The

major function of NS1 is to antagonize the type I IFN mediated

host response. Current evidence suggests that NS1 can limit IFNb
production both on the pre- and post-transcriptional level. While

most IAV strains can utilize both strategies, some strains may have

lost one of these mechanisms naturally or as a consequence of

passage in the laboratory [53]. NS1 not only prevents the

activation of IRF3, a transcription factor involved in IFNb
induction (pre-transcriptional), but can also block the expression of

cellular genes such as MxA at the post-transcriptional level, and

thereby IFN gene expression. In contrast to more recent human

strains of IAV like A/TX/91 (TX), NS1 expressed by A/PR/8

(PR8), a widely used laboratory IAV strain, can only limit pre-

transcriptional events of IFNb induction [54]. Monocyte-derived

DCs infected with IAV/TX displayed higher viral replication but

reduced capacity to induce IFNc secretion in allogeneic naive

CD4 T cells compared to monocyte-derived DCs infected with

IAV/PR8 [55]. Monocyte-derived DCs infected with NS1 deleted

versions of the two virus strains were comparable in their ability to

induce IFNc secretion in allogeneic naive CD4 T cells [55],

suggesting that a more recent human isolate of IAV (TX) is a more

potent inhibitor of DC function than a laboratory adapted strain

(PR8). In addition, recent data using human lung epithelial cells

indicate that NS1 specifically suppresses the expression of several

genes involved in IFN-stimulated MHCI antigen presentation and

immune-proteasome activation during IAV infection [56]. Anoth-

er potential viral protein to consider in this context is the most

recently discovered IAV protein, PB1-F2 [57]. PB1-F2 is a

virulence factor described to contribute to pathogenesis of IAV as

well as secondary bacterial infections [58–60]. Taken together,

these studies have contributed significantly to our initial under-

standing of how individual IAV proteins may impact the immune

response to IAV and they also highlight the importance of

studying a wider selection of IAV strains. Whether NS1 and/or

PB1-F2 also affect the ability of IAV infected primary DCs to

cross-present is a relevant question that merits further investiga-

tion. A deeper understanding of how IAV infection of human DCs

impairs their function may prove to be useful for improved vaccine

design or therapeutic approaches to enhance endogenous

responses.

Materials and Methods

Ethics statement
This study was approved by the Genentech Institutional Review

Board. Written informed consent was obtained from all human

participants.

Isolation and culture of cells
Our procedures for isolation of subsets of DCs and T cells from

blood have been described previously [61]. Briefly, healthy blood

donors underwent automated leukapheresis and enriched popu-

lations of lymphocytes and monocytes were obtained by
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counterflow centrifugal elutriation. DCs were isolated from

elutriated monocytes using magnetic bead isolation followed by

sequential separation on AutoMacs (Miltenyi Biotec). The BDCA-

4 and the CD1c isolation kits were used for isolation of pDCs and

mDCs, respectively. pDCs and mDCs were cultured at 16106

cells/ml in complete medium (RPMI 1640 Glutamax supple-

mented with 1% streptomycin and penicillin, 1% HEPES (all

Invitrogen), 10% fetal bovine serum (Gibco)) in the presence of

recombinant human IL-3 (10 ng/ml, R&D Systems) or GM-CSF

(2 ng/ml, PeproTech). T cells were isolated from elutriated

lymphocytes by negative selection and separation on AutoMacs.

T cells were cultured at 106106 cells/ml in complete medium and

rested overnight before use.

IAV strains
Influenza A/NWS/33 and Influenza A/PR/8/34 strains

(ATCC) were propagated in MDCK cells. Supernatants were

concentrated by ultracentrifugation and resuspended in RPMI.

Influenza A/X31 was propagated in chicken eggs, purified and

concentrated on sucrose gradients (Virapur). Mock infected

supernatants and allantoic fluid were processed in the same

manner and used as controls to exclude any non-specific activation

of DCs (data not shown). TCID50 for all IAV strains was

determined by infecting a light monolayer of MDCKs in the

presence of trypsin and monitoring the cytopathic effect. DCs were

infected with 600,000 infectious particles (assessed in MDCK

plaque assay) of IAV per 1,000,000 DCs (0.6 MOI). This dose of

IAV resulted in 50–95% IAV+ mDCs after 24 hr of exposure.

Virus was replication incompetent after heat-inactivation at 56uC
for 30 min. Unless otherwise stated in the text, IAV refers to IAV/

X31.

IAV infection and stimulation of DCs
DCs were exposed to IAV, washed twice in RPMI and infection

was monitored using an anti-IAV rabbit polyclonal (Pinda, Dr. Ari

Helenius, ETH Zurich, Switzerland) or anti-nucleoprotein (NP)

antibody (clone A3, Chemicon) and flow cytometry (FACSCanto

II, BD Biosciences). Alternatively, infected DCs were allowed to

adhere to alcian blue (Sigma) coated glass coverslips for 20 min at

37uC, fixed with 4% paraformaldehyde (PFA) (Electron micros-

copy sciences) for 20 min at room temperature and permeabilized

with 0.05% saponin (Sigma), stained with antibodies and analyzed

by immunofluorescence confocal microscopy (Leica TCS SP5,

Leica Microsystems). To prevent IAV infection, 20 mM NH4Cl

was added before IAV.

DC phenotype and cytokine secretion
After IAV infection, DCs were harvested, washed twice and

surface stained with antibodies against (CD14 (MwP9), CD11c (B-

ly6), CD123 (9F5), CD86 (FUN-1), CD40 (5C3), HLA-ABC (W6/

32) all BD Biosciences) or HLA-DR (L243, Biolegend). DCs were

washed, fixed and analyzed by flow cytometry. Supernatants were

harvested and cytokines were measured by ELISA (IFNa; PBL

Interferon Source) or Luminex (Biorad). MxA expression was

determined using a mouse anti-MxA monoclonal antibody (clone

M143, Dr. Otto Haller, University of Freiburg, Germany) and

flow cytometry or immunofluorescence confocal microscopy.

Presentation of IAV to memory CD4 T by DCs
After 4 hr of IAV exposure, DCs were washed and co-cultured

with autologous CD4 T cells at different DC:T cell ratios. After

1 hr, GolgiPlug containing Brefeldin A (BD Biosciences) was

added and the cells were further incubated overnight. Cells were

harvested and stained with surface antibodies against CD4 (SK3),

CD3 (SK7), CD8 (SK1), CD14 (all BD Biosciences) and HLA-DR,

followed by fixation and permeabilization for 10 min using BD

cytofix/cytoperm (BD Biosciences). Cells were stained intracellu-

larly with antibodies against IFNc (B27, BD), TNFa (MAb11, BD)

and IL-2 (MQ1-17H12, Caltag laboratories) and analyzed by flow

cytometry.

Presentation of IAV to memory CD8 T by DCs
DCs isolated from HLA-A2+ donors were exposed to IAV or

loaded with 0.25–250 ng/mL pre-processed peptide for 4 hr,

washed and co-cultured with autologous CD8 T cells labeled with

0.25 mM CFSE (Molecular Probes). As a positive control, the

TCR superantigen Staphylococcal enterotoxin B (1 mg/ml, Sigma)

was used. HLA-A2 restricted HIV-1 gag pre-processed peptide

(SLYNTVATL) was used as an irrelevant pre-processed peptide

control (ProImmune). After 10 days, cells were harvested and

stained with HLA-A2 Influenza M1 (GILGFVFTL) pentamer

(ProImmune) for 15 min at room temperature followed by labeling

with antibodies against CD3, CD8, CD14, CD19 (SJ25C1),

CD11c (B-ly6) (BD Biosciences), fixation and analysis by flow

cytometry.

Presentation of CMV or EBV to memory CD8 T by
uninfected or IAV infected mDCs

HLA-A2+ mDCs were exposed to IAV for 4 hr, washed and

loaded with 7–700 mg/mL of total protein whole, inactivated

CMV (Microbix) or 0.25–250 ng/mL pre-processed HLA-A2

CMV pp65 peptide (NLVPMVATV) for an additional 3 hr. DCs

were washed and co-cultured with autologous CD8 T cells labeled

with CFSE. After 10 days, cells were harvested and stained with

HLA-A2 CMV pp65 (NLVPMVATV) pentamer (ProImmune)

followed by labeling with antibodies against CD3, CD8, CD19,

CD11c, CD14, fixation and analysis by flow cytometry. Alterna-

tively, mDCs were loaded with 200 mg/mL total protein from

whole, heat-inactivated EBV (Virusys) or 200 mg/mL total protein

cell extract from EBV infected or control cells (Virusys) or 0.25–

250 ng/mL pre-processed HLA-A2 EBV BMLF-1 peptide

(GLCTLVAML) for 3 hr, washed and co-cultured with CD8 T

cells. After 10 days, cells were harvested and stained with HLA-A2

EBV BMLF-1 (GLCTLVAML) pentamer (ProImmune) and

surface antibodies as described above. The CMV and EBV

antigen preparations were titrated to find a dose that was not toxic

to the cells yet adequate to activate memory T cells.

Presentation of CMV to memory CD4 T by uninfected or
IAV infected mDCs

After 4 hr IAV exposure, mDCs were washed and pulsed with

7–700 mg/mL of total protein from whole, inactivated CMV or

overlapping pre-processed peptides to CMV pp65, 15-mers

overlapping by 11 (2.5 mg of peptide per mL, ProImmune) for

3 hr. DCs were washed and co-cultured with autologous CD4 T

cells at a 1:30 DC:T cell ratio. After 2 hr, GolgiPlug was added

and the cells were incubated overnight. Cells were harvested and

stained with surface antibodies against CD4, CD3, HLA-DR,

CD14, CD8, followed by fixation and permeabilization. Cells were

subsequently stained with antibodies against IFNc, TNFa and IL-

2, and analyzed by flow cytometry.

IAV antigen load in mDCs
After 8 hr of IAV exposure, mDCs were harvested and lysed in

SDS lysis buffer (1% SDS, 20 mM Tris pH 7.5 and protease

inhibitors (Roche)). DNA was shed mechanically and lysates were
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snap frozen on dry ice. Lysates were run on a 4–12% Bis-Tris

reducing gel, transferred to a PVDF membrane and blotted for

viral proteins with the anti-IAV polyclonal Pinda. GAPDH was

used as loading control.

mDC viability after IAV infection
mDCs were exposed to infectious IAV or HI IAV or left

untreated. DCs were harvested, washed twice in ice-cold PBS,

resuspended in 16binding buffer and stained with Annexin V and

propidium iodide (BD Biosciences) and analyzed by flow

cytometry within one hour of processing.

CMV antigen load in uninfected and IAV infected mDCs
After 4 hr of IAV exposure, DCs were washed and pulsed with

7–700 mg/mL of total protein whole, inactivated CMV (Microbix)

for 3 hr. DCs were washed twice in complete medium, adhered to

coverslips, fixed and permeabilized. DCs were stained with

antibodies against IAV (Pinda), CMV pp65 (clones 2+6, Leica)

and HLA-DR and mounted with Prolong Gold containing DAPI

(Molecular Probes). Samples were analyzed by immunofluores-

cence confocal microscopy.

Statistical analyses
Statistical significance was assessed using paired t test and

considered significant at P value less than 0.05.

Supporting Information

Figure S1 Neither mDCs nor pDCs support production
of infectious IAV. (A) DCs were exposed to IAV in the absence

or presence of NH4Cl for 1 hr, washed 3 times to remove any free

virus and cultured for 24 hr with or without NH4Cl. Supernatants

were collected and TCID50 was determined by infecting a light

monolayer of MDCKs in the presence of trypsin and monitoring

the cytopathic effect. For comparison, the input IAV was included

in the assay. Graph shows mean6SD (n = 3). (B) Susceptibility of

mDCs and pDCs to different IAV strains. pDCs (red) and mDCs

(blue) were exposed to IAV/X31, IAV/PR8 or IAV/WS in the

absence or presence of NH4Cl for 24 hr. DCs were harvested and

stained with an anti-nucleoprotein antibody to assess the frequency

of IAV infected DCs by flow cytometry. Graph shows average

frequency of NP+ DCs 6 SD (n = 3).

(TIF)

Figure S2 pDCs constitutively express high levels of the
anti-viral type I interferon inducible protein MxA, while
mDCs upregulate MxA expression upon maturation. (A)

Localization of MxA (green) in pDCs and mDCs after 24 hr of

culture with or without stimulation with LPS or IFNa was analyzed

by immunofluorescence and confocal microscopy. Images show

DCs in bright field and nuclei are stained with DAPI (blue). 636
objective, 86 digital zoom. Scale bar 5 mm. (B) mDCs were

stimulated with LPS or IFNa or left untreated overnight. The

following day mDCs were exposed to IAV in the presence or

absence of NH4Cl for 6 hr and the frequency of IAV+ mDCs was

determined by intracellular staining and flow cytometry. Dot plots

show live CD11c+ CD142 mDCs and numbers indicate frequency

of positive mDCs. One representative donor of 3.

(TIF)

Figure S3 IFNa secretion from mDCs and pDCs in
response to different IAV strains. pDCs (red) and mDCs

(blue) were exposed to IAV/X31, IAV/PR8 or IAV/WS in the

absence or presence of NH4Cl for 24 hr. Supernatants were

harvested and analyzed by ELISA to assess the concentration of

secreted IFNa. Graph shows average concentration of secreted

IFNa 6 SD (n = 3).

(TIF)

Figure S4 Cytokine secretion from mDCs and pDCs in
response to IAV. pDCs (red) and mDCs (blue) were exposed to

infectious IAV, HI IAV or TLR7/8L in the presence or absence of

NH4Cl and the levels of secreted TNFa (A), IL-6 (B), MIP-1a (C),

IL-1b (D), IL-12 p70 (E) and IL-10 (F) were determined by

ELISA. The graphs show mean 6 SD (n = 3).

(TIF)

Figure S5 Number IAV structures per mDC. mDCs were

exposed to IAV for 1 hr, washed 3 times to remove free virus and

allowed to adhere to coverslips. Cells were surface stained for

HLA-DR, fixed and permeabilized and stained using an anti-IAV

antibody. The entire volume of each cell was analyzed using

confocal microscopy (10061.47NA oil objective, 66digital zoom)

and 3D reconstructed in Imaris before counting IAV+ puncta in

individual cells. The graph shows individual cells as circles, from

two independent experiments. The line indicates the average

number of IAV+ structures per mDC in each experiment.

(TIF)

Figure S6 mDCs are superior at activating IAV-specific
CD8 T cells compare to pDCs. mDCs (A) and pDCs (B) were

exposed to increasing doses of infectious IAV, HI IAV or left

untreated for 4 hr, washed to remove free virus and co-cultured

with autologous CFSE labeled CD8 T cells at different DC:T cell

ratios. After 10 days of co-culture, cells were harvested and stained

with an HLA-A2 Influenza A M1 (GILGFVFTL) pentamer to

detect Influenza M1-specific CD8 T cells and analyzed by flow

cytometry. T cell proliferation was detected by CFSE dilution. Bar

graphs show one representative donor of two.

(TIF)

Figure S7 IAV infected mDCs cross-present EBV less
efficiently to CD8 T cells than uninfected mDCs. mDCs

were infected with infectious IAV or not for 4 hr, washed to

remove non-cell associated virus and exposed to (A–B) HI EBV,

(C–D) EBV infected or control cell extract, or (E–F) increasing

doses of EBV MBLF-1 peptide (GLCTLVAML) for an additional

3 hr. mDCs were then washed and co-cultured with autologous

CFSE-labeled CD8 T cells at (A–D) different or (E–F) 1:30 DC:T

cell ratios. After 10 days of co-culture, cells were harvested and

stained with an HLA-A2 EBV BMLF-1 pentamer to detect EBV

BMLF-1-specific CD8 T cells and analyzed by flow cytometry. T

cell proliferation was detected by CFSE dilution. (A, C, E) The

graph shows frequency of EBV pentamer+ CFSElow CD8 T cells

after co-culture with uninfected mDCs (blue) or IAV infected

mDCs (black). (B–F) Dot plots show live CD8 T cells and numbers

indicate frequency of positive CD8 T cells at (B) 1:100 or (D) 1:30

DC:T cell ratio or (F) co-cultured with mDCs loaded with 250 ng/

mL EBV peptide. One representative experiment of 3 is shown.

(TIF)
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