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Abstract

Multi-drug therapy is the standard-of-care treatment for tuberculosis. Despite this, virtually all studies of the
pharmacodynamics (PD) of mycobacterial drugs employed for the design of treatment protocols are restricted to single
agents. In this report, mathematical models and in vitro experiments with Mycobacterium marinum and five
antimycobacterial drugs are used to quantitatively evaluate the pharmaco-, population and evolutionary dynamics of
two-drug antimicrobial chemotherapy regimes. Time kill experiments with single and pairs of antibiotics are used to
estimate the parameters and evaluate the fit of Hill-function-based PD models. While Hill functions provide excellent fits for
the PD of each single antibiotic studied, rifampin, amikacin, clarithromycin, streptomycin and moxifloxacin, two-drug Hill
functions with a unique interaction parameter cannot account for the PD of any of the 10 pairs of these drugs. If we assume
two antibiotic-concentration dependent functions for the interaction parameter, one for sub-MIC and one for supra-MIC
drug concentrations, the modified biphasic Hill function provides a reasonably good fit for the PD of all 10 pairs of
antibiotics studied. Monte Carlo simulations of antibiotic treatment based on the experimentally-determined PD functions
are used to evaluate the potential microbiological efficacy (rate of clearance) and evolutionary consequences (likelihood of
generating multi-drug resistance) of these different drug combinations as well as their sensitivity to different forms of non-
adherence to therapy. These two-drug treatment simulations predict varying outcomes for the different pairs of antibiotics
with respect to the aforementioned measures of efficacy. In summary, Hill functions with biphasic drug-drug interaction
terms provide accurate analogs for the PD of pairs of antibiotics and M. marinum. The models, experimental protocols and
computer simulations used in this study can be applied to evaluate the potential microbiological and evolutionary efficacy
of two-drug therapy for any bactericidal antibiotics and bacteria that can be cultured in vitro.
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Introduction

The concurrent use of multiple drugs, which is one of the

mainstays of chemotherapy, is useful and in some cases necessary

for the successful treatment of diseases such as tuberculosis (TB),

HIV/AIDS, malaria and various cancers. Shortly after antimyco-

bacterial agents became available for treating TB, it was

recognized that single drug therapy almost invariably led to

treatment failure due to the ascent of resistance, but that this could

be mitigated by the use of multiple drugs with different modes of

action [1–4]. In its current form, standard tuberculosis treatment

consists of a two-month combinatorial course of rifampin,

isoniazid, pyrazinamide and ethambutol, followed by a four-

month continuation phase of isoniazid and rifampin.

Despite the barrage of antibiotics and long term of combination

therapy, Mycobacterium tuberculosis (Mtb) strains that are resistant to

multiple drugs are an increasingly troubling component of the

epidemiological landscape. In 2009, the World Health Organiza-

tion estimated close to half a million cases of multidrug resistant

(MDR) TB (cases in which recovered strains were resistant to the

most potent first-line antibiotics, rifampin and isoniazid) [5]. By

mid-2010, 58 countries had reported at least one case of

extensively drug-resistant (XDR) TB (MDR strains that are

additionally resistant to any fluoroquinolone as well as at least

one of the injectable drugs capreomycin, kanamycin and

amikacin) [5]. The important issue is thus: how can the term of

tuberculosis chemotherapy and the likelihood of treatment failure

due to the evolution of resistance during the course of therapy be

reduced?

One approach to improving the efficacy of single drug therapy

has been to design treatment regimes based on in vivo data of the

changes in the concentration of the antibiotic, pharmacokinetics

(PK), and in vitro data on the relationship between the

concentration of the drug and the rate of growth/death of the

bacteria, pharmacodynamics (PD) [6–9]. This PK/PD approach

to the rational design of antibiotic treatment regimes has been

employed for tuberculosis but almost exclusively for single

antibiotics [10–19]. To extend this approach to the multi-drug

treatment regimes clearly needed to prevent acquired resistance, it

is necessary to concurrently account for the PD of the different

drugs, and most critically, how they interact [20–22].

Drug interactions are generally classified as antagonistic,

synergistic or additive. In the case of bactericidal antibiotics,

additive interactions are usually described in one of two ways,

‘Bliss Independence’ and ‘Loewe Additivity’. Bliss Independence

asserts that each drug in a combination exerts its killing action
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independently of the other drugs [23]. For example, if there are

two drugs, A and B, and at particular concentrations they kill fa
and fb (0,fa,fb,1) fractions of a bacterial population in an hour, at

the end of the hour the viable cell density would be reduced to (1-

fa)(1-fb) of its initial level. For Loewe additivity, the fraction of

surviving cells with both drugs would be 1-fa-fb, the constraint

being that fa+fb,1 [24]. Antagonism and synergism can then be

defined relative to one of these descriptions of additivity: drugs

interact antagonistically if their combined cidal activity is less than

would be predicted for an additive drug combination, and

synergistically if the cidal activity is more.

Unfortunately, these definitions cannot be readily translated

into the PD of two drugs as they do not account for how the rate or

extent of killing would vary with the concentrations of the drug.

To address this, Greco and colleagues proposed a seminal Emax-

based two-drug pharmacodynamic function which assumes that a

single parameter can account for the interaction between both

drugs [25,26]. If the value of this parameter is zero, then the drugs

are additive, with a negative value indicating antagonism and a

positive value indicating synergy. Although this and other Emax-

based models have been used to characterize the nature of the

interactions between different kinds of drugs, including antimi-

crobials [27–33], there has been limited quantitative consideration

of how two-drug PD models apply to the design and evaluation of

antibiotic treatment regimes for bacteria, particularly those, like

tuberculosis, where multiple drug therapy is essential [27,33].

In this study, we explore the fit of Hill functions (which subsume

Emax models) for the PD of the antimycobacterial antibiotics

rifampin, amikacin, clarithromycin, streptomycin and moxiflox-

acin. We then employ a Hill-function-based variant of the Greco

model to explore the PD of the 10 possible pairs of these drugs. As

our experimental organism, we use Mycobacterium marinum. In

addition to being safer and more convenient to work with, M.

marinum is a close genetic relative and shares numerous virulence

determinants with Mtb. It also recapitulates key immunopatho-

logical features of human tuberculosis infection in its natural

poikilothermic hosts [34–36].

To explore the potential clinical implications of these theoretical

and in vitro PD studies, we use Monte Carlo simulations of

antibiotic treatment and resistance that incorporate PD functions

that best fit our data. Of particular concern in this analysis are: (i)

the relative rates at which these different drug combinations clear

the simulated infections (their microbiological efficacy) (ii) the

likelihood of resistance to the two drugs evolving during the course

of therapy (their evolutionary efficacy), and (iii) how that efficacy is

affected by different forms of non-adherence to the treatment

regime.

Results

Single drug pharmacodynamics
In Figure 1 we show the fit of the theoretical single-drug

pharmacodynamic function (Equation 1) to the PD data obtained

from experiments with five antimycobacterial agents. These data

were generated by exposing M. marinum to the antibiotics at

different concentrations and estimating net bacterial growth/death

rates (based on the increase or decrease in the density of viable

bacteria) over 72 hours. The analyses of these time-kill data were

restricted to 72 hours in order to ensure that bacteria were

growing and/or being killed exponentially.

For single antibiotics, the Hill function provides a good fit for

the relationship between the concentration of the drug and the

growth/death rate of the bacteria (Figure 1, see R2 values). This is

also evident in Table 1, where we list the estimates of the Hill

function parameters for each of the drugs. The maximum growth

rates calculated from this function are very close to that estimated

independently (data not shown). Moreover, the estimated zMIC’s

(MIC’s calculated from the Hill functions) and MIC’s determined

by the CLSI [37] recommended broth dilution method are, given

the factor of two limitation of the latter, coincident. The individual

antibiotics exhibited different pharmacodynamic signatures re-

flected in the varying shapes of the PD function (the parameter k)

and the kill rate parameter ymin, which ranged from 20.043 to

20.166 h21.

Two-drug pharmacodynamics
With the PD function parameter estimates for single antibiotics

in hand, we proceeded to assess the validity of the two-drug

pharmacodynamic function (Equation 3). To accomplish this, we

exposed M. marinum to combinations of antibiotics, each of which

was at some multiple of its respective MIC, and estimated the

growth/death rates of the bacteria over 72 hours. Using the

differential equation (Equation 4), the estimated single-drug Hill

function parameters and different values of a, we compared the

observed growth/death rates to those anticipated from the unique

a model.

In Figure 2 we show the experimentally-observed changes in

bacterial growth/death rates generated by different two-antibiotic

combinations (curves with markers) together with those predicted

from our model for different drug interaction parameters, the a’s

(curves without markers). Our estimates of these growth/death

rates were limited to situations where the density of surviving cells

exceeded 10 CFU per ml. Both the experimental and theoretical

analyses were conducted for all possible two-drug combinations of

the antimycobacterial drugs used in the study.

For all the drug combinations, it is apparent that a single

interaction parameter is insufficient to describe the dynamics over

the entire range of concentrations assessed. While the deviation of

fit from this single a function varies among antibiotic pairs, in all

Author Summary

The goal of this investigation is the development and a
priori evaluation of multi-drug treatment regimes that are
effective in clearing long-term bacterial infections like
tuberculosis, and also minimize the likelihood of multi-
drug resistance arising during therapy. To achieve this end,
we use mathematical models and in vitro experiments with
Mycobacterium marinum (a close relative of M. tuberculosis)
and five different antimycobacterial agents to develop and
validate realistic analogues of the pharmacodynamics of
two-drug chemotherapy. All ten drug pairs examined
exhibited the same general biphasic drug-drug interaction
properties: at low concentrations (subMICs), the two drugs
together were less effective than anticipated from their
independent pharmacodynamics (were antagonistic), but
as their concentrations increased, the interactions between
the antibiotics became relatively more synergistic. Using
computer simulations with these empirically estimated
two-drug pharmacodynamic functions, we evaluated the
relative efficacy of the different antibiotic combinations in
terms of the anticipated rate of clearance of infections and
the likelihood of resistance arising with and without non-
adherence to a treatment regime. The simulations predict
different outcomes for each of the drug combinations. The
models and experimental methods used in this study can
be applied to characterize any combinations of bacteri-
cidal antibiotics and evaluate their potential efficacy.
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cases, at lower drug concentrations the observed growth rate is

greater than that anticipated from the model. The fit with a single

value of a does, however, get somewhat better at higher drug

concentrations.

To get a better idea of the relationship between antibiotic

concentration and a, we used Equation 5 to separately estimate

this interaction parameter for different concentrations of the ten

drug pairs (Figure 3). For all antibiotic combinations, this

interaction became relatively more synergistic with increasing

drug concentration. Interactions at sub-MIC concentrations were

universally antagonistic, but could be mildly antagonistic, additive

or synergistic at supra-MIC concentrations (Figure 3 and Table

S1). In addition, the rate of change in a from one concentration to

the next was much greater at sub-MIC than at supra-MIC

concentrations. Interaction coefficients at the larger concentrations

only changed to a limited extent and appeared to approach

constancy, mirroring the results shown in Figure 2. Although not

providing a precise fit to these data, if we assume a two-phase

interaction function, one for sub- and one for supra-MIC

concentrations and use linear regressions to generate the a
functions for each phase, a reasonable fit obtains (Figure 3 and

Table S1).

Asymmetric antibiotic concentrations
For convenience, but also to make this approach to evaluating

the pharmaco- and population dynamics of two-drug antibiotic

treatment readily applicable, we restricted the above PD

experiments to situations in which both antibiotics were at the

same xMIC concentration. In an effort to explore the robustness of

the two-drug PD observed for these cases of symmetric drug

Figure 1. Fit of the Hill function to time-kill data for single antibiotics. Adjusted R2 values determined from an F test are shown. (a) Rifampin,
(b) Amikacin, (c) Clarithromycin, (d) Streptomycin, (e) Moxifloxacin.
doi:10.1371/journal.ppat.1002487.g001

Table 1. Single-drug pharmacodynamic function parameter estimates and standard errors.

Drug ymax (h21) ymin (h21) k zMIC (mg/L) MIC (mg/L)

Rifampin 0.045360.0018 20.12560.0072 0.92560.17 1.2760.22 0.512

Amikacin 0.045760.0012 20.14560.0019 1.2360.12 0.3860.029 0.5

Clarithromycin 0.048360.00068 20.043460.0013 0.78360.077 1.5860.14 1

Streptomycin 0.046560.0021 20.13460.013 0.50860.11 2.3160.50 2

Moxifloxacin 0.047860.0015 20.16660.0052 0.86360.091 0.46160.055 0.37

doi:10.1371/journal.ppat.1002487.t001

Two-Drug Pharmacodynamics of Mycobacterial Chemotherapy

PLoS Pathogens | www.plospathogens.org 3 January 2012 | Volume 8 | Issue 1 | e1002487



Two-Drug Pharmacodynamics of Mycobacterial Chemotherapy

PLoS Pathogens | www.plospathogens.org 4 January 2012 | Volume 8 | Issue 1 | e1002487



concentrations, we performed time kill experiments for three

asymmetric (unequal xMIC concentrations) situations: (i) where

both antibiotics are below their respective MICs, (ii) where one

antibiotic is below its MIC and the other above and (iii) where

both are above their MICs.

When both antibiotics are below the MIC, there is antagonism

similar to that observed for the symmetric case. This can be seen

in Figure S1, where we present the observed growth rates and

those anticipated for situations where there is no interaction

between the drugs, a= 0. As would have been anticipated from

the symmetric combination results (Figure 2), at sub MICs the

drugs together kill at a lower rate than expected were there no

interactions between them i.e. they exhibit antagonism. More-

over, the estimated a’s for the combination of 0.1 and 0.5 xMIC

concentrations of the antibiotics were generally less negative than

those calculated for combinations of 0.1-0.1xMIC but more

negative than those calculated for the 0.5-0.5 xMIC symmetric

cases (Table S2).

Of particular concern in situations where one drug is below the

MIC and the other above is that the substantial antagonism

observed for below-MIC antibiotic concentrations would be

manifest by sub-MIC drugs reducing the efficacy of supra-MIC

antibiotics. The results of our experiments indicate that this is not

the case (Figure S2). When combined with a sub-MIC concen-

tration of a second drug, the rate of kill of the supra-MIC drug is

no less than that when it is alone and in some cases greater.

To explore the effects of asymmetric concentrations for pairs of

above-MIC antibiotics, we compared the observed death rate with

that anticipated for no interaction between the antibiotics. The

results of these experiments suggest that there is either no

interaction between the antibiotic pairs or there is the mild

antagonism or synergy observed for the symmetric drug

concentration experiments (Figure S3).

In sum, the results of these experiments with asymmetric drug

concentrations are consistent with that anticipated from the

symmetric concentration experiments depicted in Figure 3.

Predicted dynamics of treatment
To evaluate how the pharmacodynamics estimated above

would be manifest in a treatment regime, we use a simulation of

the within-host population dynamics of bacteria in a two-drug

therapy regime for tuberculosis. In Figure 4, we present a diagram

of the model used for the analysis (equations for the model can be

found in Protocol S1). In designing this model and in choosing the

dosing parameters, bacterial densities and PD parameters, we tried

to mimic that which would be appropriate for mycobacterial

chemotherapy. The structure of our model is based on that

suggested by D. Mitchison [38]. It assumes two compartments,

one in which the bacteria are actively proliferating and the other

where they are dividing slowly and thereby responding differently

to antibiotics [39,40]. This compartment difference in antibiotic

susceptibility is reflected in the pharmacodynamic Hill functions,

such that the maximum and minimum rates of growth/death are

proportional to the rate of replication in the two compartments.

The idea is that the slowly dividing subpopulation is relatively

refractory to killing by the antibiotics, as would be the case for

latent or persister cells in a tuberculosis infection.

We allow for four states of the bacteria, one that is susceptible to

both drugs, S0 and L0 (S and L for rapidly- and slowly-dividing

populations respectively), S1 and L1 for those resistant to drug 1,

S2 and L2 for cells resistant to drug 2, and S12 and L12 for cells

that are resistant to both drugs. These variables are both the

densities (cells/ml) of bacteria in these states as well as their state

designations. By resistance we are assuming that these bacteria are

totally refractory to the drugs, with MICs at least 100X that of the

susceptible cells. Resistance also engenders a 5% fitness cost which

is manifest as a 5% lower maximal growth rate of bacteria in those

states. This assumed cost is in the range of what has been observed

for M. marinum mutants resistant to the antibiotics considered in

this study (unpublished results). We allow migration at rates fls
(from latent to susceptible) and fsl (from susceptible to latent) cells

per hour, representing either a physical or a physiological

translocation between the compartments.

Resources for bacterial growth enter and are removed from the

habitat (host) at a constant rate, w ml per hour. The bacteria,

however, are removed from the habitat at two rates, w for S0, S1,

S2 and S12, and wL for L0, L1, L2, and L12, where w. wL. For

the pharmacodynamic functions, we use the two-drug Hill

functions with the biphasic model for the interaction coefficient

described above. For pharmacokinetics we assume that a fixed

dose A1max and A2max of each drug is added every T hours. In

addition to washout at rate w, both drugs also decay at a rate d

mg/L per hour. In these simulations we assume that at the onset of

treatment, the sensitive population is initially at a density of

S0 = 56107 in the main compartment [41] and L0 = 56104 cells

per ml in the refractory compartment.

As would be anticipated for hosts infected with numbers of

bacteria that exceed the reciprocal of the mutation rates, we

assume that there are minority populations of bacteria resistant to

single antibiotics, S1, S2, L1 and L2, with a relative frequency of

1023 to the corresponding susceptible population [42]. We also

allow resistance to single drugs to evolve during the course of the

simulations at rates proportional to the product of the number of

individuals of each ancestral state and a mutation rate. The actual

generation of mutants occurs in a semi-stochastic manner, via a

Monte Carlo routine. At each time step (Dt) in the finite step size

(Euler) simulation, the probability that a mutant would be

generated is the product of the number of individuals of the

genotype, Dt and the mutation rate m. When the random number

is less than this product, a mutant is added to the noted

population, e.g. when S1 is generated from S0, a bacterium is

added to the S1 state and one removed from the S0 state. We use

step sizes of Dt so that the probability of a mutant being added at a

particular time interval is always less than 1. For these simulations,

m takes values in the range of that estimated from fluctuation

experiments for different antibiotics and M. marinum (unpublished

results). There are no doubly resistant cells, S12 and L12 at the

start of the simulations, but they can evolve by mutation from the

single resistant states.

In Figure 5, we follow the changes in density of the different

bacterial populations in the main compartment (5a) and in the

refractory compartment (5b). The PD parameter values used in

this simulation are those in the range estimated in our experiments

for the combination of rifampin (A1) and amikacin (A2). These

Figure 2. Predicted and observed growth/death rates of M. marinum exposed to different combinations of two antibiotics. Curves
without markers represent predicted theoretical rates, and curves with markers represent observed experimental rates. Values of a represent different
degrees of interaction between antibiotics. Positive values indicate synergy, negative values antagonism, and values of zero, additivity. (a) amikacin +
clarithromycin (b) amikacin + moxifloxacin (c) amikacin + streptomycin (d) clarithromycin + moxifloxacin (e) clarithromycin + streptomycin (f) rifampin
+ amikacin (g) rifampin + clarithromycin (h) rifampin + moxifloxacin (i) rifampin + streptomycin (j) streptomycin + moxifloxacin.
doi:10.1371/journal.ppat.1002487.g002

Two-Drug Pharmacodynamics of Mycobacterial Chemotherapy

PLoS Pathogens | www.plospathogens.org 5 January 2012 | Volume 8 | Issue 1 | e1002487



Two-Drug Pharmacodynamics of Mycobacterial Chemotherapy

PLoS Pathogens | www.plospathogens.org 6 January 2012 | Volume 8 | Issue 1 | e1002487



antibiotics are inoculated every 24 hours at a concentration of 5X

their respective MICs and decline in concentration due to flow

and a decay rate, d = 0.075 per hour. With these parameters, the

overall densities of the sensitive and single-resistant populations

continue to decline during the course of the simulation. In the

main compartment this decline is punctuated by oscillations in

density reflecting the waxing and waning of the antibiotic

concentration, with net decline each hour. The single resistant

populations are cleared earlier than the sensitive for two reasons:

their lower initial densities and their lower fitness relative to the

sensitive bacteria. This interpretation was confirmed by running

simulations in which single resistant populations were at higher

initial densities and had lower fitness costs (data not shown). Under

these conditions, their resistance to single antibiotics does not

make up for this fitness cost.

In the refractory compartment, the rate of change in cell density

is lower and the oscillations are not manifest to the same extent as

in the main compartment. This occurs because the replication and

washout rates are lower, as is the rate of kill by the antibiotics. As a

result of continuous migration of cells from and to the slower-

growing population, the rate of decline in the density of cells in the

main compartment is reduced whilst that in the refractory

compartment increased relative to what would obtain were they

the sole compartments or not connected. Said another way, the

existence of a refractory compartment prolongs the term of

therapy.

To compare the relative efficacy of different combinations of

antibiotics, we ran these simulations with the estimated PD

parameter values obtained for the different combinations of drugs.

In addition to simulations with symmetric antibiotic concentra-

tions for the two drugs, we also conducted these simulation

experiments with asymmetric antibiotic concentrations. The

former were initiated with 5xMIC of both drugs and the latter

with 5xMIC of one antibiotic and 2xMIC of the other. As a result

of flow and decay, the asymmetric drug concentration simulations

include periods where both drugs are above the MIC, one above

and one below, and both below. The interaction coefficients used

in these simulations are those estimated from the corresponding

symmetric and asymmetric concentration experiments. As our

measure of the efficacy of treatment, we considered the time until

the total density of bacteria was less than one (time to clearance).

The results of these simulations are presented in Table 2. While in

some runs doubly resistant mutants emerged, ascended and

thereby precluded clearance, these were not included in the

Table 2 clearance data. The frequencies of runs in which double

resistance emerged are considered separately.

Although mutation is a stochastic process, there was effectively

no between-run variation in the time before clearance. For eight

out of the ten combinations, clearance occurred in less than

1600 hours. The rifampin + amikacin combination was the most

effective, leading to clearance in 1080 hrs. The combinations of

clarithromycin + moxifloxacin and clarithromycin + streptomycin

Figure 3. The interaction parameter as a function of antibiotic concentration. Independent linear regressions are shown for sub-MIC
(triangles) and supra-MIC (circles) concentrations. (a) amikacin + clarithromycin (b) amikacin + moxifloxacin (c) amikacin + streptomycin (d)
clarithromycin + moxifloxacin (e) clarithromycin + streptomycin (f) rifampin + amikacin (g) rifampin + clarithromycin (h) rifampin + moxifloxacin (i)
rifampin + streptomycin (j) streptomycin + moxifloxacin.
doi:10.1371/journal.ppat.1002487.g003

Figure 4. Two-compartment population and evolutionary dynamic model of two-drug antibiotic therapy. Main (active) compartment:
S0, bacteria susceptible to both antibiotics; S1, bacteria resistant to antibiotic 1; S2, bacteria resistant to antibiotic 2, S12, bacteria resistant to both
antibiotics. Latent (refractory) compartment: L0, bacteria susceptible to both antibiotics; L1, bacteria resistant to antibiotic 1; L2, bacteria resistant to
antibiotic 2, L12, bacteria resistant to both antibiotics. C, reservoir resource concentration; R, internal concentration of the limiting resource; A1 and
A2, internal concentrations of the antibiotics; A1max and A2max, concentration of antibiotics added periodically; w, flow rate of resources into and
out of the compartments; wL, flow rate of latent population from the latent compartment.
doi:10.1371/journal.ppat.1002487.g004
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Figure 5. Clearance dynamics for different subpopulations in the main and refractory compartments of the PD/PK model. Parameters
used are those observed for the rifampin (A1) + amikacin (A2) combination. In these simulations, w and wL are, respectively, 0.02 and 0.002 per hour;
fls = fsl = 0.001; the antibiotic decay rate is d = 0.075 hr21 and the maximum and minimum bacterial growth rate for each subpopulation in the latent
compartment is 10% of those in the active. (a) Main compartment, (b) Refractory compartment.
doi:10.1371/journal.ppat.1002487.g005

Table 2. Relative efficacy of antibiotic combinations in clearing bacteria during simulated infections.

Time to clearance (hours)

Antibiotic combination Antibiotics at symmetric xMIC concentrations
Antibiotics at asymmetric xMIC
concentrations

Rifampin + Amikacin 1080 2785

Rifampin + Clarithromycin 1527 2521

Rifampin + Streptomycin 1433 2396

Rifampin + Moxifloxacin 1453 2642

Amikacin + Clarithromycin 1428 2568

Amikacin + Streptomycin 1315 2452

Amikacin + Moxifloxacin 1090 2690

Clarithromycin + Streptomycin 11668 13035

Clarithromycin + Moxifloxacin 4530 5793

Streptomycin + Moxifloxacin 1422 2257

doi:10.1371/journal.ppat.1002487.t002

Two-Drug Pharmacodynamics of Mycobacterial Chemotherapy
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took substantially longer to clear the bacteria; compared to the

rifampin + amikacin combination, the clarithromycin + moxi-

floxacin combination took some 4 times longer, with the

clarithromycin + streptomycin combination taking approximately

11 times longer. This is what would be anticipated from the

relative pharmacodynamics of the different drug combinations

(Figure 2).

As in the symmetric case, the majority of the antibiotic

combinations in the asymmetric simulations cleared the infection

over a relatively similar period, i.e. ,2800 hours. The reason that

the average time to clearance is greater for the asymmetric

concentrations is because there is a lower peak concentration for

one of the two drugs, rather than equal peaks. While clarithro-

mycin + streptomycin and clarithromycin + moxifloxacin

remained the least effective drugs, the most effective combination

was streptomycin + moxifloxacin rather than rifampin + amikacin.

Compared to streptomycin + moxifloxacin, clarithromycin +
moxifloxacin and clarithromycin + streptomycin took, respective-

ly, approximately 2.5 and 6 times longer to clear the infection.

The evolution of multiple resistance
What is the relationship between the PD of the antibiotics and

the likelihood of mutants resistant to both drugs emerging? To

address this question, we separately performed 1000 simulation

experiments using three sets of parameters reflecting the ‘extreme’

conditions of relative efficacy for the symmetric combinations:

rifampin + amikacin, clarithromycin + moxifloxacin and clarith-

romycin + streptomycin. The aggregate results from these

simulation experiments are presented in column one of Table 3.

As can be seen, the two-drug resistant population emerged in

only a few runs. Although the relative number of runs in which

resistance emerged for the different drug combinations is what

would be anticipated from the clearance data in Table 2, the

differences were not statistically significant (p,0.525). With these

parameters, the frequency of two-drug resistance emerging was

low and was roughly the same for all three pairs of drugs.

Non-adherence
In a number of epidemiological studies, non-adherence to the

prescribed treatment regime has been associated with adverse

therapeutic outcomes [43], longer terms of treatment and acquired

drug resistance [44,45]. In practice, non-adherence takes a

number of forms and depends on a variety of factors such as

organization of treatment and care (access to services, length,

drug-type and other requirements for therapy, support services,

etc) individual interpretations of illness and wellness, drug side

effects and the social context in which therapy is undertaken [46].

How does non-adherence contribute to the amount of time

required for microbiological cure and the likelihood of multi-drug

resistance emerging within a host during the course of treatment?

How sensitive are different drug combinations to the adverse

outcomes of non-adherence? To address these questions, we

considered three broadly-inclusive types of non-adherence that we

call random, thermostat [39], and drug holiday (described below).

To explore the relationship between the PD of the drug

combinations and the frequency of non-adherence with respect

to the generation of the double resistant mutants, we conducted

1000 runs for each of the three aforementioned drug combinations

and the different non-adherence scenarios. The results of these

simulations are presented in Table 3.

Random non-adherence
We model this scenario in the following manner: At each dosing

period there is a probability P (0#P#1) that both drugs will be

taken and a corresponding probability (1-P) that neither will be

taken. To simulate this we use a Monte Carlo routine where if the

random number, r#P, the drugs are administered, but if r.P that

dosing period is skipped. In Figure 6(a), we illustrate this process

for a single run where two-drug resistance emerges. Non-

adherence is reflected in a hiatus in the dosing and a rise in the

density of all the bacterial populations. There are periods, such as

between 600 and 648 hours, where consecutive doses are missed.

This results in a substantial rise in the density of bacteria and

thereby an increase in the likelihood of a doubly resistant mutant

being generated.

With 10% random non-adherence (P = 0.9), there was no

significant difference among drug combinations in the probability

of resistance arising (p,0.073) (Table 3, Column 2). With 20%

random non-adherence (P = 0.8) there was a highly significant

drug combination effect, p,0.001 (Table 3, Column 3). The

likelihood of multiple resistance arising with 20% non-adherence

was negatively related to the microbiological efficacy of these

different drug combinations. The relationship between the

probability of a doubly resistant population emerging for different

levels of random non-adherence was also directly related to the

microbiological efficacy of the drug combinations. For the

rifampin + amikacin combination, there was no significant

difference among the 0, 10% and 20% non-adherence regimes

(p,0.435). For the other two pairs, there were significant p,0.001

relationships between the frequency of non-adherence and the

likelihood of double resistance emerging.

Thermostat non-adherence
We simulate this by incorporating a situation in which

treatment ceases when the density of the rapidly growing

population falls below 104 and doesn’t commence again until

the density exceeds 106. The situation we are mimicking is one in

which patients cease taking their antibiotics when they are feeling

better (the bacterial densities are low enough not to be

symptomatic) and do not take the drugs again until the density

Table 3. Percent of 1000 runs in which multi-drug resistant mutants emerged by 1000 hours.

Random non-adherence

Antibiotic combination
Complete
adherence

10% non-
adherence

20% non-
adherence

Thermostat non-
adherence

Extended drug
holiday non-
adherence

Rifampin + Amikacin 0.8 1.2 1.4 100 1.7

Clarithromycin + Moxifloxacin 1.2 2.1 3.9 1.3 5.2

Clarithromycin + Streptomycin 1.3 2.6 4.1 1.7 5.8

doi:10.1371/journal.ppat.1002487.t003
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is high enough to be symptomatic. We illustrate this situation in

Figure 6(b) with a run in which two-drug resistance emerged.

In column 4 of Table 3, we summarize the results of 1000

simulations of thermostat non-adherence for the three drug

combinations. With respect to our measure of microbiological

efficacy, the thermostat non-adherence scenario seems paradox-

ical. Two-drug resistance emerged far more frequently in the runs

with the most microbiologically effective drug combination, indeed

in all 1000 runs. The reason for this is that the more effective drug

combination reduced the density more rapidly than the less

effective drug combinations. As a result there were far more

frequent periods where drugs were not taken and the single-

resistant populations ascended to high-enough densities where

two-drug resistant mutants were produced with a very high

probability. Under the parameter conditions of this simulation, the

non-adherence threshold was never crossed in any of the 1000

simulations for either of the two less effective drugs.

Drug holidays
We model this scenario in the following manner: Both drugs are

taken for 4 consecutive dosing periods, at which time neither drug

is taken for the subsequent 3 dosing periods. This regime continues

throughout the duration of simulated treatment. We are

mimicking a situation where holidays are imposed because the

drugs may be costly, limited in their availability or induce

debilitating side effects that are alleviated by terminating treatment

for an interval. In Figure 6(c) we illustrate this situation for a run

where two-drug resistance emerged. As noted in the last column of

Table 3, the overall frequency of double resistance was on the

order of 5% and similar for the two microbiologically less effective

drug combinations. For the most effective drug combination,

relative to complete adherence, the drug holidays doubled the

likelihood of two-drug resistance emerging.

Discussion

With few exceptions, studies of the pharmacodynamics (PD) of

antibiotics and bacteria have been restricted to single drugs

[10219]. Some infections, particularly those that are long-term

like tuberculosis, require multiple antibiotics for treatment to be

effective. It follows then, that for the rational design of treatment

protocols for these infections, multidrug PD analyses are necessary.

Our results indicate that Hill functions provide an excellent fit

for the single-drug PD for Mycobacteria marinum and each of the five

Figure 6. Dynamics of non-adherence with therapy. Changes in the absolute concentrations of the antibiotics and densities of bacteria: S0-
sensitive to both drugs, S1- resistant to drug A1, S2- resistant to drug A2, and S12- resistant to both A1 and A2. (a) Random non-adherence:
Parameters used are those estimated for clarithromycin + streptomycin, assuming a 20% probability of non-adherence at each dosing. (b) Thermostat
non-adherence: Parameters used are those estimated for rifampin + amikacin. (c) Drug holiday non-adherence: Parameters used are those estimated
for clarithromycin + moxifloxacin. These figures represent runs in which double resistance (S12) emerged. The relative frequencies of this outcome
are shown in Table 3. See the text for descriptions of these different modes of non-adherence.
doi:10.1371/journal.ppat.1002487.g006
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antibiotics considered in this study, amikacin, clarithromycin,

moxifloxacin, rifampin and streptomycin. On the other hand, if, as

is assumed in the classical model of Greco and colleagues [25,26],

the interactions between drugs is expressed as a single parameter

with a constant value, two-drug Hill function models do not fit the

PD observed for any of the 10 pairs of drugs considered. In all

cases, at lower antibiotic concentrations the interactions between

the drugs is antagonistic; they are less effective together than

anticipated from their action alone. As the antibiotic concentra-

tions increase, this drug-drug interaction becomes relatively more

synergistic and approaches constancy. To address this phenom-

enon, we allow for two phases of the drug-drug interaction, one for

low (sub-MIC) and one for high (supra-MIC) concentrations with

an antibiotic concentration-dependent function for the interaction

term. Albeit not as convenient as a unique parameter, these

functions can be readily estimated from time-kill data. Most

importantly, the biphasic drug interaction Hill function models

thus generated provide quantitatively accurate analogues of the

PDs of all 10 pairs of antibiotics examined.

It has been hypothesized that there are subpopulations of

bacteria within an infected TB host that exhibit differential growth

rates and, by extension, variable susceptibility to antimycobacterial

agents [38,47250]. Here, we develop a simple mathematical

model that accounts for this within-host bacterial heterogeneity by

assuming that there are two ‘compartments’, one that houses

rapidly-growing and the other slowly-growing bacteria. The model

incorporates the possibility of non-adherence to therapy, which is

considered to be one of the major contributory factors to TB

treatment failure [43,45,51].

Our computer simulations of tuberculosis chemotherapy

employing the empirically estimated biphasic Hill functions

suggest that there can be substantial differences among drug

combinations in treatment efficacy, as measured by the time to

clearance. Of the ten antibiotic pairs we consider, rifampin +
amikacin is the most effective and streptomycin + clarithromycin

the least, with some eleven-fold difference in the time before

clearance. With the parameters used in our semi-stochastic model

of treatment and assuming different probabilities for the

occurrence of random non-adherence, either complete adherence

or limited non-adherence to the therapeutic regime would not be

manifest as a significant difference among drug combinations in

the likelihood of the generation and ascent of two-drug resistant

mutants. However, with greater rates of non-adherence, the

likelihood of two-drug resistance emerging becomes increasingly

dependent on the drug combination employed. The emergence of

two-drug resistance due to random non-adherence is more likely

for less microbiologically effective drug combinations than those

that are more effective.

With externally imposed regular drug holidays, the likelihood of

emergence of two-drug resistance is also inversely proportional to

the microbiological efficacy of the antibiotic combination. Our

results suggest that quite a different situation obtains when the

drug holidays depend on the bacterial load, as is the case for

thermostat non-adherence. Under the parameter conditions used

in our simulations, the most microbiologically effective drug

combination almost invariably leads to the emergence of two-drug

resistance. As a result of the enhanced efficacy, the time required

to reduce the bacterial densities to below a non-symptomatic

threshold is decreased for the more effective antibiotic combina-

tion. Consequently, in the course of therapy this threshold and the

resulting drug holidays are reached and manifest more frequently

for the more effective drug combinations than the less effective.

During these holidays, intermediates resistant to single antibiotics

can reach high enough densities for the single drug resistant clones

to acquire the second mutation needed for two-drug resistance. It

is easy to write-off this paradoxical result as an artifact of the

model because of the extraordinary frequency of two-drug

resistance emerging in our simulations. On the other hand, this

outcome is not entirely unreasonable if indeed patients go off

treatment when they are no longer symptomatic but remain

infected. While we are not championing the validity of this

potential downside of effective chemotherapy, we believe it may

warrant further consideration.

This jointly theoretical and experimental study raises important

as well as intriguing issues about the interactions between

antibiotics of different classes and how these interactions are

affected by their concentrations. Our results, however, provide no

information about the physiological, molecular and other

processes underlying these interactions. What are these processes?

It is clear that answering this question is not going to be trivial. As

Yeh and Kishony argue, intuitive deductions about the type of

interactions between drugs based on the metabolic pathways of

action of their individual action are, at best, simplifications [52].

Antibiotic action is pleiotropic and not limited to structural or

metabolic alterations to a particular target. As such, the resulting

cellular death or growth cessation upon antibiotic use can be due

to multiple factors. Although there is evidence that antibiotics of

different types kill by a common non-specific mechanism, the

production of hydroxyl radicals [53255], the rates of kill vary

among drugs and their concentrations in ways that cannot be

predicted from their respective targets and mode of action.

Particularly intriguing is the antagonistic interaction observed at

lower (sub-MIC) concentrations among all the antibiotic pairs

studied. Why? How? We know that antibiotics at both sub- and

supra-MIC concentrations affect mycobacterial transcription

patterns in a variety of ways and can lead to a number of

physiological and biochemical stress responses [56,57]. Some of

these responses have been observed to reduce antimicrobial

activity through actions such as antibiotic efflux, ribosomal

protection, etc [58261]. One possible explanation is that at sub-

MIC concentrations for two drugs, these stress responses make the

bacteria more refractory to antibiotic activity, but the drugs do not

generate enough cidal activity to overcome this refractoriness – a

phenomenon that would manifest as pharmacodynamic antago-

nism.

To paraphrase the statistician George Box, ‘All models (and

model systems) are wrong, some are useful’ [62]. We endorse this

perspective and of course believe our model and model system are

useful. However, we see this utility restricted to its potential to

evaluate, in vitro, the efficacy of different antibiotic combinations

for clinical applications. Our models are not intended to be

quantitatively exact analogs of tuberculosis chemotherapy but

rather to generate a framework within which questions relevant to

TB treatment could be approached. They were designed in the

tradition advocated by Richard Levins [63], to maximize reality

and generality at the loss of precision. Thus, even though the

pharmacodynamic parameters are directly estimated and drug

doses simulated in clinically realistic range [64], the time scale in

these simulations do not reflect the actual time course of

tuberculosis chemotherapy and dosing schedule.

We elected to do the experimental work on this project with M.

marinum because we are particularly interested in multi-drug

treatment of tuberculosis. As a model for Mtb, M. marinum has its

virtues and limitations. In addition to being more convenient to

work with than Mtb, M. marinum infections in fish and amphibians

demonstrate key elements of Mtb infections in humans [34,35]. Of

particular import is the formation of epitheloid granulomas with

lymphocytic involvement [65]. Thus, using either fish or
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amphibians, it should be possible to evaluate, in vivo, the

predictions of our models. M. marinum is also limited as a model

for multi-drug treatment of Mtb primarily because of its natural

resistance (relatively high MICs) to some the first line antibiotics

used to treat tuberculosis, in particular isoniazid, ethambutol and

pyrazinamide. While one of the antibiotics used in this study,

rifampin, is a first line tuberculosis drug, the others are only used

in cases where first line drugs fail.

Albeit simple, our TB chemotherapy model incorporates some,

but clearly not all of the complexity of a M. tuberculosis infections

and their treatment. It accounts for the subpopulation heteroge-

neity that has been postulated for these infections [38,47250] and

the effects of that heterogeneity on the PD of the antibiotic

treatment. On the other hand, this model does not formally

account for the third subpopulation suggested by the recent

observation that some Mycobacteria in macrophages induce efflux

pumps that make them tolerant to antibiotics [66]. At a

pharmacodynamic level, this phenomenon is, however, somewhat

subsumed in our model by the presence of a subpopulation of

bacteria that is less susceptible to the antibiotics than another

segment of the population. Additionally, while our model takes

into account three forms of the non-adherence that is considered

to be one of the major contributory factors to TB treatment failure

[43,45,51], it certainly does not incorporate all of the nuances of

non-adherence.

We are unaware of other studies that have combined

experimental work on the PD of multiple drugs with a quantitative

consideration of the potential clinical implications of these PDs.

There have been investigations of the PD of multiple antibiotics

that have employed a fitting approach for a quantitative

description of the interactions between drugs [32,67]. Similar to

that observed here, some of these studies provide evidence that the

interactions between antibiotics can vary with their concentrations

[22,32,68]. Nevertheless, to our knowledge, this quantitative

relationship has not been taken into account in the design of

treatment programs; the interactions between different antibiotics

are simply described as additive, synergistic or antagonistic, but

without consideration of how this relationship changes with

antibiotic concentration. The models we develop and the

experimental methods we employ in this study can be used for

any combinations of bactericidal antibiotics and bacteria that can

be grown in vitro. Whether the biphasic interaction phenomenon

observed with M. marinum and the five drugs considered would be

manifest with other bacteria and drug combinations remains to be

seen.

Materials and Methods

Bacteria and media
Mycobacterium marinum strain ATCC BAA-535/M was used in all

experiments. Bacteria were grown in Middlebrook 7H9 broth

(Difco, Detroit, Mich.) supplemented with 0.2% glycerol and 10%

albumin-dextrose complex (7H9) at 32uC. Cell densities were

estimated by plating on Middlebrook 7H10 agar (Difco)

supplemented with 0.5% glycerol and 10% oleic acid-albumin-

dextrose complex (7H10) at 32uC.

Antibiotics
Rifampin, amikacin, clarithromycin, streptomycin (Sigma, St.

Louis, MO, USA) and moxifloxacin (Bayer, Pittsburgh, PA, USA)

were purchased commercially. Stock solutions were prepared by

dissolving the antibiotics in sterile water or methanol, and

appropriate dilutions were made in 7H9 broth immediately before

use.

Time-kill experiments for generating single-antibiotic Hill
functions

Mid-log cultures of M. marinum were diluted in fresh medium to

obtain a density of approximately 56106 CFU/mL. 200 mL

aliquots of this culture were introduced into wells in a 12-well plate

containing 1.8 mL of antibiotic solution. The plates were

incubated with shaking at 32uC for 72 h, and samples were taken

every 12 h to determine viable CFU’s.

MIC determination
Minimum Inhibitory Concentrations (MICs) were estimated

using a broth microdilution procedure similar to that recom-

mended by the CLSI[37] (7H9 was used instead of Mueller-

Hinton Broth). Initial inoculating bacterial densities were similar

to the densities used to initiate time-kill experiments in order to

account for the inoculum effect on MIC demonstrated in Udekwu

et al. [69].

Antibiotic-kill experiments for generating two-drug PD
functions

Antibiotics were combined to generate solutions that contained

0.1, 0.5, 1.0, 2.0, 5.0 and 10.0 multiples of MIC (xMIC) of each

antibiotic. Mid-log cultures of M. marinum were diluted in fresh

medium to obtain a density of approximately 56106 CFU/mL.

200 mL aliquots of this culture were introduced into wells in a 12-

well plate containing 1.8 mL of antibiotic solution. The plates

were incubated with shaking at 32uC for 72 h, and samples were

taken at the end of the incubation. The experiment was repeated

four times, and gave good quantitative and qualitative replication.

We show a representative experiment in the Results section of the

manuscript.

Drug interaction modeling
As in Regoes et al., [70] we assume that for single antibiotics,

bacterial net growth in the presence of an antibiotic, y(A), is

dependent on the growth rate of the bacteria in the absence of

antibiotics, y max, and the death rate due to the antibiotic. The

latter is a Hill function, G, composed of the following parameters:

y max; y min, the maximum antibiotic-generated bacterial killing;

zMIC, the pharmacodynamic MIC; and k, which describes the

sigmoidicity of the Hill function [70]. i.e.:

y(Ai)~ymax{Hi(Ai) ð1Þ

Where

Hi(Ai)~

(ymax{ymin (i)) �
Ai

zMIC

� �

Ai

zMIC

� �k

{
ymin (i)

ymax

� �
k

2
6664

3
7775 ð2Þ

Bacterial net growth rates were determined from the change in

bacterial density over the time-kill period, and the pharmacody-

namic function was fit to these data using the least square

algorithm nls() of R (www.r-project.org) to obtain estimates for the

parameters of the Hill function. For two-antibiotic combinations,

we incorporated an interaction parameter (a) into the Hill-

function mediated killing by both antibiotics. Thus, net bacterial

growth rates would be described by the following equation:
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y(Ai,Aj)~ymax{H(Ai){H(Aj){a �H(Ai) �H(Aj) ð3Þ

and the rate of change in the viable cell density of bacteria, D,

treated with combinations of two drugs given by,

dD

dt
~y(Ai,Aj) �D ð4Þ

Estimation of drug interaction parameter (a)
By assessing bacterial killing over 72 h when exponentially-

growing cultures were challenged with pairwise combinations of

antibiotics (Ai and Aj) at different concentrations, we obtained

empirical estimates for net bacterial growth rates in the presence of

both antibiotics, y exp. As the theoretical analyses outlined above

generate estimates for ymax, Hi(Ai) and Hj(Aj), algebraically

rearranging the net bacterial growth rate equation gives an

equation for determining a:

a~
yexp{(ymax{H(Ai){H(Aj))

H(Ai) �H(Aj)
ð5Þ

Numerical solutions
To follow the predicted change in the viable cell density of

bacteria, we use numerical solutions to the differential equation (4)

programmed in Berkeley MadonnaTM. Copies of this program

and other programs used in this study and instructions for their use

can be obtained on www.eclf.net/programs.

Supporting Information

Figure S1 Predicted and observed growth rates of M.
marinum exposed to asymmetric sub-MIC antibiotic
concentrations. Blue bars represent predicted rates anticipated

from the Hill functions under the assumption that the drugs are

acting additively. Red bars represent the growth rates observed for

the noted concentrations. Multiples-of-MIC concentrations at

which antibiotics are combined are indicated. R-rifampin; A-

amikacin; C-clarithromycin; S-streptomycin; M-moxifloxacin. (a)

amikacin + clarithromycin (b) amikacin + moxifloxacin (c)

amikacin + streptomycin (d) clarithromycin + moxifloxacin (e)

clarithromycin + streptomycin (f) rifampin + amikacin (g) rifampin

+ clarithromycin (h) rifampin + moxifloxacin (i) rifampin +
streptomycin (j) streptomycin + moxifloxacin.

(TIF)

Figure S2 Predicted and observed growth/death rates
of M. marinum exposed to sub- and supra-MIC
antibiotic combinations. Growth/death rates observed for

single drugs in comparison to that observed with those drugs in

combination with a sub-MIC concentration of second antibiotic.

Red bars represent combinations of antibiotics at 2xMIC and

0.1xMIC; blue bars represent combinations of antibiotics at

5xMIC and 0.5xMIC. For amikacin, only the lower

(2xMIC+0.1xMIC) concentration results are presented. At the

higher concentrations the extent of kill exceeded the limit of

detection. R-rifampin; A-amikacin; C-clarithromycin; S-strepto-

mycin; M-moxifloxacin. (a) rifampin (b) amikacin (c) clarithromy-

cin (d) streptomycin (e) moxifloxacin.

(TIF)

Figure S3 Predicted and observed death rates of M.
marinum exposed to asymmetric supra-MIC antibiotic
concentrations. Blue bars represent predicted rates anticipated

from the Hill functions under the assumption that the drugs are

acting additively. Red bars represent the growth rates observed for

the noted concentrations. Multiples-of-MIC concentrations at

which antibiotics are combined are indicated. R-rifampin; A-

amikacin; C-clarithromycin; S-streptomycin; M-moxifloxacin. (a)

amikacin + clarithromycin (b) amikacin + moxifloxacin (c)

amikacin + streptomycin (d) clarithromycin + moxifloxacin (e)

clarithromycin + streptomycin (f) rifampin + amikacin (g) rifampin

+ clarithromycin (h) rifampin + moxifloxacin (i) rifampin +
streptomycin (j) streptomycin + moxifloxacin.

(TIF)

Table S1 Linear regression parameters for the biphasic
antibiotic interaction function.
(DOC)

Table S2 Value of interaction parameter at different
combinations of sub-MIC concentrations.
(DOC)

Protocol S1 Differential equations used for simulation
of the mathematical model.
(DOC)
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