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Abstract

Cellular receptors can act as molecular switches, regulating the sensitivity of microbial proteins to conformational changes
that promote cellular entry. The activities of these receptor-based switches are only partially understood. In this paper, we
sought to understand the mechanism that underlies the activity of the ANTXR2 anthrax toxin receptor-based switch that
binds to domains 2 and 4 of the protective antigen (PA) toxin subunit. Receptor-binding restricts structural changes within
the heptameric PA prepore that are required for pore conversion to an acidic endosomal compartment. The transfer cross-
saturation (TCS) NMR approach was used to monitor changes in the heptameric PA-receptor contacts at different steps
during prepore-to-pore conversion. These studies demonstrated that receptor contact with PA domain 2 is weakened prior
to pore conversion, defining a novel intermediate in this pathway. Importantly, ANTXR2 remained bound to PA domain 4
following pore conversion, suggesting that the bound receptor might influence the structure and/or function of the newly
formed pore. These studies provide new insights into the function of a receptor-based molecular switch that controls
anthrax toxin entry into cells.
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Introduction

Cellular receptors can act as molecular switches that initiate

conformational changes in microbial proteins required for cellular

entry. Examples of such switches include an anthrax toxin receptor

(described in detail below) as well as those for a number of viruses

including HIV-1 and other retroviruses [1,2,3], measles virus [4],

and herpesviruses [5]. The mechanisms by which these receptor-

based switches function to promote cellular entry are only partially

understood. In this report we set out to define the mechanism by

which a receptor-based switch regulates anthrax toxin prepore-to-

pore conversion.

Anthrax toxin, the key virulence factor secreted by Bacillus

anthracis, is a bacterial AB toxin composed of three independent,

plasmid-encoded polypeptide chains: the receptor-binding (B)

moiety, protective antigen (PA), and two different enzymatic (A)

moieties, lethal factor (LF) and edema factor (EF) [6,7,8]. The first

step in cellular intoxication involves binding of an 83 kD form of

PA (PA83) to specific cell surface receptors. Although several PA

receptors have been defined [9,10,11], anthrax toxin receptor type

2 (ANTXR2) (also known as capillary morphogenesis protein 2;

CMG2), is the most physiologically relevant receptor [12,13,14].

ANTXR2 is a type 1 transmembrane protein and its extracellular

von Willebrand factor type A (VWA) domain is the site of PA-

binding [15,16]. Following receptor binding, PA83 is cleaved to a

63kD form (PA63) that spontaneously oligomerizes to form either a

heptameric, or an octameric, PA63 prepore structure [17,18].

Oligomeric PA63-receptor complexes are then taken into cells

primarily by a clathrin-dependent endocytic mechanism and

delivered to an acidic endosomal compartment where low pH

triggers formation of a PA63 pore within an endosomal membrane

[19,20]. LF and EF are then translocated through the pore and

delivered to the cytosol where they promote intoxication [21].

X-ray structural analysis of monomeric and heptameric PA-

ANTXR2 VWA-domain complexes revealed that the receptor

acts as a molecular switch or clamp that inhibits prepore-to-pore

conversion at neutral pH [15,16]. Specifically, the receptor VWA-

domain interacts with the base regions of PA domains 2 and 4,

thereby sterically hindering the movement of the PA 2b3-2b4 loop

region necessary for pore formation [15,16]. Those findings led to

a model in which release of the receptor contact with PA domain 2

at an acidic endosomal pH is necessary to permit the

conformational changes required for PA pore formation [15,16].

Consistent with this idea, the pH threshold of the receptor-

regulated toxin pore formation can be dictated by specific amino

acid residues located at the PA domain 2-binding region of the

ANTXR2 VWA-domain [22].

Presently, it is not clear if PA domain 2-receptor contacts are

released at a step that occurs prior to, or is coincident with,

prepore-to-pore conversion. Furthermore, it is not clear if the

receptor remains attached following pore conversion and, if so,

how it remains attached. Evidence supporting dissociation has

come from co-immunoprecipitation experiments [23] and from

previous NMR studies [24,25]. On the other hand, evidence in

favor of receptor attachment has come from other co-immuno-

precipitation studies [19,26], from NMR binding studies per-
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formed with a fragment (Domain 4) of PA [27], and from the

finding that the presence of a receptor seems to influence voltage-

dependent inactivation and small molecule inhibition properties of

the newly formed pore [28]. Based upon structural considerations,

it has also been argued that the receptor may remain bound to

serve as a structural support for the pore [16,29].

To clarify these issues, we have employed NMR techniques to

monitor changes in the PA63 heptamer-ANTXR2 VWA domain

contacts as a function of pH. Initially we attempted to examine the

interaction between the ANTXR2 VWA domain and PA63 using

chemical shift perturbation (CSP) by titrating in substoichiometric

amounts of unlabeled PA63 into a 1H-15N labeled ANTXR2

sample. Based on results with other systems [30], we anticipated

that titrating in PA63 might allow us to monitor chemical shift

changes as a function of receptor binding and/or cause selective

broadening of specific peaks associated with residues at the PA

binding interface. If so, this would allow us to monitor specific

receptor residues bound to PA63 under different pH conditions.

Additionally, if shift perturbation of crosspeaks were detected using

saturating conditions of the binding partner (PA63), this would help

to approximate the fractional population of bound species versus

the free species at equilibrium [30]. However, when low

stoichiometric concentrations of PA63 were titrated into the

ANTXR2-VWA domain sample, extensive line broadening and

the disappearance of cross-peaks in the 1H-15N TROSY-HSQC

was observed at a ratio of 1:0.25 ANTXR2-VWA domain to PA63.

This was likely due to the large size of the PA complex, indicating

a larger effective correlation time (tc), restricted local motion, and

complete binding at the concentrations used. Therefore, we

hypothesized that the method of transferred cross-saturation

(TCS) may be well suited to investigate these interactions since

this approach has previously been used to identify contact residues

of protein ligands in large protein complexes [31].

To investigate the function of the ANTXR2-based switch, TCS

was employed to monitor changes that occur in PA63 heptamer-

ANTXR2 VWA-domain contacts as a function of pH. In this

approach, an unlabeled protein is added at substoichiometric

amounts to a deuterated, 15N-labeled protein, in this case, PA63

and the ANTXR2 VWA-domain, respectively. The aliphatic

proton resonances of the unlabeled protein are then saturated with

a brief radiofrequency pulse and this saturation is transferred

selectively to contact residues of the 2H, 15N-labeled protein by

spin diffusion. Consequently, the intensity of amide cross-peaks

representing labeled residues that lie at the protein-protein

interaction surface are selectively reduced by cross-relaxation

[32,33]. Here we have used this technique to obtain evidence for a

new toxin-receptor intermediate in the pathway leading to pore

formation and show that the receptor remains attached to PA

domain 4 following low pH-dependent conversion. Additionally,

chemical shift perturbations associated with receptor residues

located near the PA domain 4 binding region revealed moderate

conformational changes that occur during the attachment and

detachment of PA from the receptor.

Results

Generating the deuterated, 15N-labeled ANTXR2 VWA-
domain

The deuterated, 15N-labeled ANTXR2 VWA-domain was

produced as a GST-fusion protein from bacterial cells. In order

to limit spin diffusion in the 15N-labeled protein, it was extensively

deuterated by growing the cells in 100% D2O minimal media

using 2H-glucose as the sole carbon source [32]. The labeled

VWA-domain was purified to homogeneity as described under

Materials and Methods and was unfolded to protonate the residues

within the protein core and refolded to increase the number of

cross-peaks in the [15N,1H] TROSY-HSQC spectrum. The

integrity of the refolded protein was confirmed by circular

dichroism (CD) analysis performed at either pH 8.0, 6.0, or 5.0

and in each case the protein displayed alpha-helical properties

(Supplementary Figure S1). The refolded protein also functioned

as an efficient receptor decoy in a toxin neutralization assay

(Supplementary Figure S2). Moreover, Transverse Relaxation

Optimized Spectroscopy-Heteronuclear Single-Quantum Coher-

ence (TROSY-HSQC) spectrum analysis indicated that the

protein was correctly refolded when compared to a control [15N,
1H] TROSY-HSQC spectrum of the ANTXR2 VWA domain

that had not been previously denatured (Figure 1A). Assignments

for the backbone resonances of the ANTXR2 VWA-domain were

obtained using data from the following experiments: [1H-15N]

TROSY-HSQC, 3D TROSY-HNCO, 3D TROSY-HN(CA)CO,

3D TROSY-HNCACB, 3D TROSY-HNCA, and a 3D 15N-

edited NOESY-HSQC. NMR data were processed using

NMRPipe and analyzed using Sparky and CARA software

packages [34,35,36]. A representative example of this data analysis

is shown in Supplementary Figure S3. Using this approach 87% of

the backbone residues of the ANTXR2 VWA-domain, including

the PA contact residues, were assigned (Figure 1A and B).

ANTXR2 residues that contact PA domains 2 and 4 are
saturated by transferred cross saturation (TCS)

The principle of the TCS approach used to monitor PA63-

ANTXR2 VWA-domain interactions is outlined in Figure 2A. In

order to observe saturation transfer, the concentration of the

binding partner must be kept sufficiently low to effectively allow

for fast exchange so that amide cross-peaks are not broadened

following its addition. The efficiency of TCS depends on the

sample conditions as well as the binding constants between the

receptor and PA. According to Shimada et al, TCS is applicable

for a system where a large pB, or fraction of bound ligands is

preferred for high saturation efficiency, if koff .0.1 s21, or if koff

$10 s21, a pB $0.1 is preferred [37]. Therefore, for the TCS

experiments, the concentrations of the two protein partners were

optimized by performing titration experiments at pH 8.0, and a

Author Summary

The bacterium that causes anthrax produces a toxin called
anthrax toxin that is largely responsible for causing disease
symptoms. The first step in anthrax intoxication involves
binding of the toxin to a specific protein, called a receptor,
on the cell surface. Receptor-binding acts like a switch to
prevent the toxin from forming a pore in a cell membrane
until the toxin-receptor complex is taken up into cells and
delivered to a specific location (called an endosome)
where it is exposed to an ‘‘acid bath’’. This acidic
environment promotes structural changes in the toxin
leading to pore formation in the endosomal membrane. In
this report, we have studied how the receptor regulates
pore formation by following the associated changes in
toxin-receptor contacts. These studies have defined a new
toxin-receptor intermediate in the pathway leading to
pore conversion and demonstrate that the receptor
remains bound after pore conversion. Our results provide
important new insights into how the receptor regulates
anthrax toxin pore formation, information that could be
useful for designing new therapeutic strategies to treat
this disease.

ANTXR2 Controls Toxin Pore Formation
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(10:1) molar ratio of the ANTXR2 VWA-domain to PA63 was

chosen for all cross saturation experiments, because at this

concentration there were no signs of peak broadening. Three

separate sets of interleaved experiments were subsequently

performed on the ANTXR2 VWA: (PA63)7 complex in buffers

of pH 8.0, 6.0, and 5.0. Saturation transfer was achieved by

applying a selective radiofrequency pulse at 0.8 ppm, prior to the

[15N,1H] TROSY-HSQC. A pH of 8.0 was chosen for the initial

analysis because it closely approximated those used previously for

X-ray structural analysis of PA-receptor complexes. i.e. pH 7.5

[16] and pH 8.25, [15]. These studies revealed that the majority of

the labeled residues in the ANTXR2 VWA-domain were not

saturated by a radiofrequency pulse, i.e. those with similar signal

intensities under conditions of no saturation (black peaks) or

saturation (red peaks) (Figure 2B). However, a subset of the amide

cross-peaks were saturated (black-only peaks) in the overlayed

spectra (Figure 2B) and a number of those cross-peaks corre-

sponded to contact residues with PA domains 2 or 4. For simplicity

the saturation data was represented as 1D cross sections of the

corresponding cross-peaks in the HSQC spectra (Figure 3A). The

degree of saturation of each residue was calculated by dividing the

observed peak intensity of the saturated spectrum (Is) by the

observed peak intensity of the control spectrum (Io) (unsaturated).

In these studies an (Is/Io) value of ,0.75 is considered significant

and one of ,0.5 highly significant, as in [37]. Based upon these

criteria all of the PA domain 2 and 4 contact residues that could be

unambiguously assigned were saturated under these conditions

(Figure 3B). Taken together, this study verified that the TCS

method can be used to specifically monitor contacts between the

ANTXR2 VWA-domain and PA domains 2 and 4 in the

heptameric toxin-receptor complex.

Identification of a new toxin-receptor complex
intermediate at pH 6.0

To characterize the changes in PA-receptor contacts that

occur after incubating the complex under mildly acidic

Figure 1. A) 1H-15N TROSY-HSQC of the ANTXR2 VWA domain. Cross-peaks with labeled assignments represent receptor residues at the PA
domain 2 and domain 4 interaction surfaces. B) The crystal structure of the interface between monomeric PA83 bound to ANTXR2 (PDB 1T6B; Protein
Data Bank), showing the base regions of domain 2 and 4 of PA. Representative PA contact residues of ANTXR2 are indicated: domain 2 contact sites
are in hot pink and domain 4 contacts are in cyan. All images were generated using PymolX11 (DeLano Scientific, San Carlos, CA).
doi:10.1371/journal.ppat.1002354.g001
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conditions, the TCS experiment was repeated at pH 6.0. That

condition is approximately 1.0 pH unit above that needed to

trigger toxin prepore to pore conversion when the PA heptamer

is bound to the ANTXR2 VWA-domain [23,28] (Supplementary

Figure S4). However, not all of the PA-contact residues that were

observed at pH 8 were visible in the saturated and unsaturated

spectra obtained at pH 6. This finding is probably due to a

structural change upon loss of contact with the PA yielding to an

increased H/D exchange or/and slow conformational exchange

dynamics.

Analysis of the data clearly showed that the PA domain 4

contact residues that were resolved remained strongly saturated at

pH 6 (residues G53, S54, N57, V115, E117, T118, H121, E122,

and G123; (Figure 4A and 4B). By striking contrast, PA domain 2

contact residues were much less saturated at pH 6.0 (Figure 4B).

Taken together, these data are consistent with a model in which

the receptor remains bound to PA domain 4 but its interactions

with PA domain 2 are significantly weakened or are lost prior to

prepore-to-pore conversion.

The ANTXR2 VWA-domain remains attached to PA
domain 4 following prepore-to-pore conversion

When bound to ANTXR2, the PA63 prepore is triggered to

form a pore species at pH values that are less than or equal to

pH 5.2 [23,28] (Supplementary Figure S4). Therefore, to

determine if the receptor remains attached to PA following pore

formation, the TCS experiment was performed under both

saturating and non-saturating conditions at pH 5.1. Consistent

with the results obtained at pH 6.0, the receptor residues that

contact PA domain 2 were not saturated at pH 5.1, with the

possible exception of residue A159 (Figure 5A and 5B). More

importantly however, virtually all of the domain 4 contact residues

that could be resolved at this pH value were saturated at pH 5.1

(Figure 5B). These data are consistent with a model in which the

receptor contacts with PA domain 2 are lost during anthrax toxin

prepore to pore conversion but the receptor remains bound to PA

domain 4.

The [1H,15N] TROSY-HSQC data also revealed chemical shift

perturbations of certain receptor residues, including PA domain 4

contact-residues that were associated with (PA63)7 binding at

pH 8.0 (Figure 6A). Small shift changes due to the isotope effect of

being a highly deuterated protein were also taken into consider-

ation as well as the pH effects [38]. Specifically, peaks associated

with residues in and around helix 1 of the ANTXR2 VWA

domain, that were involved in binding PA domain 4, significantly

changed their position in the presence of PA63. These residues

include G53, W59, and N57 (Figure 6B). A similar observation

was made with residues Y46 and F47, which lie within the

hydrophobic core of the ANTXR2 VWA domain, as well as with

G135, which lies on the opposite face of the receptor VWA

domain (Figure 6B). These latter effects are likely due to an

allosteric or structural change in the receptor domain following PA

binding. Strikingly, the peaks associated with all of these residues

reverted back to their ‘‘unbound’’ configuration when the

ANTXR2 VWA/PA63 complex was incubated at pH 5.1

(Figure 6A), even though the receptor remains bound to PA

domain 4 under this condition. The only exception was residue

Y46 which was not resolved at pH 5.1 but moved back towards its

‘‘unbound’’ configuration at pH 6, (Figure 6A).

Discussion

In this study we have used the TCS NMR approach to monitor

how the ANTXR2-based receptor switch regulates anthrax toxin

prepore-to-pore conversion. We showed that this is a robust

method for identifying the receptor contacts with PA domains 2

and 4, in the prepore configuration at pH 8.0. We also obtained

evidence at pH 6.0 for a new toxin-receptor intermediate in the

pathway leading to pore formation, one in which the receptor

remains bound to PA domain 4 but contacts with PA domain 2

have been significantly weakened. That intermediate would

presumably exist within a mildly acidic early endosomal

compartment during endocytic trafficking of toxin-receptor

complexes [39]. Furthermore, we demonstrated that the

ANTXR2 VWA-domain remains attached to PA domain 4 after

triggering PA pore formation at pH 5.1, consistent with a more

strongly acidic late endosomal pH [39]. Subtle structural changes,

associated with reversion back to an unbound configuration, were

also detected in residues located near the PA domain 4-binding

site following pore conversion. This effect was also seen in the

opposite face of the protein with residue G135, and with two

hydrophobic residues within the core, Y46 and F47. It is known

that chemical shifts of those nuclei that lie within close proximity

of the binding partner can be substantially perturbed in the

presence of that partner. However chemical shift perturbations

(CSP) can also arise from allosteric effects as well as extended

conformational changes that may occur in the target protein upon

protein partner binding [40,41]. These latter effects most likely

account for the chemical shift perturbations seen with residues

Y46, F47, and G135, which lie distal from the PA63 binding site of

the receptor (Figure 6B). Taken together, these studies have led to

a revised model of the changes in toxin-receptor contacts during

pore formation (Figure 7) and support the idea that the bound

receptor may influence the structural and/or functional properties

of the toxin pore.

It is unlikely that the TCS effects that were observed could be

attributed to non-specific aggregation of the PA63 heptamer-

receptor complex at the different pH values tested since these

effects were almost exclusively restricted to the toxin-binding face

of the receptor. Indeed, inspection of 1D slices of the TCS

experiments for selected crosspeaks did not indicate a broadening

of lineshapes at several residues at pH 8 or pH 5, as would have be

expected if there was aggregation (data not shown). Additionally,

to further assess protein aggregation at pH 8 and pH 5, a

wavelength scan (from 280–360 nm) was performed on the

ANTXR2 VWA domain in complex with PA63 at the same 10:1

ratio used for the TCS NMR experiments, since protein

aggregation can be monitored at 340 nm [42,43]. These studies

revealed no substantial increase of absorbance at 340 nm between

pH 8 and pH 5 (Supplementary Table S1), and visual inspection

of the sample yielded no noticeable turbidity in the supernatant,

under any of the conditions tested. Furthermore, there was no

Figure 2. The principle of Transferred Cross Saturation (TCS) applied to the (PA63)7-ANTXR2 complex. A) Schematic of TCS between
ANTXR2 VWA domain and the PA63 pore. 2H15N-labeled ANTXR2 VWA-domain was mixed at a ratio of (10:1) with PA63 heptamer. Radiofrequency
pulses were applied to the sample, in order to saturate the aliphatic protons of the PA63 heptamer. Saturation is then transferred to the contact
residues of the labeled ANTXR2 VWA-domain, reducing the intensity of the corresponding cross peaks in the spectrum. B) Saturated and unsaturated
spectra of the (PA63)7-ANTXR2 complex at pH 8.0. The [1H,15N] TROSY-HSQC spectra of the 2H-15N labeled ANTXR2-VWA domain complexed with the
PA63 heptameric prepore are shown overlayed under saturating or non-saturating (black) conditions.
doi:10.1371/journal.ppat.1002354.g002
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substantial difference in the absorbance at 280 nm seen with either

the pH 8.0 or pH 5.0 samples before or after a 24 hour incubation

at 37uC (Supplementary Table S2). Therefore, we concluded that

the TCS NMR studies were not compromised by any non-specific

aggregation of the PA63 heptamer-receptor complex at pH values

ranging from pH 5–8.

Figure 3. The receptor contact residues with PA domain 2 and 4 that are saturated at pH 8.0. A) A subset of the 1D slices of the [15N,1H]
TROSY-HSQC spectra obtained at pH 8.0 highlighting several cross-peaks without saturation at pH 8 (left panels) or with saturation at pH 8 (right
panels). Cross-peaks representing PA domain 2 and 4 contact residues are indicated with red and blue labels, respectively. B) A plot of the intensity
ratio (Is/Io) of the transferred cross saturation of (PA63)7 and the interacting residues on the ANTXR2 VWA domain. Significant cross saturation (Is/
Io#0.75) is indicated with a single asterisk, and highly significant (Is/Io#0.5) is indicated with a double asterisk. The errors were calculated by
propagating the base-plane noise, which was derived from the signal-to-noise ratios of both control and the saturated spectra and this value was
averaged from two duplicate experiments.
doi:10.1371/journal.ppat.1002354.g003
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Figure 4. The receptor contact with PA domain 2 is weakened at pH 6.0. A) A subset of the 1D slices of the [15N,1H] TROSY-HSQC spectra
obtained at pH 6.0 highlighting several cross-peaks without saturation at pH 6 (left panels) or with saturation at pH 6 (right panels). Cross-peaks
representing PA domain 2 and 4 contact residues are indicated with red and blue labels, respectively. B) A plot of the intensity ratio (Is/Io) from the
transferred cross saturation of (PA63)7 heptamer to interacting residues on the ANTXR2 VWA-domain. Significant cross saturation (Is/Io#0.75) is
indicated with a single asterisk, and highly significant (Is/Io#0.5) is indicated with a double asterisk. The errors were calculated by propagating the
base-plane noise, which was derived from the signal-to-noise ratios of both control and the saturated spectra and this value was averaged from two
duplicate experiments.
doi:10.1371/journal.ppat.1002354.g004
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Figure 5. Receptor remains bound to PA domain 4 at pH 5.1. A) A subset of the 1D slices of the [15N,1H] TROSY-HSQC spectra highlighting
several cross-peaks without saturation at pH 5.1 (left panels) or with saturation at pH 5.1 (right panels). Cross-peaks representing PA domain 2 and 4
contact residues are indicated with red and blue labels, respectively. B) A plot of the intensity ratio (Is/Io) from the transferred cross saturation of
(PA63)7 to interacting residues on the ANTXR2 VWA domain. Significant cross saturation (Is/Io#0.75) is indicated with a single asterisk, and highly
significant (Is/Io#0.5) is indicated with a double asterisk. For all graphs the errors were calculated by propagating the base-plane noise, which was
derived from the signal-to-noise ratios of both interleaved experiments. The data was taken from two separate experiments performed at pH 5.1 and
pH 5.15 and the average was derived from these experiments.
doi:10.1371/journal.ppat.1002354.g005
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Previous NMR studies had been interpreted as being consistent

with receptor release from the newly formed toxin pore. In

contrast to the current report, these studies included the detergent,

octyl-glucoside and a higher salt concentration in the samples, and

a lower temperature was used for the NMR experiments (293K

versus 310K). In one of these studies, strongest methyl resonance

of carbon-13 (SMRC) NMR analysis was employed, which

analyzes the first dimension of a 1H- 13C heteronuclear single

quantum coherence experiment (HSQC). That approach indicat-

ed that contacts between the PA pore and the ANTXR2 VWA-

domain were lost at acidic pH [25]. Similar experiments were

performed with a 13C-labeled 2 fluorohistidine labeled ANTXR2

VWA domain [25]. In both studies, a single peak was monitored

upon PA binding, the 1H methyl resonance of 13C labeled

ANTXR2 VWA domain, and was focused on the 1H methyl

resonance (0.8 ppm) in the presence or absence of PA63. In the

absence of PA63, a strong signal for the ANTXR2 VWA domain

was seen as a sharp peak at 0.8 ppm, but in the presence of the

toxin subunit, the peak signal was diminished because of line

broadening, and there was substantial loss of peak height due to

PA63 binding. These studies were conducted at both pH 8.0 and

5.0. Although the peak heights were increased at the lower pH

value indicating PA63 dissociation, they did not return to the levels

seen in the unbound state [25]. Therefore, we suggest that

receptor dissociation might not have been complete when these

studies were performed at pH 5.0. Consistent with the findings

reporting the present report, another NMR study performed by

the same group demonstrated that a recombinant fragment of PA

(PA domain 4) remained bound to the ANTXR2 VWA-domain at

pH 5.0 [27], although in that case it was not possible to relate

these effects to the process of prepore-to-pore conversion.

Previous co-immunoprecipitation experiments led to conflicting

conclusions about whether the receptor remains attached to the

newly formed anthrax toxin pore complex. In one study, a PA-

antiserum, that did not disrupt the PA63 prepore-receptor

interaction, was used to demonstrate that both ANTXR1 and

ANTXR2 co-precipitated with the PA63 prepore, but not with the

PA63 pore [23]. In another study, an antiserum that recognized an

epitope tag engineered into the cytoplasmic tail domains of both

receptors co-precipitated both PA63 prepore and pore complexes

[19,26]. In light of the current report, it seems most likely that the

latter study is correct and that these discrepant findings are

probably due to the PA antiserum disrupting the weakened PA63-

receptor interaction following pore formation. That effect would

not be seen with antibodies binding to the cytoplasmic tails of the

receptors. Therefore, these previous results obtained by co-

immunoprecipitation of membrane-associated proteins are consis-

tent with the conclusions of this report, i.e. both lines of evidence

support receptor-association following prepore-to-pore conversion.

The bound receptor might influence the structural and/or

functional integrity of the PA pore complex. The structure of the

PA pore resembles the mushroom shaped structure of S. aureus a-

Figure 6. Chemical shift changes of the ANTXR2 spectra due to PA binding at several pH values. A) Chemical shift changes are shown for
residues Y46, F47, G53, N57, the W59 indole, and G135, by comparing the unbound VWA domain at pH 8 (left panel) with the bound VWA-(PA63)7

complex at different pH values (right panels). N.D: Not Determined; Residue Y46 was not resolved at pH 5.1 B) Chemical shift perturbation of the
ANTXR2 VWA domain upon PA63 heptamer binding. Chemical shift perturbations were seen for residues Y46, F47, G53, N57, the W59 indole, and
G135 upon PA63 heptamer binding. These residues are modeled onto the crystal structure of the ANTXR2 VWA domain and highlighted in red.
doi:10.1371/journal.ppat.1002354.g006

Figure 7. Model of changes in the PA-receptor contacts that accompany toxin prepore-to-pore conversion. For clarity, only domains 2
and 4 of a single PA monomer are shown with the receptor. 1. The unbound receptor with the PA Domain 4 binding site highlighted in yellow to
indicate its ‘‘unbound’’ configuration. 2. The receptor binds to PA domains 2 and 4 forming a molecular clamp that blocks pore formation and
inducing a conformational change in PA domain 4 contact residues (indicated with cyan shading). 3. At pH 6 which is similar to the conditions in an
early endosomal compartment, the receptor contacts with PA domain 2 are weakened and PA domain 4 contact residues begin to revert back to their
‘‘unbound’’ configuration’’ (indicated with green shading). Additional allosteric effects are also detected at this pH value. 4. At ,pH 5 which is similar
to the conditions in a late endosomal compartment, PA domain 2 is no longer bound to receptor, presumably permitting movement of the 2b2-2b3
region of PA to mediate pore formation. The receptor remains bound to PA domain 4 after pore formation although certain PA domain 4 binding
residues of the receptor revert back to their ‘‘unbound’’ configuration (indicated with yellow shading). The bound receptor may stabilize the structure
and/or modify the function of the newly formed pore.
doi:10.1371/journal.ppat.1002354.g007
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hemolysin [44,45]. However, the dimensions of these structures

are drastically different. Crystallographic studies of the a-

hemolysin pore revealed a mushroom structure with a 100 Å

diameter cap and a stem region of 52 Å [44]. By contrast, electron

micrograph studies of the PA pore stabilized with GroEL revealed

a 125 Å diameter cap and a stem region that was almost as long

(100 Å) [45]. Santelli and colleagues hypothesized that the

receptor might occupy the predicted 75 Å gap between the pore

cap structure and the membrane, thereby stabilizing the pore [16].

The results of the present study, which demonstrates that receptor

remains bound to PA domain 4 after pore formation is triggered,

provide direct support for a possible pore-stabilizing role for the

receptor.

A pore-stabilizing role for the receptor is also consistent with

results from a previous voltage patch clamp study of ion

conductance by the PA pore in whole cells versus artificial

membranes. That study indicated that the receptor might

influence pore structure since it was associated with altered

voltage-dependent inactivation properties of the pore and with

altered sensitivity to inhibition by the small molecule inhibitor,

TBA [28]. Also consistent with such a role, it has been reported

that disulfide-bond formation in the extracellular immunoglobu-

lin-like region of ANTXR2, which lies between the membrane

and the VWA-domain of the receptor, can influence anthrax toxin

pore function [46]. Future studies will aim to uncover how the

receptor-PA domain 4 contacts influence the structure and or

function of the anthrax toxin pore.

Materials and Methods

Protein expression and purification
The VWA-domain of ANTXR2 (residues Ser38 to Cys218) was

produced from a pGEX-4T-1 vector (Amersham Pharmacia) and

was expressed as a GST fusion protein [47] in Escherichia coli C43

(DE3) cells (OverExpress). The RIL plasmid of BL21-CodonPlus-

RIL cells (Stratagene) was also co-expressed in the C43 (DE3) cells

due to rare codons within the VWA-domain protein-encoding

region. Isotopically enriched 15N, 15N/13C/2H, 15N/13C, and
15N/2H ANTXR2 VWA-domain samples were prepared for

NMR studies from 4 liters of E. coli culture grown in standard M9

minimal media with 15NH4Cl at 0.1% (wt/vol), with and without
13C6-glucose or 2H/13C-glucose (0.4% (wt/vol). Unlabeled

samples of the ANTXR2 VWA-domain were produced in

standard Terrific Broth. The cell cultures were grown with

carbenicillin (50 ug/ml), chloramphenicol (34 ug/ml), and specti-

nomycin (50 ug/ml) for plasmid selection.

For the transfer cross saturation (TCS) experiments, the

ANTXR2 VWA-domain was produced in 100% D2O based M9

minimal media supplemented with 15NH4Cl (0.1% wt/vol),
2H/13C6-glucose (0.4% wt/vol) and MEM Vitamin B solution

(Sigma). Growth of the C43 (DE3) cells in 100% D2O required

acclimating the cells in 5 mls of standard M9 minimal media and

slowly acclimating the cells to a 20% increase in D2O levels every

12–24 hours until growth was sustained in 100% D2O-containing

medium. A 5 ml sample of cells grown in 100% M9 media was

then used to inoculate 1L of 100% D2O M9 media, which was

then used for standard isotopic labeling procedures. Once the cell

populations had reached an OD600 of 0.75, ANTXR2 VWA-

domain expression was induced with 0.5 mM isopropyl b-d-

thiogalactopyranoside (IPTG) for 6–8 hours at 37uC. The

bacterial cells were then harvested by centrifugation at 80006 g

in a JA-10 rotor and resuspended into 50–75 ml of lysis buffer

(50 mM Tris pH 7.5; 150 mM NaCl; 1 mg/ml lysozyme, 100

units DNAse). The cells were then lysed by three cycles of

sonication (0.5 sec pulses/20 seconds per cycle using a 550 Sonic

Dismembrator (Fisher Scientific)) and protease inhibitor cocktail II

tablets (Roche) were added to the lysate. The lysate was cleared by

centrifugation at 12,0006g in a JA-20 rotor for 1 hour at 4uC and

the supernatant was filtered with a 45 mm filter (vacuum filtration

device (Nalgene)). The supernatant was circulated over a 5 ml

GSTrap HiTrap FF column (Amersham Pharmacia) using a

peristaltic pump (LKB Pump P1, Amersham Pharmacia). The

resin was then washed with Buffer A (50 mM Tris HCl pH 8.0;

150 mM NaCl) and incubated with 5 mls of thrombin cleavage

buffer (50 mM Tris HCl pH 8.0; 150 mM; 5 mM CaCl2; 500

units thrombin (Sigma)) for 12–16 hours overnight at room

temperature. The labeled protein samples were eluted with Buffer

A and cleared of thrombin using a HiTrap Benzamidine FF

column (Amersham Pharmacia). The protein was further concen-

trated using a filtered centrifugal device (Vivaspin 15R, Sartorius).

A lack of several backbone amide resonances in the [15N,1H]

TROSY-HSQC of the ANTXR2 VWA-domain was observed

and attributed to slow back exchange of the amides from

deuterons to protons, when the protein expressing E. coli were

grown in a D2O based media. Because this phenomenon resulted

in the loss of several probes, the deuterium-labeled ANTXR2

VWA-domain had to be unfolded to protonate the deuterated

residues that were buried within the core of the folded protein.

ANTXR2 VWA-domain was unfolded at a concentration of

1 mg/ml and protein unfolding was performed for 1 hour at 4uC
in unfolding buffer (3M guanidine HCl; 50 mM Tris-HCl pH 8.0;

150 mM NaCl). It was then added drop-wise with stirring into

refolding buffer (50 mM Tris-HCl; 2 mM MgCl2; 150 mM NaCl;

10% vol/vol glycerol) at 4uC, and kept under agitation for one

hour. The refolded protein sample was then dialyzed against

NMR buffer (50 mM Tris-HCl pH 8.0; 150 mM NaCl) and

concentrated using a filtered centrifugal device (Vivaspin 15R,

Sartorius). The integrity of the refolded protein was demonstrated

by a [15N,1H] TROSY-HSQC which was comparable to a control

spectrum of a non-denatured 1H-15N ANTXR2 VWA-domain,

and through an in vitro toxin neutralization assay as described

elsewhere [48].

PA83 was expressed from a pET22b+ vector (Novagen) [49] in

Rosetta 2 cells (Novagen) due to rare codon usage and grown at

37uC in Luria Broth containing carbenicillin (50 ug/ml) and

chloramphenicol (34 ug/ml). Cells were grown to an OD600 of

1.0, and PA83 expression was induced by addition of 0.5 mM

IPTG for 6 h at 25uC. Periplasmic proteins were obtained by

osmotic shock by first resuspending pelleted cells in 1L of Buffer B

(20% sucrose; 5 mM EDTA; 50 mM Tris-HCl (pH 8.0)) with

stirring at room temperature for ten minutes. The cells were then

harvested at 80006 g for 15 minutes at 4uC in a JA-10 rotor and

the pellet was resuspended with stirring in a cold 5 mM MgSO4

solution at 4uC for 15 minutes. This sample was centrifuged again

with the same harvesting conditions, protease inhibitor tablets

(Roche) were added and the resulting supernatant containing the

desired protein was brought up to 50 mM Tris HCl at pH 8.0

with a 1M stock solution of Tris HCl pH 8.0. The supernatant was

then circulated over an anion-exchange HiTrap QFF column

(Amersham Pharmacia) and purified with a gradient of 0M to 1M

NaCl in buffer A (50 mM Tris-HCl; pH 8.0) using an AKTA-

FPLC system (Amersham Pharmacia). Column fractions contain-

ing PA83 were then concentrated and applied to a Hi Load

Superdex 26/60 gel filtration column (Amersham Pharmacia) and

eluted using gel filtration buffer (50 mM Tris-HCl; 150 mM NaCl;

pH 8.0). PA83 was purified to 90% homogeneity, as judged by a

Coomassie stained SDS-PAGE gel and concentrated using

centrifugal filter devices (Vivaspin 15R, Sartorius). This protocol
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was modified from Miller et al 1999 in order to produce a large

scale prep for NMR studies [49].

To generate PA63 by trypsin cleavage [49], the purified PA83

sample was concentrated down to 1.5 ml (final concentration

5 mg/ml) for treatment with trypsin-conjugated magnetic beads.

Prior to that incubation, 1 ml of the magnetic beads slurry (Mag-

Trypsin, Clontech) was washed in gel filtration buffer and then

separated from the wash using a microfuge magnetic stand

(Promega). The washed beads were then mixed with the purified

PA83 for 45 minutes at room temperature with constant agitation

(Nutator). The trypsin beads were then removed using the

magnetic stand and the generated PA63 heptamer was purified

by gel filtration using a Hi Load Superdex 26/60 gel filtration

column (Amersham Pharmacia) and samples were eluted with gel

filtration buffer (50 mM Tris-HCl; 150 mM NaCl; pH 8.0).

Fractions containing the heptamer were then concentrated by a

filtered centrifugal device (Vivaspin 15R, Sartorius). The compo-

sition of the PA63 heptamer was confirmed by static light

scattering/refractive index measurements coupled with size

exclusion chromatography (data not shown).

Circular Dichroism spectroscopy of ANTXR2
The ANTXR2 VWA-domain was purified as described, and the

samples were concentrated to 10 mg/mL and stored at 4uC. The

concentrated samples were diluted into either Buffer A (50 mM

Tris-HCl, pH 8.0; 5 mM DTT, 150 mM NaCl, 2.5 mM MgCl2)

or into Buffer B (50 mM sodium phosphate buffer, pH 5.0 or 6.0;

150 mM NaCl; 2.5 mM MgCl2) to a final concentration of

25 mM, Supplementary Figures S1 and S2, respectively. The

solution was then placed into a 0.1-cm path-length quartz cell

(Hellma, Forest Hills, NY). Spectra were acquired using a

BioLogic MOS-450 (Molecular Kinetics, Pullman, WA). All

measurements were done at 25uC. Spectra were recorded at a

wavelength range of 190–260 nm. Three independent experi-

ments were performed with each sample. Raw data were

manipulated by smoothing and subtraction of buffer spectra,

according to the manufacturer’s instructions.

Assessment of in vitro aggregation
300 mM of ANTXR2 VWA domain was incubated at 37uC for

48 hours in buffers ranging from pH 8, 7, 6, and 5. Buffer A

(50 mM Tris-HCl, 150 mM NaCl, 2.5 mM MgCl2) was used for

the pH 8 and pH 7 samples. Buffer B (50 mM phosphate buffer;

150 mM NaCl, 2.5 mM MgCl2) was used for and the pH 6 and

pH 5.1 samples. The samples were subjected to a wavelength scan

using a Beckman DU 530 Life Science UV/VIS spectrophotom-

eter. The apparent optical density, which is proportional to

turbidity, was then analyzed at 340 nm.

Assignment of the ANTXR2 VWA-domain
All NMR experiments were recorded at 310K on a Bruker 700-

MHz spectrometer equipped with four radiofrequency channels

and a triple-resonance cryoprobe with a shielded z-gradient coil.

Measurements were performed on either 15N, 15N/13C, or
15N/13C/2H, 350 mM labeled ANTXR2 VWA-domain in NMR

buffer (50 mM Tris-HCl (pH 8.0); 150 mM NaCl; 0.01% NaN3;

10/90 D2O/H2O), if not stated otherwise. Assignments for the

backbone resonances were obtained using data from the following

experiments: [1H,15N] TROSY-HSQC, 3D TROSY-HNCO, 3D

TROSY-HN(CA)CO, 3D TROSY-HNCACB, 3D TROSY-

HNCA, and a 3D 15N-edited NOESY-HSQC. NMR data were

processed using NMRPipe and analyzed using the Sparky and

CARA software packages [34,35].

Transferred cross saturation experiments
Transferred cross-saturation experiments were performed with

deuterated, 15N-labeled ANTXR2 VWA-domain in a buffer

containing 85-90% D2O. The final NMR sample contained

350 mM VWA-domain and 35 mM PA63 (ratio 10:1) in NMR

buffer (50 mM deuterated Tris-HCl pH 8.0 buffer; 5 mM DTT;

150 mM NaCl; 2.5 mM MgCl2; 85% D2O/H2O) or low pH

NMR buffer (50 mM sodium phosphate buffer pH 6.0 or 5.1;

150 mM NaCl; 2.5 mM MgCl2; 85% D2O) Experiments were

performed at 310K. Selective saturation of the protein was

achieved by applying a train of Gaussian shaped pulses prior to the

[1H-15N] TROSY-HSQC experiment with the saturation fre-

quency set to 0.8 ppm [32,50]. The experiment was performed in

an interleaved manner with a phase sensitive Echo/Antiecho

gradient selection. Experiments were performed similarly with 120

scans, 0.5 sec saturation durations, and a relaxation delay of 2.0 s.

The experiments were performed with 20486256 complex points

in the 1H and 15N dimensions with spectral widths of 10000 and

2270 Hz, respectively. The spectra were transformed to 20486
256 complex points using zero-filling.

Supporting Information

Figure S1 Far-UV CD spectrum of the refolded ANTXR2

VWA-domain in A) 50 mM Tris-HCl buffer, pH 8.0, B) 50 mM

sodium phosphate buffer, pH 6.0, and C) 50 mM sodium

phosphate buffer, pH 5.0

(TIF)

Figure S2 The refolded, double-labeled ANTXR2 VWA-

domain acts as an efficient receptor decoy that protects

RAW264.7 cells against intoxication by anthrax lethal toxin.

(TIF)

Figure S3 Selected cross-sections of the HNCACB showing

connectivity between several backbone residues of the ANTXR2

VWA-domain. Additional spectra were also obtained for back-

bone assignment.

(TIF)

Figure S4 PA63 heptamer forms a SDS-resistant species that is

consistent with the pore in the presence of ANTXR2 VWA-

domain at an acidic pH of ,5.2. PA63 at 15 mM was incubated

with 150 mM ANTXR2 VWA domain overnight at 37uC at the

various pH values shown. The samples were then subjected to

SDS-PAGE. As shown, in the presence of ANTXR2 VWA

domain, the SDS resistant PA63 heptameric pore was formed only

at pH,5.2.

(TIF)

Table S1 Turbidity of the ANTXR2:PA complex at a 10:1

ratio. A sample containing 200 mM ANTXR2 and 20 mM

(PA63)7 was incubated at 37uC and either pH 8.0 or pH 5.1 for 24

hours and the absorbance values at 340 nm were measured.

(TIF)

Table S2 Protein absorbance of ANTXR2:PA after 24 hours

incubation at 37uC. A 250 mL sample containing 200 mM

ANTXR2 and 20 mM (PA63)7 was incubated at 37uC and either

pH 8.0 or pH 5.1 for 24 hours. The samples were then

centrifuged using a table top centrifuge (Eppendorf Centrifuge

5424) at 13,000 rpm for 1 minute and the protein concentrations

in the supernatants were measured at A280 nm. SDS-PAGE

analysis was used to confirm that the PA heptamer remained in

solution (data not shown).

(TIF)
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