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Abstract

With the rising development of bacterial resistance the search for new medical treatments beyond conventional
antimicrobials has become a key aim of public health research. Possible innovative strategies include the inhibition of
bacterial virulence. However, consideration must be given to the evolutionary and environmental consequences of such
new interventions. Virulence and cooperative social behaviour of the bacterium Pseudomonas aeruginosa rely on the
quorum-sensing (QS) controlled production of extracellular products (public goods). Hence QS is an attractive target for
anti-virulence interventions. During colonization, non-cooperating (and hence less virulent) P. aeruginosa QS-mutants,
benefiting from public goods provided by wild type isolates, naturally increase in frequency providing a relative protection
from invasive infection. We hypothesized that inhibition of QS-mediated gene expression removes this growth advantage
and selection of less virulent QS-mutants, and maintains the predominance of more virulent QS-wild type bacteria. We
addressed this possibility in a placebo-controlled trial investigating the anti-QS properties of azithromycin, a macrolide
antibiotic devoid of bactericidal activity on P. aeruginosa, but interfering with QS, in intubated patients colonized by P.
aeruginosa. In the absence of azithromycin, non-cooperating (and hence less virulent) lasR (QS)-mutants increased in
frequency over time. Azithromycin significantly reduced QS-gene expression measured directly in tracheal aspirates.
Concomitantly the advantage of lasR-mutants was lost and virulent wild-type isolates predominated during azithromycin
treatment. We confirmed these results in vitro with fitness and invasion experiments. Azithromycin reduced growth rate of
the wild-type, but not of the lasR-mutant. Furthermore, the lasR-mutant efficiently invaded wild-type populations in the
absence, but not in the presence of azithromycin. These in vivo and in vitro results demonstrate that anti-virulence
interventions based on QS-blockade diminish natural selection towards reduced virulence and therefore may increase the
prevalence of more virulent genotypes in the Hospital environment. More generally, the impact of intervention on the
evolution of virulence of pathogenic bacteria should be assessed.
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Introduction

Anti-virulence therapies have been recently suggested as

alternative strategies to circumvent the growing problem of

antibiotic resistance [1,2]. In P. aeruginosa inhibition of Quorum-

Sensing (QS) seems particularly attractive as QS regulates many

virulence determinants of this pathogen [3]. Azithromycin is a

widely used macrolide antibiotic without significant bactericidal

activity on P. aeruginosa [4]. Recent studies suggest azithromycin

might be of benefit against this bacterium because it interferes with

the QS-circuit and thereby inhibits the expression of a wide range

of extracellular virulence factors [5]. Inhibition of QS is likely to

have important evolutionary consequences for P. aeruginosa. Both in

vitro and in vivo studies suggest that mutants (QS-cheats) that don’t

respond to QS (specifically, mutants that are defective in one of the

QS-receptors, LasR) can have a selective advantage in the

presence of QS-wildtypes [6,7]. This has been recently demon-

strated during colonization of untreated colonized patients in

whom QS-cheats accumulated over time [8]. The most likely

explanation for this advantage is that the mutants exploit the wild

type public goods, without paying the metabolic cost of their

production [9–11]; although other direct costs of QS in clinical

contexts can’t be ruled out [12–14]. Regardless of the reasons why

QS-mutants have a fitness advantage, this advantage is unlikely to

be realised if QS is blocked in wild type bacteria. Azithromycin (or

any QS-blocker) will therefore reduce, or remove, selection for less

virulent QS-cheats and maintain the predominance of more

virulent QS-wild type bacteria.

We tested this hypothesis by following the evolutionary

dynamics of QS (lasR) mutants in intubated patients colonised
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by P. aeruginosa, during a placebo controlled clinical trial evaluating

the prevention of pneumonia by azithromycin. Whereas the

proportion of lasR mutants rapidly increased in the untreated

control patients, the proportion did not change in the azithromy-

cin-treated patients. This fitness advantage in the absence, but not

the presence, of azithromycin was similarly observed in vitro. More

generally, the impact of intervention on the evolution of virulence

of pathogenic bacteria should be assessed [15].

Results/Discussion

We tested the hypothesis that azithromycin reduces selection for

QS-cheats by following prospectively 92 intubated patients

(colonization times of three to twenty days), colonized by P.

aeruginosa and hospitalized in intensive care units of seventeen

European Hospitals, participating in a placebo controlled

azithromycin pneumonia prevention trial (see material and methods).

Importantly, antibiotic treatments active against P. aeruginosa were

forbidden during the trial. We collected a single P. aeruginosa isolate

per patient per day from tracheal aspirates and estimated total

density of P. aeruginosa bacteria in the aspirates through genomic

copy numbers. Adequate microbiological sampling for bacterial

population analysis was available for 61 patients (31 placebo and

30 azithromycin) of the initial 92 randomized patients in the

intention-to-treat protocol (Figure 1).

QS-inhibition in patient
We monitored QS-gene expression directly in tracheal aspirates

to document the ‘‘in patient’’ QS-inhibition by azithromycin.

Azithromycin significantly reduced the expression of both QS-

circuit (lasI; Mann-Whitney test, P = 0.006) as well as QS-target

(rhlA; P = 0.005) genes, whereas it did not affect expression of the

QS-independent gene trpD (P.0.2) (Figure 2). It is of course

possible that azithromycin inhibited the expression of some other

genes unrelated to QS. However microarray data have shown that

QS-regulated genes were among those whose expression was most

severely affected by azithromycin [16].

We determined the evolution of P. aeruginosa QS in patients by

first measuring the production of elastase, which is under the

control of the lasR QS-system [17] from the 650 collected isolates

(data not shown). Variations in elastase activity correlated with

mutations in lasR between independent wild type and mutant lasR

alleles (Mann-Whitney: P,0.001), as determined by sequencing

this gene in the first isolate obtained from each patient, and then

in subsequent isolates presenting a different QS-phenotype

(Figure 3). Mutations in lasR were therefore reducing the

expression of elastase, and by inference, other lasR-regulated

genes. Whereas the proportion of lasR mutants significantly

increased through time in the 31 control group patients

(Figure 3a; logistic regression: F1,10 = 65.36, P,0.001), there

was a small, decline in the proportion of lasR mutants in the 30

azithromycin treated patients (Figure 3a; F1,10 = 32.58, P,0.001;

test of whether slopes differ (treatment by time interaction) in full

model: F1, 20 = 77.6; P,0.001). In agreement with this observa-

tion, isolates from placebo patients showed decreasing mean

elastase levels in vitro (Figure 3b; F1,10 = 41.12, P,0.001), while

isolates from the azithromycin treated group showed a concom-

itant increase through time (Figure 3b; F1,10 = 41.12, P,0.001;

treatment by time interaction in full model: F1,20 = 26.46,

P,0.001).

These data are consistent with the hypothesis that azithromycin

treatment removes any advantage of QS-mutants, because QS is

blocked in the wildtype population. There are, however, a number

of alternative explanations, particularly as bacterial densities,

based on mean P. aeruginosa genomic copy numbers, were twice as

large in the placebo compared to the azithromycin group (76106

and 1.26107; t = 1.96, P = 0.06). First, azithromycin-imposed

reduction in densities could reflect reductions in growth rate,

and this could simply have slowed down the rate at which lasR

mutants change in frequency. We can however rule this out as a

primary explanation for our data, because azithromycin did not

only cause a quantitative change in the frequency of lasR mutants,

but also a qualitative change: lasR mutants decreased in frequency

during azithromycin treatment, whereas they increased in the

placebo group (Figure 3). Second, it is possible that azithromycin

may reduce selection for lasR mutants if reductions in QS-

mediated public goods production results from reductions in

bacterial density caused by azithromycin. Third, azithromycin

may directly inhibit the growth of lasR mutants more than

wildtype bacteria, explaining why there was a small reduction in

the frequency of lasR mutants following azithromycin treatment.

We address these possibilities below. Furthermore we cannot

exclude that azithromycin influenced the structure of the resident

bacterial flora of the patients which could in turn influence the P.

aeruginosa population and its virulence properties [18].

QS-inhibition in vitro
To aid the interpretation of the clinical data, we carried out in

vitro experiments with wild type P. aeruginosa (PAO1) and an

isogenic lasR mutant in the presence and absence of azithromycin.

Danesi et al. [19] measured azithromycin concentrations of 9 mg/

kg in lung tissue of patients receiving a comparable dosing regimen

as those in our study, hence we used similar concentrations (5 and

10 mg/l) for our in vitro experiments. We first measured growth

rates in media where the primary nutrient source is protein (BSA),

making lasR-controlled expression of proteases necessary for the

production of useable amino acids [6].

Consistent with previous studies [6], growth rate of the lasR

mutant in monoculture was reduced relative to the wildtype (by

Author Summary

With the rising development of antibiotic resistance and
rapid spread of nosocomial pathogens, the search for new
treatments beyond conventional antibiotics becomes a
key aim of public health research. As such, anti-virulence
therapies might be alternative antimicrobial strategies.
However, consideration must be given to the potential
evolutionary and environmental consequences of such
interventions. Here we demonstrate a significant evolu-
tionary impact of an anti-virulence intervention. Virulence
and cooperative social behaviour of Pseudomonas aerugi-
nosa rely on the quorum-sensing (QS) controlled produc-
tion of extracellular products. In the absence of a specific
intervention, non-cooperating (and hence less virulent)
QS-mutants exploit and benefit from products provided by
wild type isolates. As a consequence these less virulent
mutants increase in frequency and provide a relative
protection against infection to a colonized patient. In
contrast, when QS-gene expression is reduced by the QS-
inhibiting drug azithromycin, this advantage of QS-
mutants is lost and virulent isolates predominate both in
colonized patients and during in vitro experiments. These
results suggest that QS-blockade may increase the
prevalence of more virulent QS-responders among colo-
nizing isolates in the hospital environment. More generally,
the impact of anti-virulence interventions on the ecology
and evolution of virulence of pathogenic bacteria needs to
be assessed.
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approximately 50%) in the absence of azithromycin, demonstrat-

ing an advantage of QS in this environment (Figure 4a; 2-sample t-

test: P,0.05). The addition of azithromycin reduced densities of

both genotypes (linear effect of azithromycin: F1,29 = 71.2,

P,0.001), but this reduction was much greater for the wildtype

than the lasR mutant (interaction between concentration and

genotype: F1,29 = 6.92, P = 0.013), confirming a role of azithromy-

cin in suppressing the production of QS-controlled exoproducts.

Given that azithromycin inhibits wildtype growth more than that

of the lasR mutant, we are unable to explain the slight drop in the

frequency of lasR mutants in the patients.

We next measured the fitness of the lasR mutant invading

wildtype populations (1:100 ratio). Consistent with the in vivo

results, we found that the fitness advantage of lasR mutants was

decreased with increasing azithromycin concentration (Figure 4b;

Linear effect of azithromycin concentration of fitness of lasR

mutant: F1,16 = 48.41, P,0.001). Unlike in the clinical context, the

lasR mutant still had a slight fitness advantage over the wildtype at

the highest concentration of azithromycin used (10 mg/l),

suggesting, unsurprisingly, that additional variables influence the

fitness of lasR mutants in vivo. These results strongly suggest that

the major advantage of lasR mutants in vitro (and presumably in

vivo) is their ability to exploit wildtype public goods [8], and that

azithromycin removes this advantage because less public good

(elastase) is produced. However, the data do not distinguish

between azithromycin directly inhibiting elastase production, or

indirectly through density reductions, or both.

Conclusions
We have shown that azithromycin treatment can prevent

selection for lasR mutants, and consequently increase the

proportion of wild type P. aeruginosa in colonized patients. A

number of not mutually exclusive factors may help to explain this

pattern, but the data suggests that the primary reason is because

azithromycin blocks QS. Blocking QS prevents lasR mutants from

exploiting the public goods provided by the wildtype, and reduces

any direct costs associated with QS, such as production of

extracellular products that are not of benefit in this particular

environment [8]. Both in vitro and in patient data obtained from the

clinical trial suggest a key role of QS-dependent virulence for the

development of infection (Köhler et al., submitted), and support

the general consensus from studies using animal models showing

Figure 1. Patient enrollment and follow-up.
doi:10.1371/journal.ppat.1000883.g001
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that QS-expression (and public goods production in general) is

associated with increased virulence [2,6,20–23]. Azithromycin is

therefore likely to be of clinical benefit to a treated patient by

inhibiting the QS-dependent virulence during the course of the

treatment. However, when treatment is discontinued the patient is

at risk of being colonized by highly virulent bacteria, with the

potential of late onset infections. Moreover a wider use of such

anti-virulence interventions may also increase the prevalence of

highly virulent QS-wild type isolates within the hospital. More

generally, any intervention that reduces bacterial densities is also

likely to result in a reduced selective advantage of less virulent

mutants that do not make public goods [24]. The study highlights

the need to carefully consider both the short and longer term

implications of anti-virulence therapy and other interventions

(such as vaccines [15]) on pathogen virulence.

Materials and Methods

Ethic statement
We obtained approval for this study by the ‘‘Commission

Centrale d’Ethique de la Recherche sur l’Etre Humain des

Hôpitaux Universitaire de Genève’’. Written informed consent

from all patients or their legal representatives was obtained

according to legal and ethical considerations.

Patients and clinical collection
This randomized, placebo-controlled, double blind study (ANB

006#2001, ClinicalTrials.gov ID#NCT00610623) was designed

to assess the efficacy of azithromycin as a quorum-sensing inhibitor

in preventing the occurrence of P. aeruginosa pneumonia in

ventilated patients with documented colonization. Twenty-one

European centers participated in this trial; eight in France, four in

Spain, three in Belgium, three in Poland, two in Serbia and one in

Switzerland. We screened mechanically-ventilated patients for

respiratory tract colonization by P. aeruginosa every 48 hours.

Neutropenic patients and patients treated with immunosuppres-

sive drugs were not eligible. Patients with ongoing P. aeruginosa

infection, having received macrolides or antibiotics active against

the colonizing P. aeruginosa isolate during the last 14 days were

excluded. Patients with proven colonization by P. aeruginosa were

randomized (D-1) and received either placebo or 300 mg per day

iv azithromycin in a double blind fashion for a maximum of 20

days (D1 to Dx). During the study, only the administration of

antibiotics inactive against P. aeruginosa was allowed. Detailed

information on study design is available in supporting information

Protocol S1 and Checklist S1. Patient characteristics and clinical

outcome of the study are published elsewhere (van Delden et al.,

submitted). Starting the first day of proven colonization (D-1), we

collected tracheal aspirates (0.3 to 5 ml) and one P. aeruginoa isolate

(collection period: 3–20 days) at 24 hours intervals. Samples were

frozen at 280uC on site within 15 minutes, and sent on dry ice to

the reference research laboratory at the University Hospital

Geneva, where all analyses were performed in a blind fashion. The

logit-transformed proportion of patients whose isolate was a lasR

mutant was analyzed by logistic regression, with time (a covariate),

treatment (placebo or azithromycin) and the interaction fitted in

GenStat v10. Data were over dispersed, so a scaling factor to

equalize the residual error and degrees of freedom was employed.

In patient gene expression analysis
From prospectively collected tracheal aspirates we extracted

total genomic DNA and total RNA (for details see supporting

information Text S1). We detected (.104 genomic copies/g

aspirate) P. aeruginosa DNA in 98% of the aspirates, confirming the

colonization by this organism. In the RNA extractions, we

detected expression (.56104 copies/g aspirate) of the rpsL

Figure 2. In patient QS-inhibition in azithromycin-treated patients. In patient QS-gene expression was determined as described. Tracheal
aspirates from both day 21 and day x with bacterial RNA of adequate quality were available for twelve placebo and eleven azithromycin patients.
Expression of QS-circuit gene lasI, QS-target gene rhlA and QS-independent gene trpD measured in tracheal aspirates is shown as the relative value
(%) of the last accessible day (Dx) compared to day 21 (set as 100%). A horizontal line indicates the median expression levels. P values were
calculated using Mann-Whitney tests.
doi:10.1371/journal.ppat.1000883.g002
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housekeeping gene in 80% of the aspirates. This indicates that

quality of both sample handling and RNA extractions were

sufficient to detect bacterial gene expression in the majority of the

tracheal aspirates. As a second control for the quality of the RNA

extracts from clinical samples we plotted the amount of P.

aeruginosa bacteria as determined by qRT-PCR from the genomic

DNA extractions against the expression of the rpsL housekeeping

gene. We observed a good correlation between these two variables

(r = 0.69, P,0.001).

Determination of bacterial loads
The number of P. aeruginosa in aspirates was determined by

qRT-PCR of genomic DNA preparations. Aliquots of genomic

DNA preparations were diluted 10 fold into H2O and 3 ml of this

dilution were added to the PCR reaction mix containing 16
Quantitect Sybr Green Master Mix and 600 nM primers in a total

volume of 15 ml. PCR conditions were as described below for

cDNA analysis. A standard curve was obtained by addition of 10-

fold dilutions of a P. aeruginosa culture to an aspirate collected from

a patient not colonized by this organism. Genomic DNA was then

isolated as described above and quantified by qRT-PCR. Under

these conditions, we detected 104 CFU/g aspirate. Standard

curves yielded reproducible values during the 3-month analysis

period. P. aeruginosa was found in the aspirates at levels varying

from 46104–1.86108 CFU/g.

In vitro experiments
P. aeruginosa strain PAO1 was competed against a rare invading

isogenic lasR knockout mutant [25] in 200 ml M9 minimal salts

medium supplemented with 1% BSA [6] in 96-well plates, shaken

at 200 rpm at 37uC in the presence or absence of azithromycin (5

and 10 mg/l) for 72 hours. Six wells per environment were

inoculated with 107 cells of overnight cultures (grown in LB

medium at 37uC), at a ratio of 1:100 lasR mutant: wild type.

Selection coefficients of the lasR mutants was calculated as the

differences in malthusian parameters (ln(final density/starting

density) as previously described [26], with cell counts determined

by plating on LB agar and LB supplemented with 50 mg/l

tetracycline. A selection coefficient of zero indicates that strains

have equal fitness. Selection coefficients were regressed against

Figure 3. Evolution of lasR mutants and elastase production in
azithromycin-treated and untreated patients. Change in the
proportion of lasR mutants (a) and mean elastase production (b)
through time. Solid lines and closed symbols indicate azithromycin-
treated patients, and dashed lines and open symbols indicate placebo
group. Note that data is presented to day 11 of colonization, despite
some samples being collected up to 20 days, because of very small
sample sizes (six isolates) by day 12 in the azithromycin-treated group.
However, qualitatively identical results were obtained when the whole
data set was analysed. The change in the proportion of lasR mutants
and elastase through time was analysed using logistic regression,
corrected for under-dispersion, and General linear Modelling, respec-
tively in GenStat 10.
doi:10.1371/journal.ppat.1000883.g003

Figure 4. lasR mutant growth rates and invasion of wild type
populations in the presence and absence of azithromycin. In
vitro densities of wildtype (black) and lasR mutant (grey) after 72 hours
growth in M9 salts BSA medium (a), and selection coefficients of lasR
mutant relative to wildtype (b) as a function of azithromycin (AZM). Bars
show means (6 SEM) of six replicates. All differences (wildtype versus
lasR) in the presence of azithromycin are statistically significant
(p,0.05).
doi:10.1371/journal.ppat.1000883.g004
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azithromycin concentration. Densities (colony forming units) of

pure cultures (6 replicates per treatment) under the same

conditions were determined at the same time. Densities were

log10-transformed, to meet assumption of general linear models,

and concentration (a covariate), strain and the interaction fitted in

GenStat.
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