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Abstract

Poxviruses subvert the host immune response by producing immunomodulatory proteins, including a complement
regulatory protein. Ectromelia virus provides a mouse model for smallpox where the virus and the host’s immune response
have co-evolved. Using this model, our study investigated the role of the complement system during a poxvirus infection.
By multiple inoculation routes, ectromelia virus caused increased mortality by 7 to 10 days post-infection in C57BL/6 mice
that lack C3, the central component of the complement cascade. In C32/2 mice, ectromelia virus disseminated earlier to
target organs and generated higher peak titers compared to the congenic controls. Also, increased hepatic inflammation
and necrosis correlated with these higher tissue titers and likely contributed to the morbidity in the C32/2 mice. In vitro, the
complement system in naı̈ve C57BL/6 mouse sera neutralized ectromelia virus, primarily through the recognition of the
virion by natural antibody and activation of the classical and alternative pathways. Sera deficient in classical or alternative
pathway components or antibody had reduced ability to neutralize viral particles, which likely contributed to increased viral
dissemination and disease severity in vivo. The increased mortality of C42/2 or Factor B2/2 mice also indicates that these
two pathways of complement activation are required for survival. In summary, the complement system acts in the first few
minutes, hours, and days to control this poxviral infection until the adaptive immune response can react, and loss of this
system results in lethal infection.
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Introduction

Poxviruses remain a threat to the human population despite the

eradication decades ago of naturally circulating variola virus, the

causative agent of smallpox. Smallpox, with its up to 30%

mortality rate, could devastate the large unvaccinated population

if released accidentally or by bioterrorists [1]. Closely related

monkeypox virus has also emerged as a human pathogen [2]. To

understand the virulence of smallpox, investigators have turned to

related poxviruses like ectromelia virus (ECTV), the causative

agent of mousepox. Variola virus and ECTV have a narrow host-

range and cause significant morbidity and mortality [3,4]. The

numerous available mousepox-susceptible and -resistant mouse

strains allow the components of the protective immune response to

poxviruses to be dissected in the natural host.

Disease severity varies among inbred mouse strains, and

comparisons of these strains have elucidated factors essential for

survival. Mice naturally acquire ECTV via cutaneous abrasions,

which is mimicked experimentally with footpad inoculation [4].

Through this route, ECTV infection is 100% lethal in susceptible

strains (BALB/c, DBA/2, and A/J) but asymptomatic in the

resistant C57BL/6 strain. The C57BL/6 strain has a stronger TH1

type cytokine response and a more robust cytotoxic lymphocyte

response than susceptible strains [5]. Lethal infection occurs in

C57BL/6 mice that lack CD8+ T cells [6,7], B cells [7,8],

macrophages [6], natural killer (NK) cells [9,10], interferon (IFN)-

c [11–13], IFN a/b receptor [13], perforin [14,15], and granzyme

A or B [16]. Survival, therefore, requires both the adaptive and

innate immune response.

The innate immune system defends the host during the early

phase of an infection and shapes the adaptive response [17–19].

The complement system is an essential component of the innate

immune system, and evidence from human disease and animal

models implicates complement as a critical part of host defense

against several virus families [20–24].

The complement system consists of cell-surface and serum

proteins that interact to destroy invading microorganisms and

infected host cells [19,25–27]. Three distinct pathways activate this

cascade: classical, lectin, and alternative (pathway diagram in the

results section). Antibody binding to antigen triggers the classical

pathway. Mannan-binding lectin (MBL) and related proteins

recognize repetitive carbohydrate motifs on pathogens and

infected cells to initiate the lectin pathway [28]. Spontaneously

activated C3 initiates the alternative pathway, especially if

deposited on surfaces deficient in regulatory proteins [29]. The

alternative pathway also serves as a positive feedback loop by

forming additional C3 convertases from the C3b produced by any

pathway. All three pathways converge at the step of C3 cleavage to
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C3a and C3b, and they share a common terminal pathway that

generates the C5a anaphylatoxin and the membrane attack

complex (MAC).

Complement system activation can exert multiple antiviral

effects [25,27]. Opsonization of the virion may block attachment

or promote destruction by phagocytosis. The MAC disrupts the

membrane integrity of the virion or infected cells. The

anaphylatoxin cleavage products, C3a and C5a, attract and

activate proinflammatory and immune effector cells [30]. Finally,

complement activation induces and instructs the adaptive response

and augments the neutralizing activity of antibody [18,31–33]. To

evade these antiviral activities, viruses use multiple strategies to

hinder complement activation [26,27,34].

In their large double-stranded DNA genomes, poxviruses

encode factors that modify the immune response [35]. Study of

immunomodulatory molecules has provided insights into viral

pathogenesis and revealed novel facets of the host’s immune

response [36–39]. Variola virus, monkeypox virus, and ECTV

each produce an orthologous complement regulatory protein that

has structural and functional homology to host proteins [33,40–

45]. Loss of this complement regulatory protein may account for

the reduced virulence seen in the West African vs. Congo basin

strains of monkeypox virus [45,46]. The limits of the monkeypox

animal models, however, have made this a difficult hypothesis to

test. Loss of the complement regulatory protein affects local lesion

size of cowpox and vaccinia virus, but these are non-lethal

infection models [33,47]. Additionally, an incomplete understand-

ing of the role of complement during poxviral infections has

complicated the investigation into how these proteins enhance

virulence.

Complement influences poxviral infections, but an essential role

for survival has not been demonstrated. One study described

increased inflammation at the inoculation site of cowpox virus in

C52/2 mice; however, no mortality occurred in these mice [48].

Additionally, an allele for genetic resistance to ECTV mapped to

the chromosomal region containing C5 [49].

Using complement-deficient mice, the mousepox model offers

an opportunity to characterize the role of this system during

infection in the natural host. Use of a model where the host and

pathogen have co-evolved is particularly important given the

species specificity of many poxviruses and of complement proteins,

regulators, and receptors [3,50]. In this study, we focused on the

role of C3, the complement cascade’s central component.

Resistant C57BL/6 mice that genetically lack C3 inadequately

control ECTV infection and have increased morbidity, viral

burdens, and mortality. Our in vitro and in vivo evidence suggests

that the complement system neutralizes ECTV early in infection

and contributes to survival.

Results

C3 Deficiency Increased Mortality from ECTV Inoculated
by Multiple Routes

The route of infection influences the interaction between

poxviruses and the host [51]. Half of the 16 mutant vaccinia viruses

assessed using two routes of inoculation, ear pinna or intranasal, had

a detectible phenotype by only one route. ECTV infections of

C57Bl mice by the intranasal, intraperitoneal, or intravenous routes

result in severe disease and mortality, while the footpad and

intradermal routes cause minimal disease [52]. To examine the role

of complement in vivo, wild-type and C32/2 mice were infected by

three routes: footpad, ear pinna, and intranasal.

Approximately 95% (54 of 57) of the wild-type mice survived

when inoculated with 40,000 pfu of ECTV, the highest dose

employed in the footpad infections (Figure 1A). In contrast, C32/2

mice had about 90% mortality at that dose. They also had

significantly increased mortality (P,0.0001) at lower doses, even

when inoculated with only 4 pfu. The median time to death

increased as the dose decreased from 7 days at 40,000 pfu to 9, 10,

or 13 days at the lower doses of 4,000, 400, or 4 pfu, respectively.

The C32/2 mice also showed increased morbidity over the course

of the infection. Unlike the wild-type mice on day 7 post-infection

with 40,000 pfu, the C32/2 mice displayed clinical signs of infection,

including fur ruffling and hunchbacked posture. Consistent with

these observations, C32/2 mice lost more weight at 400 and 40,000

pfu than wild-type (Figure 1B). The few surviving C32/2 mice at the

400 pfu dose required ,3 additional weeks compared to the wild-

type mice to return to their initial weight. All surviving mice in

Figure 1A were held for at least 40 days to monitor recovery, and a

subset of C32/2 mice (n = 4 at 400 pfu) were held to day 119 post-

infection. The mice that survived the acute illness recovered weight

steadily and showed no signs of relapse.

The ear pinna studies used a dose of 700 pfu to mimic the low

inoculum thought to transmit the natural poxvirus infection [2].

The infection caused 72% mortality in the C32/2 mice (28 of 39)

(Figure 1C), compared to 25% in the wild-type mice (6 of 24,

P = 0.0002). The surviving C32/2 mice lost less weight and

recovered to the initial weight earlier if inoculated by the ear pinna

compared to the footpad route (Figure 1B and 1D). In contrast to

the increased morbidity and mortality observed, C3 deficiency

caused no gross differences in the primary lesion; C32/2 and wild-

type mice had similar levels of footpad swelling or necrosis at the

ear pinna inoculation site (data not shown).

To examine the role of C3 in intranasal infection, the dose was

lowered to 100 pfu due to the increased susceptibility of the wild-

type mice with this route. C3 deficiency increased the mortality

rate from 40% to 80% (P,0.0001, Figure 1E). Similar to the other

routes, the surviving C32/2 mice had more severe disease than

wild-type, as they lost more weight and took longer to recover

(Figure 1F).

Author Summary

As one of the most successful pathogens ever, smallpox
caused death and disfigurement worldwide until its
eradication in the 1970s. The complement system, an
essential part of the innate immune response, protects
against many pathogens; however, its role during smallpox
infection is unclear. In this study, we investigated the
importance of the complement system in mousepox
infection as a model for human smallpox disease. We
compared mice with and without genetic deficiencies in
complement following infection by multiple routes with
ectromelia virus, the causative agent of mousepox.
Deficiencies in several complement proteins reduced
survival of ectromelia infection. Sera from these same
complement-deficient mice also have reduced ability to
neutralize ectromelia virus in vitro. In complement-
deficient mice, ectromelia virus disseminated from the
inoculation site earlier and produced higher levels of virus
in the bloodstream, spleen, and liver. The increased
infection in the liver resulted in greater tissue damage.
We hypothesize that the complement-deficient mice’s
reduced ability to neutralize ectromelia virus at the
inoculation site resulted in earlier dissemination and more
severe disease. We have demonstrated that surviving
ectromelia virus infection requires the complement
system, which suggests that this system may also protect
against smallpox infection.

Complement in Mousepox
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C3 Deficiency Resulted in Earlier Dissemination of ECTV
to the Target Organs, Higher Peak Viral Titers, and
Delayed Viral Clearance

ECTV replicates at the inoculation site and in the draining

lymph node to generate the primary viremia that infects the spleen

and liver [4]. Virus released from these target organs causes a

secondary viremia, which seeds distal sites like the skin, generating

the characteristic pox lesions.

To begin to dissect how C3 contributed to protection against

ECTV, we examined viral burden in two key tissues, the spleen

and liver. Wild-type and C32/2 mice were inoculated in the

footpad with either 400 or 40,000 pfu, and then spleen and liver

tissue were collected on day 7 post-infection. All animals had

detectible virus in either the spleen or liver. At the two doses, the

C32/2 mice had a 1–2 log higher mean titer than wild-type mice

in both tissues (Figure 2A and 2B).

In wild-type mice, both doses produced similar maximal tissue

titer; however, the higher dose increased the uniformity of the

group and, thereby, increased the mean titer. At the 40,000 pfu

dose, the splenic viral burden in the C32/2 mice was ,150-fold

higher (P = 0.0002, Figure 2A). Reducing the dose to 400 pfu

resulted in ,25-fold lower viral titer in the C32/2 mice, yet it was

still ,25-fold higher than the wild-type controls (P = 0.03). In

contrast, both doses produced similar liver titers in the C32/2

mice. The lower dose revealed an 80-fold increase in the liver titer

of the C32/2 mice compared to the wild-type mice (P = 0.01,

Figure 2B), while the higher dose showed less of a difference

between the strains (15-fold) due to the increased titer in the wild-

type mice. Illustrative of the impact of C3, the C32/2 mice at 400

pfu had higher titers than the wild-type mice given 40,000 pfu, a

100-fold more virus.

These increases in viral titer prompted further exploration of

how C3 deficiency impacts viral spread. C3 could control viral

replication early at the inoculation site by directly inactivating free

virus or by recruiting inflammatory cells through release of

anaphylatoxins. The lack of C3 in the blood to neutralize or

opsonize the virus could also result in greater viremia, thereby

producing the higher titers observed in the target organs on day 7.

Alternatively, C3’s well-established ability to facilitate induction of

antibody and T cell responses could explain the observed

difference [21,22,53–57]. To elucidate when the infections in the

C32/2 and wild-type mice diverge, we inoculated via the ear

pinna route and examined the viral burden in the blood, spleen,

and liver on days 2, 4, 7, and 10 post-infection. The ear pinna

route was selected for further analysis because it is a cutaneous

route of inoculation that mimics a natural infection of the

epithelium where complement may promote containment.

Using whole blood enables an unbiased detection of all virus,

whether free in the plasma or in infected cells. Quantitative PCR

was employed to detect viral DNA in blood on days 2, 4, and 7

(Figure 2E). A few day 2 samples contained viral DNA, but most

were below the detection limit. The C32/2 mice had 2.0- and 2.5-

fold higher levels of viral DNA than wild-type mice had on days 4

and 7 (P = 0.004 and 0.03, respectively).

Despite the low levels of viremia on day 2, infectious virus was

present in the spleen of over 70% of the C32/2 mice (13 of 18)

Figure 1. C3 deficiency increased mortality and morbidity in C57BL/6 mice. (A,C,E) Greater mortality was observed in C32/2 compared to wild-
type (WT) C57BL/6 mice by multiple routes of inoculation. The number of animals in each group is right of the line, and the statistics compare the survival
of C32/2 and wild-type mice. (B,D,F) C32/2 mice have increased morbidity following infection by the indicated route as monitored by weight loss. Weight
loss for individual animals was normalized to their starting weight, and mean6SEM is shown. The graph segregates the mice that survived the infection
(filled symbols) from those that succumbed (open symbols). The number of animals in each group is presented at the end of the line. (A,B) Mice were
inoculated in the footpad with the dose listed to the right of the survival curve or in the legend. The survival curves were generated from two to three
separate experiments (except for a single experiment at 4,000 pfu). The survival of the C32/2 mice significantly differed from the wild-type mice at all
doses (P,0.0001). (B) The one C32/2 mouse that survived at 40,000 pfu is not shown for clarity. C32/2 mice alive at day 49 continued to gain weight until
day 119 post-infection. (C,D) Mice were inoculated with ,700 pfu ECTV via the ear pinna. The data are combined from four separate experiments
(P = 0.0002). (E,F) Mice received 100 pfu of ECTV intranasally. The curves are generated from at least seven separate experiments (P,0.0001).
doi:10.1371/journal.ppat.1000249.g001

Complement in Mousepox
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compared to 28% of the wild-type mice (5 of 18, P = 0.006,

Figure 2C). By day 7 post-infection, the C32/2 mice had 45-fold

higher viral titers in the liver (P = 0.01, Figure 2D), and there was

also a similar trend in the spleen (6-fold, P = 0.09). The wild-type

mice regained weight starting on day 10 (Figure 1D), and by then

over 80% had cleared the virus from the spleen or liver (9 of 11,

Figure 2C and 2D). In contrast, less than half of the C32/2 mice

survived to day 10 (Figure 1C), and of these, over 75% had

ongoing infection of the spleen and liver (7 of 9, P = 0.008 and

0.01, respectively).

In summary, C3 deficiency resulted in earlier dissemination to

spleen and in higher peak titers in the liver. The viral infection also

continued to day 10 in the C32/2 when it had been cleared by

most wild-type mice.

Figure 2. C3 deficiency promoted earlier dissemination to and increased viral titers in the target organs. C32/2 and wild-type mice
were infected by the footpad or ear pinna route and sacrificed on day 2, 4, 7, or 10 post-infection. The viral titer of the spleen (A,C) or liver (B,D) was
determined by direct plaque assay and is expressed as the log10 plaque forming units (PFU)/g tissue. The level of viral DNA in whole blood was
measured using quantitative PCR (E). The scatter plots show the viral burden of each wild-type (WT, black, m) and C32/2 (red, $) animal. The error
bars indicate SEM. The wild-type and C32/2 mice were compared, and P values ,0.05 are reported above the bracket. The dotted line represents the
limit of detection for the assay. (A,B) Mice were infected with 400 or 40,000 pfu of ECTV in the footpad and sacrificed on day 7 post-infection. At 400
pfu, all animals had virus detected in either the spleen or liver. (C–E) Animals were infected with ,700 pfu of ECTV via the ear pinna. Mean viral
titers6SEM or genome copies6SEM from the scatter plots are also plotted against time in a line graph (Figure S1).
doi:10.1371/journal.ppat.1000249.g002
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C3 Deficiency Increased Hepatic Inflammation and
Necrosis

In susceptible mouse strains, ECTV causes extensive hepatic

and splenic necrosis [58,59]. We compared C32/2 and wild-type

mice for histopathological changes in the liver on days 4, 7, and 10

post-infection.

On day 4, the liver histopathology appeared normal in 4 of 5

wild-type and 3 of 4 C32/2 mice (data not shown). By day 7, all

animals had a diffuse lymphocytic infiltrate in addition to discrete

inflammatory foci (Figure 3). These lesions varied in size and were

smaller and less frequent in the wild-type (Figure 3A and 3B)

compared to the C32/2 mice (Figure 3C and 3D). They often

occurred near the portal triad, and some contained areas of

coagulative necrosis. An inflammatory infiltrate encircled the

discrete necrotic foci (Figure 3B and 3C) and bordered the areas of

bridging necrosis (Figure 3D). In contrast to the liver, no major

differences were observed in the spleen at this time (data not

shown). Using blinded samples, we counted the necrotic and

non-necrotic foci and evaluated the location and severity of the

necrosis in the liver (Figure 4).

There were prominent differences between the C32/2 and

wild-type mice relative to the number inflammatory foci and in the

degree of necrosis. The C32/2 mice had twice as many total foci

(8 vs. 18 per field, P = 0.02, Figure 4A) and 5-fold more foci

containing regions of necrosis (3 vs. 15 per field, P = 0.03,

Figure 4B). The majority of inflammatory foci contained necrotic

areas in two-thirds of the C32/2 mice compared to only one-fifth

of the wild-type mice (Figure 4C). The C32/2 mice had larger foci

with more extensive necrosis (P = 0.02, Figure 4D). Most wild-type

mice had small foci with either no necrosis or only piecemeal

necrosis (0 and 1 on necrosis severity scale, Figure 3A and 3B,

respectively). In contrast, the C32/2 mice had confluent areas of

necrosis that coalesced into bands of bridging necrosis (2 and 4 on

the necrosis severity scale, Figure 3C and 3D, respectively). Given

that necrosis most frequently occurred in zone 1 of the liver, it

likely originated there and then extended into zones 2 and 3

(Figure 4E).

Figure 3. Extensive liver necrosis occurred in C3-deficient mice. Liver samples were taken from mice 7 days after infection with ,700 pfu via
ear pinna, fixed, sectioned, and stained with hematoxylin and eosin. Representative images show the range of differences between the strains. White
lines border coalesced areas of necrosis. Arrowheads point to non-necrotic inflammatory foci. T, portal triad; V, central vein. (A) Wild-type—blood
flows through the liver from zone 1 to 3, as indicated by the arrow. Zone 1 encircles the portal triad, zone 3 encircles the central vein, and zone 2
occurs between zones 1 and 3. There are small inflammatory foci adjacent to two portal triads. (B) Wild-type—there are inflammatory foci adjacent to
portal triads, and one focus has a small area of confluent necrosis. (C) C32/2—larger inflammatory foci with areas of confluent necrosis. (D) C32/2—
an inflammatory infiltrate borders the extensive necrosis that bridges across all three zones (TRV).
doi:10.1371/journal.ppat.1000249.g003
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The increased hepatic necrosis in the C32/2 mice resulted in

higher levels of liver enzymes, aspartate aminotransferase (AST)

and alanine aminotransferase (ALT), in the serum on day 7

(P = 0.008, 0.0503, respectively, Figure 4F). The AST and ALT

levels positively correlated with the viral burden (Figure 4G).

Most C32/2 mice died between day 7 and 10 (Figure 1C). Two

C32/2 mice that were sacrificed on day 10 had ,5–7

inflammatory foci per field, while the 5 wild-type mice had only

occasional foci (data not shown). At this time point, infectious

ECTV persisted in the C32/2 mice; whereas, wild-type mice had

cleared the infection (Figure 2D).

Mouse Complement Neutralized ECTV Intracellular
Mature Virions

To explore the interaction between C3 and ECTV in vivo, we

examined how mouse complement affects ECTV virions in vitro.

Purified intracellular mature ECTV was incubated with either

EDTA-treated plasma or sera from naı̈ve C57BL/6 mice.

Infectious virus was detected as plaques on a BS-C-1 monolayer.

EDTA-treated plasma was reconstituted with a buffer containing

calcium and magnesium to allow for complement activation.

Reconstituted wild-type plasma neutralized approximately 90%

of the virus (Figure 5A, P,0.001). Heat inactivation or buffer

lacking calcium and magnesium abolished neutralization. Wild-

type sera concentrations of 10, 25, or 50% neutralized 70–80% of

the ECTV (Figure 5B, P,0.0001). These observations implicate

the complement system in neutralizing ECTV.

To further define if complement neutralized ECTV, sera from

mice genetically deficient in a complement component or antibody

were used in this assay (Figure 4C–4G). The neutralizing activity

was reduced by ,50% with deficiency of either C3 or C4

(Figure 5C). However, mixing C32/2 and C42/2 sera produced

results equivalent to wild-type sera.

This requirement for C4 for full ECTV neutralization was further

dissected. The C1q subunit of C1 interacts with antibody to trigger

the classical pathway. MBL, a C1q analog, initiates the lectin

pathway. MBL A2/2 x MBL C2/2, C1q2/2, and antibody-

deficient (mMT) sera were compared (Figure 5D). mMT or C1q2/2

sera only partially neutralized ECTV, comparable to C42/2 sera.

Conversely, wild-type levels of neutralization occurred independent

of MBL A and C. These data suggest that natural antibody

activated the classical complement pathway to neutralize ECTV.

Figure 4. C3-deficient mice had a greater number of inflammatory foci with more extensive necrosis. (A–F) Wild-type (WT, black, m) and
C32/2 (red, $) mice were compared, and P values are above the bracket. Error bars are SEM. (A) The number of inflammatory foci/visual field was
counted. Each point represents the mean from ,7 fields for an individual mouse. The graph plots the mean number of foci for each animal. (B) The
number of inflammatory foci containing necrosis was counted and displayed as described in (A). (C) The percentage of foci that contained areas of
necrosis. (D) The severity of the necrosis was quantitated using a 0–4 scale: 0, none; 1, piecemeal necrosis; 2, confluent areas of necrosis; 3, confluent
areas of necrosis that extend beyond a single zone; and 4, bridging necrosis. (E) The zones of the liver (1, 2, and 3) where necrosis occurred. Zones are
described in Figure 3A. (F) The serum levels of the liver enzymes in uninfected mice were ,100 for AST and ,50 for ALT. (G) AST (blue) and ALT
(black) levels positively correlate with liver viral titer (r2 = 0.54 and 0.69, respectively). The log of these parameters for both C32/2 and wild-type mice
was used for linear regression.
doi:10.1371/journal.ppat.1000249.g004
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Further analysis revealed three key points relative to natural

antibody. First, heat-inactivated wild-type sera behaves like buffer

alone, which indicates that natural antibody alone lacks neutral-

izing activity; instead, complement activity was required to

neutralize ECTV (Figure 5A and 5G). Second, heat-inactivated

wild-type sera, as a source of natural antibody, restored the

neutralizing activity of mMT sera (Figure 5F). Consistent with this

finding, mMT or heat-inactivated wild-type serum did not

effectively neutralize ECTV independently, but they did so in

combination. Third, the modest but significantly greater neutral-

ization in the normal compared to heat-inactivated mMT sera

suggests that antibody-independent (alternate pathway) comple-

ment activation also occurred.

C3b deposited by any pathway interacts with factor B (FB) and

factor D (FD) to generate the alternative pathway C3 convertase,

which amplifies C3b production. Alternative pathway activation

itself likely explains the neutralization observed in the mMT,

C1q2/2, or C42/2 sera. Interestingly, FB2/2 or FD2/2 sera

neutralized less ECTV than wild-type sera (Figure 5E), which

indicates that the alternative pathway enhanced complement-

mediated neutralization initiated by the classical pathway.

C3b could neutralize ECTV by directly preventing attachment

to or entry into the cell or by disrupting the virion’s membrane

through formation of the C5 convertase and the MAC. C5

initiates the terminal pathway that forms the MAC, and no lytic

activity occurs in the absence of C5. C52/2 sera from C57BL/10

mice were used to define the contribution of the MAC to

neutralization (Figure 5G). C52/2 sera neutralized a significant

portion of virus (P,0.001), however, less than C5+/+ sera

(P,0.05). These findings suggest that opsonization by C4b and

C3b mediated most of the neutralization; although, the MAC also

contributed.

To conclude, these findings demonstrate that naı̈ve wild-type

mouse sera neutralized ECTV. We propose that natural

antibodies bound to ECTV and triggered the classical pathway.

This led to C4b deposition, formation of the C3 convertase, and

C3b deposition on the virus. The alternative pathway amplified

the C3b placed on the virion by the classical pathway. Most

ECTV neutralization occurred through opsonization by C4b and

C3b, with a minor contribution from the MAC.

Surviving ECTV Infection Required Multiple Complement
Pathways

Both the classical and alternative pathways contributed to

ECTV neutralization in vitro. To examine the importance of each

pathway in vivo, we compared C42/2 and FB2/2 mice to C32/2

and wild-type mice. We challenged C42/2 mice via the ear pinna

route and monitored survival and weight loss. Over 90% of the

C42/2 mice succumbed to the infection (P,0.0001, Figure 6A).

The C42/2 and C32/2 mice had comparable mortality and

weight loss (Figures 6C and 1D).

Intranasal ECTV infection also produced similar results in the

C32/2, C42/2, or FB2/2 mice. Each complement-deficient

strain had a higher mortality rate compared the wild-type mice

(P,0.0001), and there were no significant differences among the

three strains (Figure 6B). The complement-deficient strains also

lost weight at a similar rate (Figures 6D and 1F). Thus, control of

ECTV in vivo required both the alternative and classical

pathways, analogous to the in vitro results.

Natural Antibody Delayed Mortality in mMT Mice
Complement poses a barrier to the systemic spread of

pathogens, particularly through the bloodstream [17]. The major

role of complement could be to neutralize ECTV recognized by

natural antibody. Our prior experiments established that B cell-

deficient mMT mice challenged with a high dose of ECTV by the

footpad route all died early in infection (94% by day 8) (Figure 6E).

Their early death suggests that B cells contribute to survival prior

to the rise of specific antibody on day 7 [5].

Based on our in vitro data and the data of others [60,61], we

hypothesized that natural antibody contributes to early protection.

Consequently, providing mMT mice with natural antibody should

prolong their survival. Based on the work of Ochsenbein et al. [61],

Figure 5. The murine complement system neutralized ECTV virions. (A–G) ECTV was incubated with a mouse complement source at 37uC for
1 hour and then added to BSC-1 monolayers. The absolute number of plaques was normalized to the appropriate controls (white bars) to give the
relative number of plaques. Graphs display mean6SEM from multiple experiments. All data were analyzed using 1-way ANOVA followed by the Tukey
multiple comparison test except (B), which used a 2-way ANOVA to analyze concentration and activity. (A) Mouse plasma neutralizes ECTV. ECTV was
combined with 10% wild-type (WT) mouse EDTA-treated plasma or heat-inactivated (HI) plasma in gelatin veronal buffer (GVB) in the presence or
absence of calcium and magnesium (Ca/Mg). The active plasma (in the presence of Ca/Mg) differed from all other groups (***, P,0.001). These data
were combined from nine independent experiments using EDTA plasma collected on three separate days. The total number of replicates for each
column from left to right follows: n = 25, 29, 17, 7, 3. (B) Mouse serum neutralizes ECTV. ECTV was incubated with increasing concentrations of HI
(white) or active (black) WT mouse sera. Data represent three to four independent experiments performed in duplicate with four different collections
of sera. Active sera neutralized ECTV (***, P,0.0001), at multiple concentrations. (C–G) The relative roles of the complement pathways were analyzed
using sera from mice genetically deficient in complement components (C3, C4, C1q, MBL A and MBL C, FB, FD, or C5) or antibody (mMT). A final
concentration of 50% sera was used in all cases. Data were combined from at least two experiments performed in duplicate with independent
collections of sera. Unless noted specifically below, the significant differences are displayed on the graph as follows: *, P,0.05; **, P,0.01; ***,
P,0.001. Any significant differences among grouped bars are noted on the graph. (C) C32/2 or C42/2 sera have reduced neutralizing capacity.
Combining C32/2 and C42/2 sera restored neutralizing activity to WT levels. WT-HI differed from the other conditions (***). Data were from at least
three experiments performed in duplicate. (D) Deficiencies in the classical pathway (C4, C1q) and antibody (mMT), but not the lectin pathway (MBL),
reduce neutralization. WT-HI differed from C1q2/2 (P,0.01) and differed from the rest of the conditions (P,0.001). Data were from at least two
experiments performed in duplicate. (E) Neutralizing activity requires the alternative pathway components: FB, FD, and C3. WT-HI differed from the
other conditions (***). Data were from at least two experiments performed in duplicate. (F) Addition of either 10% or 25% WT-HI sera restores the
neutralizing activity of antibody-deficient mMT sera to WT capacity. Heat inactivation of mMT sera reduces neutralization. Data were from two
experiments done in duplicate. (G) MAC (C5b-9) formation enhances neutralization but is not required. Both the C5+/+ and C52/2 sera had greater
neutralization than HI-C5+/+. The buffer only control (GVBu) is equivalent to WT-HI. Data combined from three experiments performed in triplicate. (H)
The classical, lectin, and alternative pathways each initiate the complement cascade by forming a C3 convertase that cleaves C3 to C3b. Antibody
triggers the classical pathway through C1q. The carbohydrate motifs on pathogens activate the lectin pathway through MBL. The classical and lectin
pathways form the C4 containing convertase, C4b2a. C3 deposited from these two pathways or from spontaneous activation of C3 initiates the
alternative pathway. Upon binding, the activated C3 molecule FB is cleaved to Bb by FD, which forms the alternative pathway convertase, C3bBb. The
alternative pathway amplifies C3b deposition by any pathway. C3 activation leads to important antiviral effector functions. Release of the
anaphylatoxins C3a and C5a recruits inflammatory cells. C3b and C4b opsonize viral particles or infected cells, leading to neutralization or destruction
by phagocytosis. C3b also leads to activation of C5 and formation of the MAC which disrupts virions or infected cells.
doi:10.1371/journal.ppat.1000249.g005
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mMT mice infected with a high dose of ECTV were treated with

naı̈ve sera from either mMT or wild-type mice (Figure 6F).

Treatment with wild-type sera increased the median day of death

from 7 to 9; however, sera lacking natural antibodies (mMT) had

no effect. On day 8 post-infection, over half of the mice receiving

wild-type sera outlived both other groups and 16 of 17 mice from

the prior experiments (Figure 6G). Thus, natural antibody

delayed, but did not prevent, lethal ECTV infection in mMT mice.

Figure 6. Deficiency of classical or alternative pathway components reduced survival. (A,C) C42/2 mice have greater mortality than wild-
type (WT, P,0.0001). C42/2 mice were compared to C32/2 and wild-type mice following inoculation with ,700 pfu ECTV via the ear pinna. The
weights of the surviving animals (filled symbols) are separated from those that succumbed (open symbols). The number of animals in each group is at
the right of the line. The data combine four separate experiments. (B,D) Increased mortality in C42/2, FB2/2, and C32/2 mice compared to wild-type
(P,0.0001). Mice received 100 pfu intranasally. Data are displayed as described above. Curves are generated from multiple experiments (n for WT = 8,
C4 = 6, FB = 4, C3 = 7). The surviving FB2/2 mouse was omitted from (D) for clarity. (E) mMT mice are susceptible to ECTV via the footpad route. mMT
mice were challenged with ECTV, and a dose-dependent increase in mortality was observed. The 50,000 pfu dose differs from 5,000 pfu (P = 0.006)
and 500 pfu (P,0.0001), and the lower doses differ from each other (P = 0.045). Survival curves were constructed from four separate experiments, and
the number of animals is to right of the legend. (F,G) Treating mMT mice with natural antibody delays mortality. mMT mice were challenged with high
doses of ECTV (100,000 pfu) via the footpad route in two separate experiments. Some mice received wild-type sera as a source of natural antibody,
while others received mMT sera (1 ml on day minus-1 followed by 0.5 ml on days 0, 2, 4, 6, 8, 10). The untreated curve in (G) includes the historical
control data from the untreated mice at 50,000 pfu in (E). The number of animals in each group is next to the legend.
doi:10.1371/journal.ppat.1000249.g006
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Discussion

We investigated the impact of complement deficiency using the

ECTV mouse model. Deficiency of C3, C4, or FB resulted in acute

lethal infection, establishing a requirement for multiple complement

pathways in host defense against this pathogen. Specifically, C3

deficiency permitted ECTV to disseminate earlier, reach a higher

titer in the target organs, and induce greater liver damage.

Consistent with these in vivo results, naı̈ve mouse sera neutralized

ECTV infectivity in vitro, and sera lacking either classical or

alternative pathway components had decreased activity. Several

lines of evidence indicate that natural antibody initiated the classical

complement cascade in the wild-type mouse. Substantial neutral-

ization occurred in sera without lytic activity, which points to

opsonization as the predominant mechanism of neutralization.

Based on these results, we propose that natural antibody binds viral

antigen to activate the classical pathway, followed by engagement of

the alternative pathway’s feedback loop to opsonize the virus.

The ECTV model system provides several advantages for

analyzing the role of complement in poxviral pathogenesis. First,

the mouse-specific pathogen ECTV has coevolved with and causes

severe disease in the natural host, analogous to variola virus in

humans. Second, the role of complement and the pathways

involved can now be more rigorously dissected in vivo and in vitro

with the availability of complement-deficient mice. Additionally,

the in vitro experiments employed sera from the same strains used

to characterize the effect of complement deficiency in vivo, and the

neutralizing capacity in vitro paralleled the in vivo mortality.

Third, viral pathogenesis, morbidity, and mortality can be assessed

by multiple routes of infection and across a range of viral inoculum

to demonstrate a broad requirement for complement.

Complement-deficient mice succumbed to acute ECTV infection

with the majority of deaths occurring between days 6–10. Based on

time to death following footpad inoculation, C3 deficiency resembled

immunodeficiencies of other important components of the antiviral

response, specifically CD8+ T cells [6,7], NK cells [9,10], and IFN-c
[12]. In contrast, mice deficient in CD4+ T cells [6], CD40, or CD40

ligand (CD154) [7] survive the acute phase but do not clear the virus.

The CD402/2 and CD1542/2 mice ultimately die ,4 to 8 weeks

post-infection. This differs from surviving C32/2 mice, which

recovered and did not show signs of ongoing illness for up to

4 months of observation. The early death of the complement-

deficient mice highlights the complement system’s essential contri-

bution to survival during the first few days of infection.

To characterize how complement protects the host from lethal

infection, we analyzed the impact of C3 deficiency on the kinetics

of viral spread. ECTV replication at the inoculation site and in the

draining lymph node produces a viremia that seeds the primary

target organs, the liver and spleen [4]. Several observations from

this study increase our understanding of complement’s role in

controlling poxviral infection.

First, as early as day 2, C3 deficiency allowed for greater spread of

ECTV from the inoculation site to the spleen. This indicates that

complement is a key player in the initial hours of infection, likely to

control ECTV at the inoculation site. Second, we detected higher

levels of viral DNA in the blood on days 4 and 7. Consistent with

our in vitro data, these results establish that C32/2 mice poorly

control viral dissemination through the bloodstream. This higher

viremia could result from increased replication in tissues and/or

decreased clearance of virus from the bloodstream. Third, the liver

viral titers on day 7 were ,50-fold higher in the C32/2 mice. The

greater viremia likely produced more extensive infection, but a

delayed adaptive immune response may also have contributed to

this observation. The viral titer correlated with serum levels of ALT,

which suggests that ECTV caused hepatic necrosis either directly

through lytic infection or indirectly through the antiviral immune

response. An inflammatory infiltrate surrounded the necrosis in the

C32/2 mice, which contrasts with susceptible Balb/c mice where

necrosis occurs in the absence of a lymphocytic infiltration [62]. In

summary, we propose that mice lacking C3 have reduced ability to

control ECTV locally and in the bloodstream, leading to higher

levels of infection and greater tissue damage in the liver.

Complement could delay viral dissemination by opsonizing and

thereby neutralizing virions at the inoculation site or in the circulation

and by promoting the inflammatory response including the

recruitment of phagocytic cells. To assess if complement could

directly neutralize ECTV, we examined the interaction between

purified ECTV and mouse complement in vitro. Naı̈ve plasma or

sera neutralized ECTV in a complement-dependent manner, even at

a concentration as low as 10%. Sera from mice deficient in specific

complement components demonstrated that maximal neutralization

required both the classical and alternative pathways. mMT sera,

lacking antibody, resembled the sera deficient in the classical pathway

components, C1q or C4, and addition of a natural antibody source

restored neutralization activity. Opsonization led to neutralization of

the majority of virus; however, the modest but significant difference

between the C52/2 and C5+/+ sera indicates that the MAC

contributed to viral damage. Interestingly, no complement compo-

nent deficiency tested fully abolished neutralization. The residual

activity suggests that the classical and alternative pathways functioned

independently, likely because both C4b and C3b opsonized and,

consequently, neutralized ECTV. However, the system was most

effective when the two pathways and the MAC worked cooperatively.

The reconstitution of the neutralization activity in the mMT sera

with heat-inactivated wild-type sera suggests that natural antibody

is important in the neutralization process. Consistent with this

observation and prior studies with other viruses [60,61], natural

antibody passively transferred into mMT mice lengthened survival

during the acute infection. In our experiments, most mMT mice

died early, with 100% mortality by day 9 at the highest inoculum.

The mice that survived the acute infection eventually died at

,2 months post-infection. Our findings differ from prior studies,

which described mortality at either 2–4 weeks [8] or 2 months [7]

post-infection. More of our mice survived the acute infection at the

lower doses. This suggests that the observed discrepancy could be

secondary to differences in the viral stock or dose, as both differed

among the three groups. The death of the mMT mice, despite

natural antibody treatment, indicates that B cells help control the

infection by additional mechanisms.

Our in vitro experiments provide a model for understanding the

fate of the viral inoculum in our in vivo experiments, since they both

used the same stock of purified intracellular mature virus (IMV). To

understand the spread of infection, a second infectious form must be

considered. During viral replication in the host cell, extracellular

enveloped virus (EEV) is produced by enveloping the IMV with an

additional unique membrane derived from the Golgi complex and

late endosomal compartment [63]. In studies of vaccinia virus, the

host’s complement regulators, present in the outermost membrane,

protect the EEV from human and rabbit complement; in contrast,

the IMV is sensitive to complement [64]. Our study builds on this

observation by determining the contribution of each complement

activation pathway to the neutralization of IMV infectivity, and it

implicates natural antibody as the primary initiating factor [61]. We

also show that natural antibody by itself is ineffective but requires

augmentation by the complement system to neutralize ECTV.

Additionally, the neutralization observed with vaccinia virus and

ECTV points to the IMV form being inherently susceptible to

complement-mediated neutralization.
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The relative importance of IMV vs. EEV during infection in

vivo is not well established. However, the IMV’s sensitivity to

complement neutralization suggests that ECTV likely travels

through areas featuring efficient complement activation, such as

the blood stream, in the EEV form or within infected cells. At

extravascular sites, where complement levels are lower than in

circulation, infected cells may produce sufficient soluble poxviral

complement regulatory protein to protect the IMV.

Most poxvirus disease models initiate infection with the

complement-sensitive IMV. If complement activity in the mouse

behaves as it does in vitro, then inoculated ectromelia IMV should

be recognized by natural antibody and coated with C4b and C3b,

resulting in neutralization of viral infectivity at the site of injection

and inhibition of spread. This line of reasoning could explain why

the mortality increases in the wild-type mice as the invasiveness of

the route decreases [52]. Percutaneous inoculation would likely

result in neutralization, while application to the mucosal

membranes might enable ECTV to enter host cells before being

neutralized by complement. Once internalized, ECTV produces

its regulatory protein and EEV to evade complement and

propagate the infection. Additionally, based on the in vitro data,

complement deficiency would greatly limit this initial neutraliza-

tion, which likely contributes to the early spread and greater

mortality observed in the complement-deficient mice.

A sub-neutralizing concentration of complement opsonins could

target the virion for immune adherence and phagocytosis in vivo,

particularly in blood with its high complement levels. Further-

more, the liver sinusoids are lined with Kupffer cells bearing CRIg

(Complement Receptor of the Ig superfamily), which mediates

phagocytosis of C3-opsonized pathogens [65]. Indeed, the liver

clears over 95% of intravenously administered ECTV from the

circulation within 5 min of injection [66]. In the following hour,

most of the viral antigen in the liver becomes undetectable by

immunofluorescence, and viral infectivity decreases by over 90%.

This rapid removal suggests that the virus has been recognized as

foreign and tagged for immune adherence and destruction.

Opsonization by complement followed by uptake via the recently

described CRIg provides a mechanistic explanation for these

important observations made nearly five decades ago [66].

These observations influence the interpretation of poxviral

infections initiated with an IMV-rich inoculum by the intravenous

route. The liver’s Kupffer cells may sequester most of the

inoculated virus within minutes and destroy much of it within

an hour, thereby inhibiting systemic dissemination. Not only is the

dose effectively reduced by ,10-fold, but the neutralized IMV also

provides the immune system with an immediate source of antigen.

These issues have particular relevance for the monkeypox and

variola virus non-human primate models that commonly use the

intravenous route to test vaccines for human use [67–72].

The early mortality of the C32/2, C42/2, and FB2/2 mice

demonstrates an essential role for the classical and alternative

pathways in the initial stages of poxvirus infection. Despite

equivalent mortality levels, further analysis may reveal different

functions for each complement pathway in vivo, as such

differences exist in the immune response to other viruses [23].

The similarity between the in vivo mortality and in vitro serum

neutralization experiments suggests that complement neutralizes

ECTV and thereby limits its spread. Undoubtedly, complement

deposition triggers other effector functions, such as recruiting

inflammatory cells, promoting phagocytosis, and priming the

adaptive immune response. The precise contribution of each of

these to protection in vivo remains unexplored.

However, these experiments establish that complement is

essential to the immune response to poxviruses. It accounts for

why the virus encodes a potent complement regulatory protein. A

virus lacking this regulator would be at risk for greater host

complement activity and attenuation. This is consistent with the

theory that loss of this regulator contributes to the reduced

virulence of some strains of monkeypox virus [46]. To conclude,

the complement system is critical for slowing down viral spread

and decreasing tissue titers and damage.

Materials and Methods

Virus Production
Plaque-purified Moscow strain ECTV was propagated in

murine L929 cells. Intracellular mature viral stocks were purified

through a sucrose cushion as described [73] and titrated on BS-C-

1 cells, an African green monkey kidney cell line [74]. Both cell

lines were cultured in Dulbecco’s modified Eagle’s media

(DMEM, BioWhittaker, Walkersville, MD) supplemented with

10% heat-inactivated fetal calf serum (FCS, HyClone, Logan,

UT), 2 mM L-glutamine, and antibiotics.

Mice
The following strains on a C57BL/6 background were acquired:

C32/2 [56,75] and FB2/2 [76,77] from H. Molina, Washington

University Medical School; C42/2 [78] from M. Carroll, Harvard

Medical School; B cell-deficient mMT [79] from H. W. Virgin,

Washington University Medical School; C1q2/2 [80] from M. Botto,

Imperial College School of Medicine; FD2/2 [81] from Y. Xu,

University of Alabama, Birmingham; and MBL A2/2 x MBL C2/2

(B6.129S4-Mbl1tm1Kata Mbl2tm1Kata/J) and wild-type from Jackson

Laboratories. The C5+/+ and C52/2 C57BL/10 mice (B10.D2-Hc1

H2d H2-T18c/nSnJ, B10.D2-Hc0 H2d H2-T18c/oSnJ) were also

obtained from Jackson Laboratories. Age-matched mice of both sexes

were used in the footpad and ear pinna studies (6–11 weeks-old) and

the mMT survival experiments (10–11 weeks-old). Male mice were

used in the intranasal (8–12 weeks) and sera transfer (10–12 weeks)

studies. Some wild-type and mMT mice used in the footpad studies

were purchased from Jackson Laboratories. The rest of the mice were

bred at Washington University in a specific pathogen-free facility.

The animals were transported to the biohazard suite at Saint Louis

University at least a week prior to infection. All experiments were

performed following the animal care guidelines of the two institutions.

In Vivo Studies
Mice were inoculated with 10 ml ECTV diluted in PBS to the

indicated dose using a 29 gauge insulin syringe into the ear pinna and

hind footpad or a 20 ml pipettor for the intranasal route. Mice were

anesthetized for inoculation using CO2/O2 for the footpad route and

ketamine/xylazine for the ear pinna and intranasal routes. Individual

mice were marked by ear punching or shaving. After infection and

before sacrifice in the mortality studies, mice were manipulated only

to obtain weights. Serum was collected from surviving animals at the

end of the experiment. The survival curves include only animals that

generated an antiviral antibody response, which was detected by

ELISA in .95% of the mice [82]. In the passive transfer experiment,

mice received intraperitoneally 1 ml of wild-type or mMT C57BL/6

sera on day 21 and 0.5 ml every two days starting on day 0.

Tissue Titer
Blood was collected via cardiac puncture. Spleen and liver

tissues were harvested aseptically, frozen immediately on dry ice,

and stored at 270uC. Tissues were homogenized in PBS-1% FCS

to ,10% (weight/vol) using 1 ml glass homogenizers. They were

frozen and thawed three times, sonicated, and titrated on BS-C-1

monolayers [74].
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Viremia Analysis
DNA was isolated from whole blood collected in EDTA

microtainer tubes (BD, Franklin Lakes, NJ) using the High Pure

PCR Template Preparation Kit (Roche). The kit’s whole blood

protocol was used with the following modifications. The 40 ml

Proteinase K, 200 ml Binding Buffer, 150 ml PBS, and 50 ml of

whole blood in EDTA were added sequentially and then vortexed.

The incubation at 70uC was extended to 12 min. The sample was

applied to the column by centrifugation at 8,000 g for 2 min and

eluted in 50 ml.

Quantitative PCR was performed on viral DNA using Power

SYBR Green PCR Master Mix on a 7500 Real Time PCR System

(Applied Biosystems, Foster City, CA) [83]. The primers (10 pmol)

SP028 (GTAGAACGACGCCAGAAT AAGAATA, 59 at 120627

bp) and SP029 (AGAAGATATCAGACGATCCACAATC, 59 at

120462 bp) were used to amplify 165 bp of gene EV107. The

amplification product cloned into a plasmid vector (pGEM-T,

Promega) was used as a standard to estimate copies of DNA/ml in

blood. Three to four wells were used for each sample.

Histology
Tissue samples were fixed in 10% buffered formalin, embedded

in paraffin, sectioned, and stained with hematoxylin and eosin by

the Digestive Diseases Research Core Center, Washington

University. The number of inflammatory foci and the magnitude

of tissue necrosis were evaluated in blinded samples. Inflammatory

foci in a 106 visual field were counted for ,7 fields/mouse liver.

Liver Enzymes
AST and ALT levels were measured in samples of frozen sera

by the Department of Comparative Medicine at Saint Louis

University using a standard clinical analyzer.

Complement Neutralization Assay
Mouse EDTA plasma and sera were collected on ice from male

C57BL/6 mice in microtainer tubes (BD), separated by centrifu-

gation, and then pooled, aliquoted, and frozen at 270uC. Plasma

and sera were diluted on ice into GVB6 Ca++/Mg++ (#B102,

B103, Complement Technology, Tyler, TX) or GVB without

Ca++/Mg++, respectively, to 26the desired final concentration (vol/

vol). Purified ECTV was sonicated and diluted in PBS (without

Ca++/Mg++) to ,56104 pfu/ml. A 1:10 dilution in the buffer used

to dilute the complement source, GVB6Ca++/Mg++, produced a

final concentration of ,5 pfu/ml. An equal volume of virus

(30 ml<150 pfu) was added rapidly to the diluted complement at

RT. Samples were vortexed, centrifuged for 5 sec, and incubated at

37uC for 60–90 min. Samples were diluted by addition of 700 ml of

DMEM-2% FCS, vortexed, and applied to BS-C-1 monolayers in

6-well plates. After 1 hr, 3 ml/well of 37uC overlay media (1%

carboxymethylcellulose in culture media) was added. After 3–

5 days, the cells were fixed with 1 ml/well of an 11% formalde-

hyde/ 0.13% crystal violet/ 5% ethanol solution for over 1 hr,

rinsed, and dried. The number of plaques was scored visually using

a light box. The EDTA plasma or sera data were normalized to the

buffer only control or heat-inactivated sera, respectively.

Statistical Analysis
All statistical analysis was performed using GraphPad Prism

software version 5.01 (GraphPad Software, San Diego, CA). The

survival curves were analyzed by the log-rank test. The Mann-

Whitney test was used to determine the statistical significance of

the viral titers, viremia, liver histology, and liver enzymes. Either

1-way ANOVA followed by Tukey multiple comparisons test or 2-

way ANOVA was used for the analysis of the complement

neutralization assays.

Supporting Information

Figure S1 C3 deficiency promoted earlier dissemination to and

increased viral titers in the target organs. C3-deficient and wild-

type mice were infected with ,700 pfu of ECTV via the ear pinna

and sacrificed on day 2, 4, 7, or 10 post-infection. The viral titer of

the spleen (A) and liver (B) was determined by direct plaque assay

and is expressed as the log10 plaque forming units (PFU)/g tissue.

The level of viral DNA in whole blood was measured using

quantitative PCR (C). Mean viral titers6SEM or genome

copies6SEM are plotted against time. The dotted line represents

the limit of detection for the assay.

Found at: doi:10.1371/journal.ppat.1000249.s001 (0.49 MB TIF)
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