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Effector responses induced by polarized CD4þ T helper 2 (Th2) cells drive nonhealing responses in BALB/c mice infected
with Leishmania major. Th2 cytokines IL-4 and IL-13 are known susceptibility factors for L. major infection in BALB/c
mice and induce their biological functions through a common receptor, the IL-4 receptor a chain (IL-4Ra). IL-4Ra–
deficient BALB/c mice, however, remain susceptible to L. major infection, indicating that IL-4/IL-13 may induce
protective responses. Therefore, the roles of polarized Th2 CD4þ T cells and IL-4/IL-13 responsiveness of non-CD4þ T
cells in inducing nonhealer or healer responses have yet to be elucidated. CD4þ T cell–specific IL-4Ra (LckcreIL-4Ra�/lox)
deficient BALB/c mice were generated and characterized to elucidate the importance of IL-4Ra signaling during
cutaneous leishmaniasis in the absence of IL-4–responsive CD4þ T cells. Efficient deletion was confirmed by loss of IL-
4Ra expression on CD4þ T cells and impaired IL-4–induced CD4þ T cell proliferation and Th2 differentiation. CD8þ, cdþ,
and NK–T cells expressed residual IL-4Ra, and representative non–T cell populations maintained IL-4/IL-13
responsiveness. In contrast to IL-4Ra�/lox BALB/c mice, which developed ulcerating lesions following infection with
L. major, LckcreIL-4Ra�/lox mice were resistant and showed protection to rechallenge, similar to healer C57BL/6 mice.
Resistance to L. major in LckcreIL-4Ra�/lox mice correlated with reduced numbers of IL-10–secreting cells and early IL-
12p35 mRNA induction, leading to increased delayed type hypersensitivity responses, interferon-c production, and
elevated ratios of inducible nitric oxide synthase mRNA/parasite, similar to C57BL/6 mice. These data demonstrate that
abrogation of IL-4 signaling in CD4þ T cells is required to transform nonhealer BALB/c mice to a healer phenotype.
Furthermore, a beneficial role for IL-4Ra signaling in L. major infection is revealed in which IL-4/IL-13–responsive non-
CD4þ T cells induce protective responses.
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Introduction

Experimental Leishmania major infection is widely used to
explore the control of T helper 1 (Th1)/Th2 differentiation
and elucidate mechanisms underlying susceptibility/resist-
ance to intracellular microbial infection [1,2]. Typically,
susceptible BALB/c mice infected subcutaneously with L.
major develop severe pathology, manifested by progressive
lesion development, necrosis, and death, while resistant
C57BL/6 mice are able to control and heal dermal lesions
[3]. Nonhealing disease in BALB/c mice is associated with a
Th2 response characterized by secretion of mainly IL-4, IL-5,
IL-9, and IL-13 [2,4–7], high anti-Leishmania antibody titres,
arginase-1 production by macrophages [8,9] and visceral
dissemination of parasites [10]. In contrast, resistance to L.
major infection is mediated by development of a protective
Th1 response, in which sustained IL-12 production, interfer-
on-c (IFN-c) release and macrophage killing via effector nitric
oxide (NO) production catalyzed by inducible NO synthase
(iNOS) underlie protective responses [9,11–14].

CD4 T cell–derived cytokines drive L. major responses, and,
as such, events that control T cell differentiation in response
to L. major appear to be critical for disease outcome [15].
Disruption of Th1 differentiation by neutralization of IL-12

renders resistant C57BL/6 mice susceptible, whereas suscep-
tible BALB/c mice treated with IL-12 become resistant to L.
major infection [12]. IL-12 production must be sustained to
control infection [13]. While both resistant and susceptible
mice produce IL-4 early after infection [16,17], production of
this cytokine is sustained in susceptible mice and transient in
resistant mice [16–18]. Neutralization of IL-4 allowed control
of L. major infection in BALB/c mice [19]. Subsequent studies
in knockout mice proved that IL-4 was indeed important but
not the sole mediator of susceptibility in BALB/c mice. L.
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major infection was controlled in BALB/c IL-4�/� mice, but
parasite burdens remained greater than those of resistant
animals [6,20]. These observations remain controversial, with
some laboratory strains developing IL-4–independent sus-
ceptibility and indicating that further factors are involved
[21]. IL-13 has been implicated as a susceptibility factor in L.
major infection [4]. Susceptible IL-13 transgenic C57BL/6 mice
develop impaired IL-12 and IFN-c production during acute
leishmaniasis, while IL-13�/� BALB/c mice remain compara-
tively resistant [4,22]. IL-13 can influence Th1 differentiation
by modulating macrophage function and suppressing secre-
tion of NO, IL-12, and/or IL-18 [22,23], partially attributed to
IL-4/IL-13 activated alternative macrophages (aaMphs), re-
cently demonstrated in mice deficient for this activation
status [9,24].

IL-4 and IL-13 share a common signaling pathway through
the IL-4 receptor a (IL-4Ra) chain. A functional IL-4R (type I)
requires assembly of IL-4Ra with a cc chain, while interaction
of IL-4Ra with an IL-13Ra1 subunit leads to formation of a
functional IL-13 receptor (type II) [25]. IL-4Ra–deficient mice
therefore lack responsiveness to IL-4 and IL-13. Careful
analysis of footpad swelling and lesion development showed
that initial control of L. major infection is equivalent in IL-4�/�

and IL-4Ra�/� BALB/c mice. However, in contrast to IL-4�/�

mice, IL-4Ra�/� mice develop progressive chronic disease.
These data clearly indicate a protective role for IL-13
signaling in protection against chronic L. major infection, at
least in the absence of IL-4 responsiveness [20].

Expression of IL-4Ra reflects the pleiotropic nature of IL-4
biology, as this receptor subunit is expressed upon a wide
range of cells [26]. Given the central role of T cells in
controlling L. major infection [15] and of IL-4 in driving Th2
responses [27], CD4þ T cell–specific IL-4Ra knockout mice
were generated to elucidate the role of IL-4Ra–mediated
signaling in CD4þ T cells independently of non-CD4þ T cell
populations. Our results demonstrate a successful generation
of transgene-bearing hemizygous LckcreIL-4Ra�/lox BALB/c
mice that have effective deletion of IL-4Ra on CD4þ T cells,

an incomplete deletion on CD8þ T cells and other T cell
subpopulations, and normal expression on non–T cells.
LckcreIL-4Ra�/lox mice infected with L. major developed a
healing disease phenotype and clinical immunity similar to
genetically resistant C57BL/6 mice. Consequently, our studies
demonstrate that impairment of IL-4Ra–dependent Th2
polarized CD4þ T cells in the presence of IL-4/IL-13–
responsive non-CD4þ T cells is required to transform non-
healer BALB/c mice to a healer phenotype.

Results

Genotypic and Phenotypic Characterization of LckcreIL-
4Ra�/lox BALB/c Mice
Recently established IL-4Ralox/lox BALB/c mice [24] were

intercrossed with BALB/c mice expressing Cre-recombinase
under control of the T cell–specific promoter Lck [28] and IL-
4Ra�/� BALB/c mice [20] to generate LckcreIL-4Ra�/lox mice
(Figure 1A). IL-4Ra hemizygosity (�/lox) increases probability of
Cre-mediated deletion of the ‘‘floxed’’ allele [24]. LckcreIL-
4Ra�/lox mice were identified by PCR genotyping (Figure 1B).
Fluorescence-activated cell sorter (FACS) analysis of IL-4Ra
surface expression confirmed efficient deletion on CD3þCD4þ

T cells from LckcreIL-4Ra�/lox mice when compared with IL-
4Ra�/� and IL-4Ra�/lox BALB/c (WT) controls (geometric mean
channel florescence [geo. mean]: WT¼ 18.11, IL-4Ra�/�¼ 8.5,
LckcreIL-4Ra�/lox¼9.48), but incomplete and variable deletion
efficiency was observed on CD8þT cells (Figure 1C and Figure
S1) (geo. mean: WT¼18.69, IL-4Ra�/�¼9.06, LckcreIL-4Ra�/lox

¼ 13.96) and cdþ (geo. mean: WT ¼ 7.6, IL-4Ra�/� ¼ 3.15,
LckcreIL-4Ra�/lox ¼ 6.72) and NK–T cells (geo. mean: WT ¼
9.03, IL-4Ra�/�¼5.25, LckcreIL-4Ra�/lox¼7.28; Figure 1C). The
cellular specificity of IL-4Ra deletion was confirmed because
B cells (CD19þ), macrophages, and dendritic cells (DCs; Figure
1C) of LckcreIL-4Ra�/lox mice maintained expression of IL-
4Ra. Efficiency of deletion of IL-4Ra in CD4þ T cells was
analyzed at the genomic level by quantitative real-time PCR.
The number of exon 5 alleles (both present in all cells) relative
to exon 8 alleles (deleted in �/�, one copy in �/lox mice) of IL-
4Ra was determined in CD4þ T cells sorted to high purity. As
expected, exon 8 was efficiently deleted in CD4þT cells and B
cells from IL-4Ra�/� mice (Figure 1D). Confirming FACS
analysis, efficient deletion of lox-p–flanked IL-4Ra exon 8 was
observed in CD4þT cells from LckcreIL-4Ra�/lox mice. Analysis
revealed 0.114 copies of exon 8 were retained relative to exon
5, equating to 95.48% 6 5.8% deletion efficiency of exon 8
within the CD4þ T cell population. In agreement, no CD4þ T
cell exon 8 product was visible following 75 PCR cycles (Figure
1D). An equivalent ratio of exon 8 versus exon 5 was
maintained in CD19þ B cells in LckcreIL-4Ra�/lox mice
compared with WT controls. These data provide evidence of
efficient deletion of IL-4Ra in CD4þ T cells from LckcreIL-
4Ra�/lox BALB/c mice.

CD4þ T Cell–Specific Abrogation of IL-4Ra Function
IL-4 promotes proliferation of naive CD4þ T cells in vitro

[29]. In order to assess functional impairment of IL-4Ra on
CD4þ T cells from LckcreIL-4Ra�/lox mice, naive CD4þ T cells
were stimulated with IL-4, and proliferation was measured by
[3H] thymidine incorporation (Figure 2A). CD4þ T cells
isolated from naive LckcreIL-4Ra�/lox BALB/c mice were
unable to proliferate in response to IL-4, as were those from
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Author Summary

Leishmaniasis is a disease induced by a protozoan parasite and
transmitted by the sandfly. Several forms of infection are identified,
and the different diseases have wide-ranging symptoms from
localized cutaneous sores to visceral disease affecting many internal
organs. Animal models of human cutaneous leishmaniasis have
been established in which disease is induced by infecting mice
subcutaneously with Leishmania major. Different strains of inbred
mice have been found to be susceptible or resistant to L. major
infection. ‘‘Healer’’ C57BL/6 mice control infection with transient
lesion development. The protective response to infection in this
strain is dominated by type 1 cytokines inducing parasite killing by
nitric oxide. Conversely, ‘‘nonhealer’’ BALB/c mice are unable to
control infection and develop nonhealing lesions associated with a
dominant type 2 immune response driven by cytokines IL-4 and IL-
13. However, mice deficient in IL-4/IL-13 signaling are not protected
against development of cutaneous leishmaniasis. Here we describe a
BALB/c mouse where the ability to polarize to a dominant type 2
response is removed by cell-specific deletion of the receptor for IL-4/
IL-13 on CD4þ T cells. These mice are resistant to L. major infection
similar to C57BL/6 mice, which highlights the role of T helper 2 cells
in driving susceptibility and the protective role of IL-4/IL-13
signaling in non-CD4þ T cells in BALB/c mice.



IL-4Ra�/� mice. In contrast, WT CD4þ T cells showed dose-
responsive proliferative responses to IL-4. Impairment of IL-
4 signaling was IL-4Ra specific, as proliferative responses to
IL-2, which shares a cc-chain with the type I IL-4R, were
unaffected in all three strains (Figure 2A). Impairment of
CD4þT cell IL-4 responsiveness was further verified using the
Th cell differentiation assay. Th1 versus Th2 differentiation
of noncommitted CD4þ T cells may be achieved in vitro by
treatment with either IL-12/anti–IL-4 or IL-4/anti–IFN-c,
respectively [29]. Naive CD4þ T cells stimulated with anti-

CD3/CD28 and polarized with cytokine/neutralizing mAb
treatment demonstrate that Th2 polarization, indicated by
IL-4 production, was impaired in LckCreIL-4Ra�/lox and IL-
4Ra�/� but not WT mice (Figure 2B). As expected, Th1
polarization was achieved in all three strains.
Functional macrophage IL-4Ra data from LckcreIL-4Ra�/lox

mice were demonstrated in Figure 2C. NO production was
suppressed by IL-4 and IL-13 in macrophages from LckcreIL-
4Ra�/lox and WT mice (Figure 2C), but not IL-4Ra�/� macro-
phages, showing IL-4Ra specificity. As a positive control, IL-

Figure 1. Generation of LckcreIL-4Ra�/lox Mice

(A) Mouse breeding strategy. IL-4Ralox/lox BALB/c mice were intercrossed with transgenic BALB/c mice expressing Cre-recombinase under control of the
Lck promoter and IL-4Ra�/� BALB/c mice to generate LckcreIL-4Ra�/lox mice. The ‘‘loxed’’ IL-4Ra allele, gray arrows; deleted allele, black arrows.
(B) Genotyping of LckcreIL-4Ra�/lox mice. The deleted IL-4Ra PCR yields a product of 471 bp, LoxP, 188 bp (loxed), and 94 bp (WT), and Cre-specific a 450-
bp product.
(C) Phenotypic analysis. WT (solid line), IL-4Ra�/� (gray line), and LckcreIL-4Ra�/lox BALB/c mice (dashed line) LN cells were stained for expression of IL-
4Ra. T cell subsets were identified using anti-CD3, anti-CD4/CD8, or d-TCR. B cells, anti-CD19. DCs, CD11c/I-Ad. Macrophages, F4/80/I-Ad.
(D) Efficiency of IL-4Ra deletion. The ratio of IL-4Ra exon 5 and exon 8 alleles was determined by real-time PCR from genomic DNA purified from CD4þ

or CD19þ cells. PCR products of amplified genomic DNA from real-time PCR reactions (75 cycles) were visualized on agarose gel. Data is representative
of 2 independent experiments with triplicate values 6 SD.
doi:10.1371/journal.ppat.0030068.g001
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10 suppressed NO production in all three strains. Production
of IgE antibodies is strictly dependent on IL-4 signaling [30].
IL-4Ra responsiveness of B cells in LckcreIL-4Ra�/lox mice was
demonstrated in Figure 2D. Antigen-induced IgE antibody
was present at slightly reduced levels in OVA-immunized
LckcreIL-4Ra�/lox mice when compared with those of WT
mice, while IgE production was completely abrogated in IL-
4Ra�/� mice (Figure 2D). Together, these data provide
evidence for effective impairment of IL-4Ra–mediated
functions in LckcreIL-4Ra�/lox CD4þ T cells, but not in other
lymphocyte subpopulations such as B cells and macrophages.

Resistance to Acute and Chronic Leishmaniasis in LckcreIL-

4Ra�/lox BALB/c Mice
Controversy remains as to whether IL-4 [6,20,21] and/or IL-

4Ra signaling [20,31] are key components of susceptibility to

L. major infection. Polarized Th2 cells certainly play a
significant role in contributing to susceptibility [32]. To
investigate the consequence of CD4þ T cell–specific IL-4Ra
unresponsiveness in leishmaniasis, mice were infected sub-
cutaneously with 2 3 106 stationary phase metacyclic
promastigotes of L. major LV39 (MRHO/SV/59/P; Figure 3A).
As expected, WT mice developed rapidly growing nonhealing
lesions (Figure 3A) within 12 wks of infection and were unable
to control parasite burden with high parasite numbers in the
footpads (Figure 3B) and LNs (Figure 3C). IL-4Ra�/� mice
initially controlled infection with intermediate parasite load
in the draining lymph nodes (LNs) and footpad. However, as
previously described [20], global IL-4Ra deficiency does not
confer resistance to L. major infection, as the mice progressed
to develop necrotic lesions in the chronic phase (Figure 3A).
In contrast, LckcreIL-4Ra�/lox mice were able to resolve

Figure 2. Functional Analysis of LckcreIL-4Ra�/lox Mice

(A) Impaired proliferation in response to IL-4. [3H] thymidine incorporation by CD4þ T cells stimulated by serial dilutions of rIL-4 (left panel) or IL-2 (right
panel). One of three representative experiments is shown with means of triplicate values 6 SD.
(B) Impaired Th2 differentiation of CD4þ T cells. CD4þ T cells were cultured in Th1 or Th2 polarizing conditions and IL-4 or IFN-c secretion was measured
by ELISA. A representative of one of three experiments is shown with means of triplicate values 6 SD.
(C) IL-4 and IL-13 suppress macrophage NO secretion in LckcreIL-4Ra�/lox mice. Peritoneal exudate cells were incubated with IL-4, IL-13, or IL-10 in
combination with LPS/IFN-c, LPS/IFN-c alone, or medium alone. Nitrite levels were measured by Griess reaction. One of three experiments is shown with
means of triplicate values 6 SD. (**p , 0.01 or ***p , 0.001, LPS/IFN-c versus LPS/IFN-c þ IL-4 or IL-13)
(D) IgE production. Total IgE was measured in sera taken at 3 wk after infection and boosted with OVA (three mice per group). One representative
experiment of two is shown.
doi:10.1371/journal.ppat.0030068.g002
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infection with lesion growth comparable with resistant
C57BL/6 mice (Figure 3A). LckcreIL-4Ra�/lox mice carried
low parasite burdens in the footpad, with approximately
2,000-fold less parasites in the footpad compared with that of
WT 6 wk after infection (Figure 3B), and maintained an
intermediate parasite burden in the draining LNs when
compared with C57BL/6 and WT mice (Figure 3C). Resistance
to L. major infection in CD4þ T cell–specific IL-4Ra–deficient
mice was profound, as parasite load in the footpad was
equivalent to that observed in C57BL/6 mice at 36 wk after
infection using PCR to detect kinetoplast DNA at the lesion
site (Figure 3D). LckcreIL-4Ra�/lox mice were also shown to be
resistant to reinfection. At 6 wk after L. major infection, mice
were reinfected in the contralateral footpad. LckcreIL-4Ra�/lox

mice were again comparable with genetically resistant C57BL/
6 mice in lesion development, while L. major reinfection in
WT mice progressed to necrosis in acute phase (Figure 3E).
LckcreIL-4Ra�/lox mice were also resistant to the more virulent
L. major (MHOM/IL/81/FEBNI) strain (Figure 3F), again with
lesion kinetics comparable with that of C57BL/6 mice.

Susceptibility to L. major Is Associated with IL-10

Production
IL-10 is a highly immunosuppressive cytokine, profoundly

reducing NO production by macrophages (Figure 2C) [33],
and is a susceptibility factor in L. major infection [31].
Intracellular cytokine staining revealed increased numbers
of antigen-specific CD4þ IL-10–secreting T cells in the

Figure 3. LckcreIL-4Ra�/lox Mice Control Footpad Swelling and Parasite Burden during Acute and Chronic L. major Infection

(A) Lesion development. Footpad swelling was measured at weekly intervals in mice (five per group) infected with 2 3 106 stationary phase L. major
LV39 (MRHO/SV/59/P) metacyclic promastigotes into the hind footpad. Asterisk indicates ulceration or necrosis/mouse. A representative of one of five
experiments is shown with mean values 6 SD.
(B) Week six footpad parasite load. Parasite load was determined by limiting dilution of single-cell suspensions from homogenized footpads at 6 wk
after infection.
(C) Week six LN parasite load. Parasite load was determined by limiting dilution of single-cell suspensions from the draining LNs at 6 wk after infection.
(D) L. major parasite detection using real-time PCR at 36 wk after infection. Kinetoplast DNA was quantified from footpads at week 36 after infection.
One of two representative experiments is shown, with values representing mean parasite number 6 SD.
(E) LckcreIL-4Ra�/lox BALB/c mice are resistant to reinfection. At 6 wk after infection with L. major, mice were reinfected in the contralateral hind footpad,
and footpad swelling was monitored for 18 wk. Data are representative of two independent experiments.
(F) LckcreIL-4Ra�/lox BALB/c mice are resistant to L. major (MHOM/IL/81/FEBNI). Lesion development: mice (four per group) were infected with 2 3 106

stationary phase L. major (MHOM/IL/81/FEBNI) metacyclic promastigotes into the hind footpad. Asterisk indicates ulceration or necrosis per mouse.
Footpad swelling was measured at weekly intervals up to week 14 and every 2 wk thereafter. A representative of one of two experiments is shown with
mean values 6 SD.
doi:10.1371/journal.ppat.0030068.g003
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draining LNs of WT mice compared with C57BL/6 and
LckcreIL-4Ra�/lox mice (Figure 4A and 4B). In order to
examine an in vivo correlate demonstrating IL-10 inhibition
of protective parasite specific responses, IL-12/IFN-c–driven
delayed type hypersensitivity (DTH) responses were inves-
tigated in L. major–infected mice. C57BL/6 develop sustained
footpad swelling when challenged with soluble L. major
antigen (SLA; Figure 4C), and LckcreIL-4Ra�/lox mice showed
intermediate sustained swelling, whereas minimal DTH
responses were observed in WT mice (Figure 4C). As
expected, addition of IL-10 to SLA diminished DTH
responses in all mice (Figure 4D). Neutralization of IL-10
function by blockade of IL-10R lifted suppression of the DTH
in the low-responder WT mice on a par with DTH responses

observed in the resistant strains (Figure 4E). Confirming that
increased DTH responses observed in LckcreIL-4Ra�/lox mice
resulted from increased Th1 responses, significant levels of
IL-12p70 (Figure 4F) and IFN-c (Figure 4G) were detected in
footpad lysates taken from resistant mice, while little or no
IL-12p70 or IFN-c were induced in susceptible WT mice
(Figure 4F and 4G).

Increased Type 1 Responses in LckcreIL-4Ra�/lox BALB/c

Mice
IL-12 is a key protective cytokine involved in inducing

protective responses following L. major infection [34]. We
therefore examined IL-12 expression in LckcreIL-4Ra�/lox

mice. Although IL-12p35 mRNA production was equivalent at

Figure 4. IL-10 Inhibits Protective Responses

(A and B) Increased numbers of IL-10–secreting cells in IL-4Ra�/lox mice. (A) CD4þ IL-10–secreting cells were identified by intracellular FACS in LN cells
restimulated with SLA for 24 h in vitro from L. major–infected mice 6 wk after infection. Data represent one of two independent experiments (pool of
eight popliteal LNs/group). (B) Total numbers of CD4þ IL-10–secreting cells per draining LN.
(C–E) Susceptible mice exhibit poor DTH responses controlled by IL-10. At 6–8 wk after infection with L. major, mice (five mice per group) were injected
in the contralateral hind footpad with (C) 10 lg SLA subcutaneously, (D) 10 lg SLA and 0.5 lg IL-10 subcutaneously, and (E) 10 lg SLA and 1.5 lg anti–
IL-10R subcutaneously. Footpad swelling was monitored every 24 h for 5 d. (***p , 0.001, **p , 0.01 LckcreIL-4Ra�/lox versus WT). The data represent
one of two independent experiments.
(F) Increased IL-12p70 in DTH footpads of resistant mice. Lysates of footpads (four per group) taken 24 h after induction of DTH responses were
analyzed for IL-12p70. The data represent the pool of two independent experiments (*p , 0.05, LckcreIL-4Ra�/lox versus WT).
(G) Increased IFN-c in DTH footpads of resistant mice. Lysates of footpads (four per group) taken 24 h after induction of DTH responses were analyzed
for IFN-c. The data represent the pool of two independent experiments (**p , 0.01, LckcreIL-4Ra�/lox versus WT).
doi:10.1371/journal.ppat.0030068.g004
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1 wk after infection (unpublished data), levels of IL-12p35
mRNA were increased in draining LNs of LckcreIL-4Ra�/lox

and C57BL/6 mice at 3 wk after infection when compared
with those of WT mice (Figure 5A). Levels of IL-12p35 mRNA
increased from 1 wk to 3 wk after infection in resistant mice

while remaining low in susceptible mice (Figure 5B). IFN-c–
driven iNOS production by macrophages is a key control
mechanism in L. major infection [35]. CD4 T cell antigen–
specific IFN-c cytokine production was therefore examined.
CD4 T cells from LckcreIL-4Ra�/lox mice induced 2.5-, 1.6-,

Figure 5. Type 1 Immunity Is Enhanced in LckcreIL-4Ra�/lox Mice in Response to L. major Infection

(A and B) IL-12p35 mRNA expression is increased in resistant mice. IL-12p35 expression was determined by real-time RT-PCR from RNA prepared from
pooled popliteal LN cells from week 3 L. major–infected mice (eight mice per group). Data are expressed as IL-12p35 copy numbers relative to GAPDH
(A) or as fold increase in IL-12p35 mRNA from 3 wk versus 1 wk after infection (B). Mean 6 SEM of three runs on the same sample. Data are
representative of two independent experiments (*p , 0.05, LckcreIL-4Ra�/lox versus WT).
(C and D) Increased IFN-c production in resistant mice. (C) IFN-c secretion by CD4 T cells cultured with fixed APCs and SLA. (**p , 0.01, LckcreIL-4Ra�/lox

versus WT) and in (D) footpad homogenates (*p , 0.05, LckcreIL-4Ra�/lox versus WT) (homogenate data represent the pool of two independent
experiments) from week 10 L. major–infected mice.
(E and F) Maintained IL-4 production in resistant mice. (E) IL-4 secretion by CD4 T cells cultured with fixed APCs and SLA and in (F) footpad
homogenates from week-ten L. major–infected mice.
(G) iNOS production. iNOS mRNA copy number was calculated from footpad mRNA 6 wk after infection with L. major. At the same time, parasite DNA
copy number was quantitated by PCR detecting L. major kinetoplast DNA. (*p , 0.05 LckcreIL-4Ra�/lox versus WT). The data represent the means of two
individual experiments 6 SEM.
doi:10.1371/journal.ppat.0030068.g005
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and 2-fold more IFN-c when compared with those from IL-
4Ra�/� and WT or IL-4Ra�/lox mice at 10, 6, and 12 wk after
infection (Figure 5C), respectively. Furthermore, greater IFN-
c levels were detected in footpad homogenates from infected
LckcreIL-4Ra�/lox compared with WT mice at 10 wk after
infection (Figure 5D). Importantly, IL-4Ra–independent IL-4
production was observed in LckcreIL-4Ra�/lox mice with
similar levels of IL-4 production being observed in WT and
LckcreIL-4Ra�/lox mice in antigen-specific CD4þ T cell
restimulation (Figure 5E) and footpad lysates (Figure 5F).
Consistently increased IFN-c production had an influence on
downstream macrophage effector functions. This was shown
at 6 wk after infection, when more copies of iNOS mRNA/
parasite were observed in resistant strains of mice (Figure
5G). Together, these data demonstrate that resistance to
acute leishmaniasis in LckcreIL-4Ra�/lox mice is associated
with an early induction of increased protective type 1
immunity and reduced suppression of responses by IL-10–
secreting CD4þ T cells.

Discussion

IL-4 and IL-13 share a common signaling pathway through
the IL-4Ra chain [26], and as such the combined role of both
cytokines can be studied in vivo in IL-4Ra�/�mice. While IL-4
mediates multiple effects on T cells, murine T and B cells do
not respond to IL-13 [7]. Generation of CD4þ T cell–specific
IL-4Ra–deficient (LckcreIL-4Ra�/lox) mice therefore allows
investigation into the role of IL-4 signaling specifically on
CD4þ T cells while maintaining IL-4/IL-13–mediated func-
tions on non-CD4þ T cells. CD4þ T cell–specific IL-4Ra–
deficient BALB/c mice were generated using the Cre/LoxP
recombination system in BALB/c embryonic stem cells.
Previous studies have shown efficiency of cell-specific Cre-
mediated gene disruption may vary between 38%–85%
depending on recombinase efficiency and promoter activity
[36]. Efficiency of CD4þ T cell–specific IL-4Ra disruption
(95.48%) was increased by using hemizygous WT mice instead
of IL-4Ralox/lox as mating partners for transgenic LckCre mice,
thereby reducing the LoxP substrate for Cre-recombinase by
50%. FACS analysis showed efficient disruption of IL-4Ra
gene expression in CD4þ T cells and incomplete deletion in
CD8þ and NK–T cells with variable deletion efficiency. cd T
cells and non–T cells retained unaltered receptor expression
in LckcreIL-4Ra�/lox mice. The data suggest that while the Lck
promoter is functional and mediates deletion of loxP-flanked
DNA sequences in CD4þ, CD8þ, and NK–T cell subsets,
deletion is more efficient in CD4þ T cells using this promoter
construct. Functional analysis further demonstrated effective
and specific impairment of the IL-4 responsiveness of CD4 T
cells, while B cells and macrophages retained IL-4– and IL-
13–mediated functions. Thus, LckcreIL-4Ra�/lox mice are
CD4þ T cell–specific IL-4Ra knockout mice, whereas all other
cell types remain responsive to IL-4/IL-13.

LckcreIL-4Ra�/lox mice infected with L. major developed
similar kinetics of lesion development and resolution as those
observed in C57BL/6 mice genetically resistant to two strains
of L. major. In contrast, control IL-4Ra�/lox (WT) and IL-4Ra�/�

BALB/c mice developed progressive lesion swelling leading to
necrosis during the acute and chronic phases of disease as
expected. LckcreIL-4Ra�/lox BALB/c and C57BL/6 mice also
resisted secondary parasite challenge, unlike WT mice, which

showed no signs of footpad pathology. A similar resistant
phenotype to L. major infection was also noted in an
independent line of mice in which IL-4Ra is efficiently
deleted from CD4, CD8, NK–T, and cd T cells (unpublished
data), indicating that IL-4–responsive CD4þ T cells control
susceptibility to L. major infection, and that the resistant
phenotype is not associated with Cre activity in T cells or
hypothetical mutations introduced by the transgene. Togeth-
er, our study demonstrates that clinical immunity can be
achieved in mice on a susceptible BALB/c background by
abrogating IL-4Ra responsiveness on CD4þ T cells while
retaining IL-4/IL-13–mediated function on non-CD4þ T cells.
IL-10 is a potent suppressor of macrophage activation [37],

can abolish IFN-c/LPS–induced killing of L. major by macro-
phages [38,39], and can suppress development of DTH
responses [40]. In agreement, L. major–infected C57BL/6 and
LckcreIL-4Ra�/lox mice developed DTH responses to SLA,
inhibited by coadministration of IL-10. In contrast, DTH
responses in WT mice were absent. Neutralization of IL-10
signaling allowed WT mice to mount a significant response to
SLA. Together, DTH data demonstrated that IL-10 produced
in response to SLA in susceptible mice was able to suppress
protective cell-mediated immune responses.
IL-10 production is increased in BALB/c mice compared

with resistant mice [41], can regulate parasite survival in
resistant C57BL/6 mice [1,42], and is a susceptibility factor for
L. major infection [31,39]. In agreement, the draining LNs of
infected resistant LckcreIL-4Ra�/lox and C57BL/6 mice con-
tained reduced numbers of CD4þ IL-10–secreting cells (4- and
9-fold less, respectively) compared with WT mice. Variable
amounts of IL-10 staining were observed in the non-CD4þ T
cell population; however, this was found to be nonspecific
(Figure 4A). Increased IL-10 secretion was also observed in
anti-CD3–stimulated CD4þ T cells derived from WT mice
compared with T cells derived from LckcreIL-4Ra�/lox and
C57BL/6 mice (not shown). IL-10 production by macrophages
[43] and CD4þ T cells [31] has been linked to susceptibility to
L. major infection. Using our assay system, IL-10–secreting
cells were identified as CD4þT cells. IL-10–producing CD4þT
cells have been implicated in controlling L. major parasite
survival/infection in genetically resistant C57BL/6 mice.
CD4þCD25þFoxP3þ IL-10–producing natural T regulatory
cells (Tregs) have been elegantly shown to control parasite
survival [44,45]. More recently, a novel disease controlling
FoxP3� IL-10/IFN-c–coproducing Th1 cell population has
been identified [46]. The role for Tregs in control of L. major
is unclear in BALB/c mice and potentially obscured by the
predominant polarized Th2 response. The moderately spe-
cific method of Treg depletion using anti-CD25 antibody has
produced contradictory results either enhancing [47] or
reducing [48] susceptibility to L. major infection. Certainly,
IL-4 has the ability to enhance the proliferation and function
of CD4þCD25þ T cells in BALB/c mice [49,50]. However, the
generation of CD4þFoxP3þ T cells was unaffected by IL-4Ra
deficiency (unpublished data). Therefore, while not excluding
a role for macrophage IL-10 production [43], our data suggest
that IL-10 is predominantly produced by activated/effector T
cells or Tregs, and further characterization of the CD4þIL-10þ

T cells is ongoing.
The absence of IL-4Ra specifically on CD4þ T cells resulted

in consistently higher levels of IFN-c secretion by CD4þ T
cells compared with WT mice. However, as previously shown,
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induction of increased IFN-c responses alone does not
guarantee control of L. major infection. Substantially in-
creased L. major–specific CD4þ T cell IFN-c production was
observed in macrophage/neutrophil-specific IL-4Ra–deficient
mice when compared with WT controls. However, infection
also induced a potent polarized Th2 response, and lesion
development was delayed but uncontrolled [9]. In contrast, in
the absence of a polarized Th2 response, increased IFN-c
production correlated with protection against infection in
LckcreIL-4Ra�/lox and C57BL/6 mice. Significant DTH re-
sponses upon injection of SLA into the footpad were
observed as early as 3 wk after infection in LckcreIL-4Ra�/lox

and C57BL/6 mice, but not in WT mice (unpublished data).
Sustained tuberculin-like DTH responses are driven by IL-
12–induced IFN-c–producing Th1 cells [34,51], resulting in
macrophage recruitment and activation, and are indicative of
protective cell-mediated immune responses against intra-
cellular pathogens. This was confirmed by increased IL-12
protein detected in tissue lysate of footpads of resistant mice
compared with WT mice 24 h after DTH induction.
Furthermore, increased levels of IFN-c secretion were
associated with increased expression of iNOS mRNA/parasite
in infected footpads. Together, these results demonstrate that
in the absence of IL-4Ra signaling on CD4 T cells, a polarized
Th2 response, and IL-10 production, protective Th1 immune
responses during cutaneous leishmaniasis result in effective
macrophage activation and intracellular parasite elimination.

IL-4Ra�/� mice are susceptible to L. major infection in the
acute [31] or the chronic [20] phase. Despite the absence of
Th1 downregulatory signals through the IL-4Ra, IL-4Ra�/�

mice do not produce increased amounts of IFN-c following L.
major infection when compared with WT controls [7].
Resistance to L. major in LckcreIL-4Ra�/lox mice has therefore
revealed the protective role of IL-4/IL-13–responsive non-
CD4þ T cells in control of infection in BALB/c mice. Crucial
to resistance in LckcreIL-4Ra�/lox mice is CD4þ T cell IL-4Ra–
independent IL-4 production. Not only induced following L.
major infection [7,31] in IL-4Ra�/�mice, IL-4Ra–independent
IL-4 production has been observed in response to Nippos-
trongylus brasiliensis [52] and Schistosoma mansoni [53] infections
and following immunization with protein precipitated in
alum [54]. As our study suggests, IL-4Ra–independent IL-4
production in LckcreIL-4Ra�/lox mice drives the induction of
protective responses by non-CD4þ T cells. Both IL-4 and IL-
13 are able to indirectly promote protective Th1 responses.
Elegant experiments have demonstrated that IL-4 is able to
instruct DCs to produce IL-12 and subsequent protection
from L. major infection in BALB/c mice [55]. Furthermore, IL-
4 is required for protective type 1 responses to Candida [56].
IL-13 can prime monocytes for IL-12 production [57] and
drive protective cell-mediated immune responses during
listeriosis [58]. Indeed, levels of IL-12p35 mRNA were
increased in draining LNs of LckcreIL-4Ra�/lox and C57BL/6
mice by 3 wk after infection (Figure 5A), coincident with
increased DTH responses (unpublished data). As macrophage
IL-12 production is actively downregulated by L. major [18], it
is likely that increased IL-12p35 mRNA levels in the LNs at 3
wk after infection were produced by DCs. In agreement,
infected DCs appear in draining LNs in two waves; the first
transient wave peaks at 24 h, and the second commences 15–
21 d after L. major infection [59]. Therefore, IL-4Ra–
independent IL-4 production and subsequent IL-12 produc-

tion by DCs in the absence of Th2 polarization may explain
the protection of LckcreIL-4Ra�/lox from L. major infection.
Furthermore, the protective effect of IL-4 signaling in non-
CD4þ T cells may also explain the requirement for IL-4 in
effective treatments against visceral leishmaniasis [60,61].
In summary, in the absence of a polarized Th2 response

where non-CD4þ T cells retain IL-4/IL-13 responsiveness,
increased protective immune responses are induced by 3 wk
in LckcreIL-4Ra�/lox mice. As IL-12 may also negate Treg cell
action on activated T cells [62], this regulation is likely to
enhance beneficial Th1 responses and immunity following L.
major infection in LckcreIL-4Ra�/lox mice, possibly reflecting a
similar scenario in the healer C57Bl/6. In contrast, IL-4Ra
expression on CD4þ T cells allows Th2 polarization and
induction of IL-10 production in the nonhealer BALB/c
strain. As a consequence, Th1 responses and protective
macrophage effector functions are downregulated, IL-10 is
upregulated, and subsequently, BALB/c mice succumb to L.
major infection in the acute phase. In conclusion, where CD4þ

T cells are unable to respond to IL-4, IL-4/IL-13 signaling in
non-CD4þ T cells is beneficial in BALB/c mice following
infection with L. major.

Materials and Methods

Generation and genotyping of LckcreIL-4Ra�/lox BALB/c mice.
Transgenic Lckcre mice [28] back-crossed to BALB/c for nine
generations were intercrossed with IL-4Ra�/� and IL-4Ralox/lox mice
to generate LckcreIL-4Ra�/lox BALB/c mice. WT littermates were used
as controls in all experiments. Mice were genotyped as described
previously [24]. All mice were housed in specific pathogen–free
barrier conditions at the University of Cape Town, South Africa, and
used in accordance with University ethical committee guidelines. All
experimental mice were age and sex matched and used between 8–12
wk of age.

Analysis of IL-4Ra deletion efficiency. DNA was prepared from
CD3þCD4þ and CD19þ sorted LN cells from LckcreIL-4Ra�/lox, WT, or
IL-4Ra�/� mice using a FACsvantage flow cytometer (BD, http://www.
bd.com) to .99% purity. A standard curve was prepared from serial
10-fold DNA dilutions of cloned IL-4Ra exon 5 and exon 8 DNA.
Primers: exon 5 forward 59 AACCTGGGAAGTTGTG 39, exon 5
reverse 59 CACAGTTCCATCTGGTAT 39; exon 8 forward 59
GTACAGCGCACATTGTTTTT 3 9, e xon 8 reve r s e 5 9
CTCGGCGCACTGACCCATCT 39.

Detection of parasite DNA. DNA was prepared from homogenized
tissues samples. A DNA standard curve was prepared from serial 10-
fold parasite DNA dilutions in PBS. L. major kinetoplast primers used:
forward 59 CGCCTCCGAGCCCAAAAATG 39 and reverse 59 GAT-
TATGGGTGGGCGTTCTG 39. Real-time PCR amplification and data
analysis performed using the ‘‘Fit Points’’ and ‘‘Standard Curve’’
methods as described previously [63].

Flow cytometry. IL-4Ra was detected by anti-IL-4Ra–PE (M-1; BD),
and leukocyte subpopulations were identified using anti-CD19 (1D3),
anti–d-TCR (GL3), anti-CD11c (HL3), anti-F4/80, anti–I-Ad (AMS-
32.1), anti-CD11b (M1/70) (all from BD), anti-CD3 (145–2C11), anti-
CD4 (GK1.5), and anti-CD8 (53.6.72) mAbs, which were purified from
hybridoma supernatants by protein G sepharose (Amersham Bio-
sciences, http://www.amersham.com) and labeled with FITC or biotin.
Biotin-labeled antibodies were detected by streptavidin–allophyco-
cyanin (BD). Dead cells were stained by 7-AAD and excluded from
analysis (Sigma, http://www.sigmaaldrich.com). Acquisition was per-
formed using FACSCalibur, and data were analyzed by Cellquest (BD).

T cell proliferation. CD4þ T cells, positively selected by anti-CD4
Dynabeads (Invitrogen, http://www.invitrogen.com) to a purity of
.85% as described [7], were stimulated with serial dilutions of IL-4,
IL-13, or IL-2 (BD) in complete IMDM containing 10% FCS,
penicillin, and streptomycin, 1 mM sodium pyruvate, NEAA
(Invitrogen), 10 mM HEPES, and 50 lM b2-ME (Sigma). After 48 h
of incubation at 37 8C and 5% CO2, cells were pulsed with 1 lCi
(0.037 MBq) [3H] thymidine (Amersham Biosciences) for a further 18
h. [3H] incorporation was measured in a liquid scintillation counter.

In vitro Th2 differentiation. In vitro Th1/Th2 differentiation of
purified CD4þ T cells was induced as described previously [7].
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Suppression of macrophage-derived NO secretion. Suppression
assay was performed as described [20]. Briefly, adherent macrophages
derived from peritoneal exudate cells elicited with 3% Brewers
thioglycollate (Difco Laboratories, http://www.bd.com/ds) were incu-
bated for 16 h with medium or with IL-4, IL-13, or IL-10 at 1,000 U/ml
(R&D Systems, http://www.rndsystems.com). Cells were subsequently
stimulated with LPS (15 ng/ml; Sigma) and IFN-c (100 U/ml; BD) and
NO was measured by Griess reaction after 48 h.

Induction of IgE response. Mice were immunized subcutaneously
with 10 lg of OVA in CFA (Sigma) and boosted at 7 and 14 d with
OVA intraperitoneally. IgE production was detected as described
previously [20].

L. major infection. L. major LV39 (MRHO/SV/59/P) and MHOM/IL/
81/FEBNI strains were maintained by continuous passage in BALB/c
mice and cultured in vitro as described previously [20]. Mice were
inoculated subcutaneously with 2 3 106 stationary phase metacyclic
promastigotes into the left hind footpad in a volume of 50 ll HBSS
(Invitrogen). Swelling was monitored every week up to a maximum of
40 wk using a Mitutoyo pocket thickness gauge (http://www.mitutoyo.
com). For reinfection studies, 6 wk after primary infection, mice were
injected subcutaneously with 2 3 106 stationary phase metacyclic
promastigotes into the contralateral footpad. Footpad swelling was
monitored for 18 wk.

Detection of viable parasite burden. Infected organ cell suspen-
sions were cultured in Schneider’s culture medium (Sigma). Parasite
burden was estimated according to a previously described limiting
dilution method [20].

Quantification of iNOS and IL-12p35 RNA. Total RNA from
footpad or LN was purified using mini-elute columns (Qiagen, http://
www.qiagen.com) and cDNA was generated using the Inprom-II re-
verse transcription system (Promega, http://www.promega.com).
Primers pairs used to detect IL-12p35 message: forward 59-GATGA-
CATGGTGAAGACGGCC-39, and reverse 59-GGAGGTTTCTGG
CGCAGAGT-39. iNOS message forward 59-AGCTCCTCCCAGGAC-
CACAC-39, and reverse 59-ACGCTGAGTAC CTCATTGGC-39. Data
analysis was performed using the ‘‘Fit Points’’ and ‘‘Standard Curve’’
methods using beta-2-microglobulin as a housekeeping gene.

DTH reaction. Mice were inoculated subcutaneously with 10 lg
SLA into the right hind footpad alone or with 0.5 lg mouse rIL-10 or
1.5 lg anti–IL-10Ra (R&D Systems). Footpad swelling was measured
every 24 h. Footpads were homogenized, and lysates were taken 24 h
after induction of DTH.

Antigen-specific restimulation. CD4þ T cells were positively
selected using anti-CD4 Macs beads (Miltenyi Biotec, http://www.
miltenyibiotec.com) to a purity of .90% according to the manu-
facturer’s instructions. Thy1.2-labeled splenocytes were T cell
depleted by complement-mediated lysis (Cedarlane, http://www.
cedarlanelabs.com) to produce antigen-presenting cells (APCs). APCs

fixed with mitomycin C (50 lg/ml, 20 min at 37 8C) and washed
extensively in complete IMDM. A total of 2 3 105 purified CD4þ

T cells and 1 3 105 APCs were cultured with SLA at 50 lg/ml,
supernatants were collected after 48 h, and cytokines were analyzed
as previously described [20].

Cytokine detection in tissue homogenates. IFN-c and IL-4 were
detected in footpad tissues using the method previously described
[24].

Intracellular staining. L. major–infected mice; popliteal LN cells at 2
3 105 cells/well were stimulated with SLA (5 lg/ml) for 24 h. Cultures
were supplemented with monensin (2 lM) for the final 4 h of culture.
Cells were stained with anti-CD4 FITC (mAb, GK1.5), fixed,
permeabilized, and stained with anti–IL-10 APCs (BD).

Statistics. Values are given as mean 6 SD and significant
differences were determined using Student’s t test (Prism software,
http://www.prism-software.com).

Supporting Information

Figure S1. Variable Deletion Efficiency of IL-4Ra on CD8þ T Cells

WT (black line), IL-4Ra�/� (gray line), and LckcreIL-4Ra�/lox BALB/c
mice (dashed line) peripheral blood lymphocytes were stained for
expression of IL-4Ra. CD8þ T cells were identified using anti-CD3
and anti-CD8.

Found at doi:10.1371/journal.ppat.0030068.sg001 (30 KB PDF).
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