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ABSTRACT

T he specific and covalent addition of ubiquitin to
proteins, known as ubiquitination, is a eukaryotic-
specific modification central to many cellular

processes, such as cell cycle progression, transcriptional
regulation, and hormone signaling. Polyubiquitination is a
signal for the 26S proteasome to destroy earmarked proteins,
but depending on the polyubiquitin chain topology, it can
also result in new protein properties. Both ubiquitin-
orchestrated protein degradation and modification have also
been shown to be essential for the host’s immune response to
pathogens. Many animal and plant pathogenic bacteria utilize
type III and/or type IV secretion systems to inject effector
proteins into host cells, where they subvert host signaling
cascades as part of their infection strategy. Recent progress in
the determination of effector function has taught us that
playing with the host’s ubiquitination system seems a general
tactic among bacteria. Here, we discuss how bacteria exploit
this system to control the timing of their effectors’ action by
programming them for degradation, to block specific
intermediates in mammalian or plant innate immunity, or to
target host proteins for degradation by mimicking specific
ubiquitin/proteasome system components. In addition to
analyzing the effectors that have been described in the
literature, we screened publicly available bacterial genomes
for mimicry of ubiquitin proteasome system subunits and
detected several new putative effectors. Our understanding of
the intimate interplay between pathogens and their host’s
ubiquitin proteasome system is just beginning. This exciting
research field will aid in better understanding this interplay,
and may also provide new insights into eukaryotic
ubiquitination processes.

Introduction

Ubiquitination is a fundamental post-translational protein
modification for all eukaryotic organisms. It controls several
critical aspects of cell metabolism, such as cell cycle
progression, transcriptional regulation, signal transduction
or recognition, and resistance to pathogens [1–3].
Ubiquitination consists of the conjugation of one or several
ubiquitin (Ub) moieties onto a target protein (Figure 1).
Monoubiquitination can trigger an alteration of the
localization and/or the activity of a target protein [4,5].
Polyubiquitination can modulate the properties of the target
protein or constitute a signal for its subsequent degradation

by the 26S proteasome [6]. As a general rule, the chains
comprised of Ub moieties covalently linked together via their
lysine residue (K) 48 are earmarked for proteasome-
dependent degradation, whereas K63-linked chains are
known to activate and modify protein activity and trafficking
[4,5]. Cellular proteins can also be modified by a covalent link
to Ub-like proteins (e.g., a small ubiquitin-related modifier
[SUMO]; NEDD8). These Ub-like modifiers do not form
multimeric chains and have been described to modulate
protein properties [1,2]. The ubiquitination process involves
successive enzymatic activities [4,5,7]: The Ub-activating
enzyme (or ‘‘E1’’) binds to the C-terminus of Ub in an ATP-
dependent reaction via a cysteine residue in its active site.
The thioester-linked Ub is then transferred to a cysteine
residue of the Ub-conjugating enzyme (or ‘‘E2’’). Different E2
Ub-conjugating enzymes seem to be responsible for the
different (K48 and K63) poly-Ub chain topologies [7,8].
Eventually, the Ub ligase enzyme (or ‘‘E3’’) controls the
specificity of substrate ubiquitination by recruiting the target
protein. E3 Ub ligases constitute a large protein family
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present in all eukaryotes and are distributed in two main
groups, really interesting new gene (RING)–type, and
homologous to E6-AP C-terminus (HECT)–type E3 Ub ligases.
RING-type ligases directly and covalently attach the C-
terminus of the Ub from an E2 to a lysine residue of the
target protein, whereas the HECT-type protein forms a
thioester bond with ubiquitin by its active cysteine residue
before transferring it to a substrate. RING-type E3 Ub ligases
can be either single (U-box type) or multi-subunit enzymes
(generally cullin-based) [9]. When a substrate protein is K48-
polyubiquitinated (with at least four subunits [10]), it is
targeted to the cell proteasome, which unfolds the protein
and degrades it into three to 20 residue peptides, which can
be further degraded by downstream aminopeptidases [3,11–
13]. Although archaeabacteria contain subunits homologous
to the 20S proteasome [13], and bacteria contain likely
ancestors of the E1 and E2 enzymes [14], the ubiquitination
process as such is not found in prokaryotes.

Many Gram-negative pathogenic bacteria of both animals
and plants have evolved type III and/or type IV secretion
systems (T3/4SSs) as an essential virulence determinant. These
secretion systems are large protein complexes spanning the
bacterial envelope that are dedicated to the transfer of
protein or DNA substrates into target cells to subvert host
defense and other signaling cascades for the benefit of the
invading pathogen. We refer the reader to some excellent
reviews on these topics [15–17]. In the last decade, an
enormous body of work has established the role of T3/4SS
effector proteins in bacterial virulence. Similarity in
structure or function to eukaryotic proteins allows them to
interfere with many different cellular processes, including
cytoskeleton rearrangement and intracellular trafficking. The
biochemical functions they fulfill within the host cell remain
undetermined for the plethora of bacterial T3/4SS effectors
identified to date. This is a major challenge for understanding
the molecular basis of pathogenicity. Recent advances in this

field include the discovery of the different T3/4SS effectors of
mammalian bacterial pathogens that have the capacity to
interfere with the host’s Rho GTPase activity, to reorganize
the actin cytoskeleton, and to allow or prevent bacterial
internalization ([18] and references therein). Another
example of the intriguing co-evolution between a pathogen
and its host is the type III secretion system (T3SS) effector-
mediated suppression of localized programmed cell death,
which is triggered in plants when a specific resistance protein
recognizes a specific avirulence protein of the pathogen ([19]
and references therein).
In this review we focus on the growing number of T3/4SS

effectors from both intracellular and extracellular plant and
animal bacterial pathogens that specifically exploit their host
ubiquitin proteasome system (UPS) (Table 1 and Figure 2).
We want to illustrate the different mechanisms that these
diverse bacteria have adopted to interfere with this key
signaling component of the eukaryotic cell for the benefit of
their specific infection strategy. First, we discuss the effectors
that utilize the host UPS to ensure their own degradation or
modification by ubiquitination, providing a means to
regulate their concentration, and for the timing of their
action. Second, we present effectors that share the ability to
interfere with the ubiquitination level of key cell proteins of
mammalian innate immune signaling cascades and, as a
result, block the immune response. Third, we discuss two
effectors of a plant pathogen that suppress plant innate
immune responses, possibly by earmarking host proteins for
degradation by the host UPS. Finally, we illustrate the subtle
interplay between a pathogen and its host by mimicry of E3
ligase subunits, thereby manipulating the host UPS to the
advantage of the pathogen.

Bacterial Effectors Modulated or Degraded via
Ubiquitination by the Host UPS

Recent reports suggest that exploitation of the host UPS
could be a general mechanism used by bacteria to program
the destruction of a T3/4SS effector when its function in the
host cell is no longer required. This could be to temporarily
activate a specific host protein or process, or to prevent
deleterious effects to the host cell, which needs to stay in an
optimal condition for bacterial colonization. The first lines of
evidence for such a mechanism come from work on Salmonella
enterica serovar Typhimurium (S. typhimurium) T3SS effectors.
This facultative intracellular bacterium is an important
enteric pathogen of humans, causing gastrointestinal
inflammation. Two T3SSs, encoded by the Salmonella
pathogenicity islands 1 (SPI-1) and 2 (SPI-2), are essential for
its pathogenicity and are used during different stages of
infection for entry into intestinal cells and subsequent
replication of the intracellular bacteria, respectively [20,21].
Among the range of translocated T3SS effectors encoded by
SPI-1 are two proteins that alter the structure and the
function of the actin cytoskeleton but exhibit opposing
activities: SopE and SptP. SopE acts as a GTP–GDP
(guanosine 59-triphosphate–guanosine 59-diphosphate)
exchange factor (GEF) that activates the signaling molecules
Rac-1 and Cdc42, two proteins of the Rho GTPase family, thus
provoking cytoskeleton reorganization, which results in
bacterial internalization. In contrast, the SptP effector
functions as a GTPase-activating protein that deactivates Rac

doi:10.1371/journal.ppat.0030003.g001

Figure 1. The Eukaryotic UPS

Schematic representation of signaling in the UPS, which requires a series
of enzymatic steps involving E1, E2, and E3 enzyme complexes that will
eventually lead to the addition of Ub moieties to target proteins. The
specific recognition of substrates (yellow) by an E3 Ub ligase generally
depends on the prior phosphorylation of the substrate (not indicated in
the figure). Different types of ubiquitination can lead to different
modifications, from proteasome degradation (for the K48-linked poly-Ub
chain) to modification in protein properties (K63, oligo Ub [5]). Note that
the scheme presented here applies to RING-type E3 ligases; in HECT-type
E3s the Ub moiety is transferred from the E2 onto the conserved cystein
of the HECT protein, which then transfers this Ub onto the target protein
(see text for details).
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and Cdc42 [22], allowing the recovery of the actin
cytoskeleton’s normal appearance a few hours after infection.
For successful colonization, the activity of these two T3SS
effector proteins has to be temporally regulated within the
host cell. The mechanism of this regulation was shown to be
due to their differential degradation by the host proteasome.
SopE and SptP are delivered in equal amounts during
infection, but SopE undergoes polyubiquitination and rapid
proteasome-dependent degradation following translocation,
whereas SptP is degraded at a much slower rate [23,24].

Two other Salmonella SPI-1 T3SS effectors, SopA and SopB,
are functionally regulated by host ubiquitination. SopB is a
phosphoinositide phosphatase that modulates vesicle
trafficking by altering the phosphoinositide metabolism. It
was shown to be monoubiquitinated and degraded, although
probably not via the proteasome [25]. SopA, a protein
required for the elicitation of intestinal inflammation, has
been shown to be ubiquitinated within the host cell by the
membrane-anchored RING-type E3 Ub ligase HsRMA1, and
degraded by the proteasome in an HsMRA1-dependent
manner [26]. The authors suggest that HsRMA1-dependent
ubiquitination of SopA is involved in the escape of bacteria
from Salmonella-containing vacuoles into the cytosol of
epithelial cells. Recently, the same research group identified
SopA as a HECT-type E3 Ub ligase. They identified the
catalytic cysteine residue of SopA, and showed the formation
of a transient E3-ubiquitin intermediate. These new data are
in line with the mono-Ub state of SopA previously detected in
the absence of HsRMA1 [26]. Interestingly, this SopA HECT

ligase activity is not required for the escape of bacteria from
Salmonella-containing vacuoles into the cytoplasm, but seems
to be involved in Salmonella-induced transepithelial migration
of polymorphonuclear neutrophils (PMNs) [27]. The
recruitment of these inflammatory cells depends on several
factors, including interleukin (IL)-8 secretion, and is
considered an important factor for the development of
Salmonella-induced enteritis. The bacterial or host target
proteins for the HECT Ub ligase activity of SopA may well be
involved in PMN migration, but are unknown at this stage.
Together, the data suggest that SopA displays multiple
functions during Salmonella infection.
Yersinia sp. and Pseudomonas aeruginosa may also modulate

the activity of their effectors by a similar strategy. Yersinia, the
causal agent of plague (Y. pestis) and gastrointestinal disorders
(Y. pseudotuberculosis and Y. enterocolitica), is an extracellular
pathogen that injects several effectors through its T3SS to
provoke disease [28]. Several of these effectors have been
shown to interfere with actin cytoskeleton dynamics that are
involved in blocking phagocytosis and subsequent bacterial
killing. Y. pseudotuberculosis YopE contributes to virulence by
inducing depolymerization of actin filaments in the host cells
early after contact with Y. pseudotuberculosis via the inhibition
of Rho GTPases, which control rearrangements of the actin
skeleton. This activity also prevents the formation of pores in
the host membranes and subsequent host cell death, and thus
enables a prolonged colonization of the host [29,30]. In Y.
enterocolitica–infected cells, YopE is polyubiquitinated on
lysine K75 and targeted for proteasome degradation [31]. At
this time, it is not clear whether the host-mediated YopE
destruction is beneficial to the host’s defense or to Y.
enterocolitica infection. On the one hand, the degradation
products of YopE could be a bacterial antigen source for the
host to fend off later infections [31,32]. On the other hand,
removing YopE could pave the way for YopT (a cysteine
protease [33]) and YopO (a kinase [34]), two other T3SS
effectors also targeting actin rearrangements in the host cell.
Intriguingly, YopE and S. typhimurium SptP both have GTPase-
activating protein activity that indirectly inhibits the
pathogen-induced actin polymerization, but it is interesting
to note that YopE is actively degraded by the host UPS,
whereas SptP has a much longer half-life. These two effector
proteins, translocated by different pathogens, seem to have
evolved a similar strategy for blocking actin polymerization,
yet subtle differences in interaction with the host UPS seem
to reflect differences in infection strategy.
ExoU is the major T3SS effector of the opportunistic

pathogen Pseudomonas aeruginosa and is directly responsible
for the death of the infected host cell. This effector has a
phospholipase activity inside the host cell, and researchers
have recently shown that it is targeted to the host cell
membrane and ubiquitinated [35]. ExoU undergoes
ubiquitination of a specific lysine residue (K178) by an as yet
unknown mechanism. No more than two Ub moieties are
added onto K178, and those are mostly via the K63 residue of
the first Ub. This modification is not responsible for ExoU
activity, plasma membrane location, or toxicity, and has only
a minor impact on ExoU stability [35]. The latter point is not
surprising considering the length and the topology of this
ubiquitination event [5,35], but at this point a role for
ubiquitination of ExoU, most likely the result of its
membrane localization, is not clear. Interestingly, Y.

doi:10.1371/journal.ppat.0030003.g002

Figure 2. T3/4SS Effectors Interfering with the Host UPS

After T3/4SS-mediated translocation into the host cell, several effectors
(black-boxes) of diverse bacteria can target different steps of the UPS:
some effectors have been shown to inhibit specific steps (e.g., inhibit an
E3 Ub ligase, such as OspG, or deubiquitinate subtrates like YopJ and
YopP), mimic different UPS E3 Ub ligase subunits (here represented as
one black subunit for simplicity as VirF, AvrPtoB, GALA, and SopA), or act
as possible adaptor to target substrates to the E3 ligase (HopM1).
Eventually, effectors can be a substrate for the UPS, like ExoU, SopB,
SopE, and YopE (black ellipses). Table 1 describes in more detail the
effectors presented in this figure. ‘‘Salmonella factor(s)?’’ refers to
unknown factors from non-pathogenic and attenuated Salmonella
strains (see text).
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enterocolitica YopE also has a specific subcellular targeting to
the perinuclear membrane, and this property is determined
by the amino acids 54 to 75 [36]. Coincidentally, it is the lysine
residue K75 that is subjected to this specific ubiquitination,
thus suggesting the possibility of an ubiquitination process
associated with membrane localization [31].

Effectors That Interfere with Important
Ubiquitination Steps Involved in Mammalian Innate
Immune Signaling

The innate immune system is the first line of defense in
mammals against microbe infection, and it requires several
regulatory ubiquitination steps [37]. Several examples have
been published of bacterial T3SS effectors that directly
interfere with the ubiquitination level of both K48- and K63-
linked poly-Ub chains on mediator proteins in the pathogen-
induced host defense signaling cascade, thus allowing the
bacterium to undermine a proper innate immune response to
promote disease. The host’s defense mechanism involves

receptor-mediated signaling via the mitogen-activated
protein kinase (MAPK) and the nuclear factor jB (NF-jB)
pathways (we refer the reader to the following reviews [37–40]
and Figure 3). Briefly, one of the ways the host can sense
pathogens is via perception of microbial-associated
molecular patterns (or MAMPs, such as lipoproteins,
methylated DNA, lipotechoic acid, flagellin, and
lipopolysaccharide) by membrane-anchored Toll-like
receptors (TLRs). Pro-inflammatory cytokines, such as tumor
necrosis factor a (TNFa) and IL-1, are produced as an alert
for the immune system via TLR signaling in response to
pathogens, and bind to receptor proteins of the tumor
necrosis factor receptor (TNFR) and IL-1 receptor (IL-1R)
families. Activated TLRs and IL-1Rs recruit downstream
adapter and signaling molecules that are involved in the
activation of the crucial signal transducer TNFR-associated
factor (TRAF) 6, whereas TRAF2 transduces the signal
received by TNFR [37,40,41]. TRAF6 acts as an E3 Ub ligase
that recruits the E2 enzyme complex Uev1A/Ubc13 to K63-

doi:10.1371/journal.ppat.0030003.g003

Figure 3. T3SS Effectors Interfering with Ub Signaling in the Mammalian Innate Immune Response

Ubiquitination plays an important regulatory role in different steps of the innate immune signaling cascades. This simplified representation shows the
different levels at which T3SS effectors (black-boxes) thus far have been shown to interfere with the pro-inflammatory host immune response; this
interference can be at the signaling node represented by the TAK1 complex (affecting both NF-jB and the MAPK signaling pathways), or downstream
of TAK1, only affecting the NF-jB pathway. Numbers in brackets indicate the specific references. Details of the immune signaling are given in the text.
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polyubiquinate itself [42]. This autoubiquitination step allows
the recruitment of TGF-b-activated kinase 1 (TAK1)–binding
protein (TAB) 2 and TAB3, and subsequently TAK1 and
TAB1. After formation of the complex, TRAF6 K63-
polyubiquitinates TAK1 [37,38]. Although the precise
mechanism is not yet clear, TAB1 also seems to be K63-
polyubiquitinated [43]. TAK1 is a highly conserved kinase
complex that acts as a central component of the immune
response pathway; it can autophosphorylate [42–44] and
activate the MAPK (p38, c-Jun NH2-terminal kinase) pathway
by mitogen-activated protein kinase kinase kinase (MEKK) 3
and MEKK6 phosphorylation, as well as the NF-jB pathway
by inhibitor of nuclear factor jB (IjBa) kinase (IKK) b
phosphorylation [42]. After this latter modification, IKKb
could be monoubiquitinated by an as yet unknown
mechanism [45]. The IKKc or NFjB essential modifier
(NEMO) subunit is also K63-polyubiquitinated by TRAF6,
which allows the formation of an active IKK complex from
the subunits IKKa, IKKb, and IKKc. The transcriptional
activator NF-jB is sequestered in the cytoplasm by IjBa and
thus is inactive. Phosphorylation of IjBa by the activated IKK
complex allows the recognition of IjBa by the E3 Ub ligase
SCFbTrCP (Skp1/Cullin1/F-box), which K48-polyubiquitinates
IjBa for proteasome degradation. This provokes the release
and subsequent nuclear translocation of NF-jB, where it acts
as a transcription factor of a large array of target genes,
including anti-apoptotic and immune responses genes.

Y. pseudotuberculosis and Y. pestis YopJ, and their homologue
YopP in Y. enterocolitica, (phrased YopJ/P when we refer to Y.
pseudotuberculosis YopJ and Y. enterocolitica YopP proteins at the
same time) were shown to interfere with the host
inflammatory response via both the MAPK and the anti-
apoptotic NF-jB signaling pathways (Figure 3), which
prevents the production of pro-inflammatory cytokines such
as TNFa and IL-8, and triggers apoptosis. YopJ/P homologues
are found in S. typhimurium (protein AvrA) and in some plant
pathogenic bacteria [46]. These proteins were assigned as C55
cysteine proteases [47], and by sequence comparison were
originally hypothesized to be deSUMOylating enzymes, even
though no specific substrate could be identified [48,49].
Recently, different research groups have identified YopJ/P as
deubiquitinating enzymes directly involved in the inhibition
of the inflammatory response [43–45,50]. Zhou and
collaborators showed that Y. pseudotuberculosis YopJ can
deubiquitinate the K63-poly-Ub chain of TRAF6 (and TRAF2)
inducing the inhibition of both the MAPK and NF-jB
pathways. Y. pseudotuberculosis YopJ was also shown to
deubiquitinate the K48-poly-Ub chain from IjBa, preventing
proteasome-mediated degradation of IjBa and the resulting
NF-jB nuclear translocation [50]. In addition, Y. enterocolitica
YopP can cleave TRAF6 and NEMO K63-poly-Ub chains, but
this activity could only be proven in vitro [44]. Recently,
Thiefes and colleagues showed that Y. pestis YopP was not able
to deubiquitinate TRAF6, but rather that it cleaved the K63-
Ub chains of TAK1 and TAB1 [43]. The versatility of Y.
pseudotuberculosis YopJ was further emphasized by the finding
that it could remove the single Ub linked to IKKb [45].
Tampering with Ub in the inflammatory pathway is achieved
so efficiently by YopJ of Y. pseudotuberculosis and Yop P of Y.
enterocolitica that Y. pestis has evolved a less invasive strategy.
Indeed, Y. pestis YopJ is believed to be injected by the T3SS
less efficiently than YopP, and, as a consequence, does not

result in fast apoptosis of macrophages, but rather weakens
the inflammatory response, enabling the pathogen to be
transported within the macrophages to target organs [51].
These reports emphasize the crucial role of bacterial effectors
in the deubiquitination of key components in the MAPK and
NF-jB pathways, on both K48- and K63-poly-Ub chains
(Figure 3). Interestingly, the eukaryotic deubiquitinating
enzymes cylindromatosis tumor suppressor protein and A20,
which are required for cell homeostasis [52–54], can also
deubiquitinate the K63-polyubiquitin chains of signaling
intermediates of the NF-jB pathway, but are not active on the
K48 chains [50,55]. This illustrates that pathogens clearly use
mechanisms that are familiar to the host. Even though YopJ/P
seem to have an extended deubiquitinating activity (both of
K48- and K63-poly-Ub chains), these proteins don’t seem to
be able to cleave SUMOylated proteins. Indeed, YopJ/P are
deubiquitinating enzymes in vitro, with no activity on
SUMOylated proteins [50]. The cysteine residue (C172) that
was originally defined for the deSUMOylation activity [49] is
also required for the deubiquitinating activity [44,50]. We
would like to add that recent work shows that Y.
pseudotuberculosis YopJ blocks signaling by binding and
acetylating residues in the activation loop of MEKK6 (a
mitogen-activated protein kinase kinase upstream of c-Jun
NH2-terminal kinase and p38) [56]. The authors hypothesize
that a similar activity could prevent phosphorylation of IKKb,
thus preventing further activation of the NF-jB pathway [56].
Evidently more work is necessary to unravel the mode of

action of the YopJ/P family of T3SS effectors. It would be
interesting to re-evaluate the function of YopJ/P homologues
widely present in plant pathogenic bacteria and currently
identified as deSUMOylating enzymes [46,57–59].
The facultative intracellular pathogen Shigella flexneri,

causal agent of shigellosis in humans, has among its
repertoire of T3SS effectors a protein called OspG that is
structurally related to a kinase. This protein was shown to be
injected into epithelial cells, where it weakens the host innate
immune response [60]. OspG negatively regulates the NF-jB
inflammatory response by interfering with the proteasome-
dependent degradation of IjBa. OspG binds and inhibits
ubiquitinated E2 Ub-conjugating enzymes: it interacts with
UbcH5, which is necessary for the Ub supply to the E3 Ub
ligase SCFbTrCP, the specific SCF complex that controls IjBa
degradation (Figure 3). OspG displays a kinase activity
inducing its autophosphorylation. This activity is necessary
for the function of OspG, but doesn’t seem to be involved in
the phosphorylation of IjBa prior to its K48-
polyubiquitination and proteasome-mediated degradation.
The mechanism by which OspG inhibits the SCFbTrCP-
mediated IjBa degradation still has to be elucidated. This
T3SS effector is injected into host cells during the early stages
of infection [61]. An attractive hypothesis is that the
inhibition of the NF-jB inflammatory response in these early
stages facilitates cellular colonization by a limited number of
luminal bacteria [60]. Considering that OspG can interact
with different E2 Ub-conjugating enzymes, this effector might
interfere with other UPS targets in the host cells as well.
Non-pathogenic or attenuated Salmonella strains (S.

typhimurium PhoPc mutant [62,63] and S. pullorum, a poultry-
specific strain) have also been shown to attenuate the NF-jB-
mediated inflammatory response [64]. In doing so, these
organisms can thrive in the intestinal microflora. The
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mechanism by which these strains inhibit the inflammatory
response seems to involve the reduction of Cullin1
neddylation. Non-neddylated Cullin1 is still capable of taking
part in the SCFbTrCP E3 Ub ligase complex, but could be
impaired in the recruitment of the E2 Ub-conjugating
enzyme [65,66]. The absence of a functional SCFbTrCP

complex would then result in the absence of ubiquitination of
phospho-IjBa, hence explaining the observed stabilization of
phospho-IjBa. As pointed out by the authors, the bacterial
factors responsible for the attenuation of the Cullin1
neddylation haven’t been identified yet.

Effectors Involved in Ubiquitination of Host
Proteins to Suppress Plant Innate Immune
Responses

Recent work has revealed striking similarities in the
response between animals and plants in the recognition of
MAMPs, as illustrated by the discovery of a plant receptor
reminiscent of TLR5 in humans [67,68], as well as in
downstream antimicrobial defense responses that are
signaled via MAPK cascades and induction of target gene
expression [69,70]. MAMP recognition can initiate basal
defense responses, such as strengthening of the cell wall by
callose deposition [71,72]. Specific bacterial T3SS effectors
are capable of suppressing this basal defense mechanism [73–
76]. Another type of resistance, specific for plants, is the
hypersensitive response (HR), which causes rapid cell death at
the site of infection on resistant plants and thereby prevents
bacterial multiplication and spread. This type of resistance is
induced by specific recognition of bacterial virulence factors
(including T3SS effectors) by cultivar-specific resistance
proteins [75]. Also, in the case of HR-mediated resistance,
some bacteria have evolved T3SS effectors capable of
avoiding this specific type of induced resistance [71,72,75,77–
81]. Below, we present two P. syringae T3SS effectors that are
capable of suppressing different layers of plant defense,
probably by controlling the ubiquitination and degradation
of specific proteins by the cell UPS.

P. syringae causes bacterial speck disease on susceptible
plants. HopM1 is a P. syringae T3SS effector required for
virulence and is known to suppress the plant host cell wall–
associated defense [72]. Recently, Nomura and colleagues
showed that during bacterial infection of Arabidopsis plants,
HopM1 mediates the proteasome-dependent elimination of
AtMIN7, a plant protein involved in cell wall–associated host
defense [78]. Interestingly, HopM1 has no classical E3 Ub
ligase features, leading to the hypothesis that HopM1 may act
as an adaptor protein mediating the recognition of AtMIN7
by the plant UPS. AtMIN7 is a GEF of the adenosine
diphosphate ribosylation factor (ARF) subfamily. ARF-GEFs
are important for vesicle trafficking by activation of Ras-like
small GTPases [82]. Several lines of evidence show that vesicle
trafficking plays an important role in plant immunity [72,83–
85]. When challenged with a DCEL P. syringae mutant strain
(lacking the hopM1 gene), AtMIN7 knock-out plants
accumulate less callose deposits and are more susceptible to
infection than wild-type plants. Altogether, the data suggest
that the role of HopM1 in virulence is to inhibit vesicle
trafficking associated with cell wall–associated host defense
by targeting AtMIN7 for degradation by the host UPS [78].

The P. syringae pv tomato (strain DC3000) T3SS effectors

AvrPto and AvrPtoB both elicit an HR response in tomato
plants expressing the Pto resistance gene. [86,87]. This rapidly
induced localized programmed cell death at the site of
infection enables plants to resist colonization by the
pathogen. Interestingly, AvrPtoB is also capable of
suppressing programmed cell death induced by the AvrPto/
Pto recognition in Nicotiana benthamiana, and HR elicited by
other bacterial T3SS effectors, fungi-specific HR-inducing
protein, and even the pre-apoptotic mouse protein Bax
[88,89]. AvrPtoB is a modular protein with an N-terminal part
that induces HR-related cell death and a C-terminal portion
that controls cell death suppression [90]. The C-terminal
domain was recently shown to possess the structural features
of a RING U-box type E3 Ub ligase [81]. This domain, as well
as full-length AvrPtoB, indeed functions as an active E3 Ub
ligase capable of autoubiquitination [79,81] and possibly of
ubiquitination of plant substrates [79]. The E3 Ub ligase
activity is functionally important since mutations impairing
the recruitment of the E2 Ub-conjugating enzyme or the
autoubiquitination prevent both cell death suppression
activity and full virulence of strain DC3000 [79,81]. Even
though no target has yet been identified, a possible
explanation for the mode of action of AvrPtoB is the specific
recognition, ubiquitination, and proteasome-dependent
degradation of plant cell death positive regulators. It should
be noted here that, in a recent report, AvrPto and AvrPtoB
have been identified as potent and early suppressors of
MAMP-induced MAPK-dependent innate immunity pathway
in Arabidopsis, but this function of AvrPtoB is not affected by a
mutation that disrupts the E3 Ub ligase activity [74].

Effectors Mimicking Host E3 Ub Ligases

Mimicking eukaryotic proteins appears to be a strategy
commonly used by pathogenic bacteria to promote virulence
[91,92]. This can be achieved by convergent evolution, which
‘‘produces’’ a new effector protein with structural
characteristics enabling the functional mimicry of a host
protein (e.g., AvrPtoB). But this can also be achieved by a
more ‘‘opportunistic’’ scenario, in which the bacterial
pathogen or one of its ancestors has acquired genetic
material by lateral transfer and then maintains and adapts
functional domains according to their selective advantage in
virulence. The two examples discussed below illustrate the
latter scenario and highlight a subtle mechanism bacteria
have evolved to directly interfere with plant functions via the
UPS.
Agrobacterium tumefaciens causes crown gall disease on a

broad range of plants. The bacterium uses a type IV secretion
system (T4SS) not only to translocate effectors into
eukaryotic cells, but also to mediate the transfer of a single-
stranded DNA molecule (transferred [T]-DNA), resulting in
genetic colonization of the host [93–95]. VirF is a T4SS
effector that determines host range and is necessary for full
virulence on certain host plants [96,97]. VirF was the first
prokaryotic protein shown to contain a conserved F-box
domain [98]. F-box proteins (FBPs) are key components of the
SCF type E3 Ub ligase complex, because they recruit the
target protein for destruction by the 26S proteasome.
Through the F-box domain, FBPs interact with the SKP1
component of the E3 Ub ligase complex [99]. The Arabidopsis
homologues of the yeast SKP1 protein, ASK1 and ASK2, were
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isolated as interactors of VirF [98]. The F-box of VirF was
shown to be essential not only for this interaction in vitro, but
also for virulence. To determine the precise role of VirF in
the infection process, recent studies are aimed at identifying
the target proteins destined for ubiquitination and possibly
degradation by the proteasome. Recently, it was shown that
VirF interacts with the plant protein VirE2-interacting
protein 1 (VIP1), which leads to degradation of VIP1 and,
indirectly, of the effector protein VirE2 [100]. VirE2 is a
single-stranded DNA-binding protein that is transported
independently from the T-DNA by the T4SS into the host cell
[101,102], where it cooperatively binds the T-DNA to
facilitate nuclear uptake [103,104] and protect it from
degradation [105]. VirE2 contains functional nuclear
localization signals [104,106], but these signals overlap with
the DNA-binding domain [106,107], which make it difficult to
show an in vivo function of the nuclear localization signal
region in nuclear uptake of the T-complex. The Arabidopsis
protein VIP1 was identified as an interactor of VirE2 [108].
This protein was shown to interact with karyopherin-a, a
member of the importin family involved in nuclear import of
proteins via recognition of their nuclear localization signals.
Citovsky and colleagues suggested a role for VIP1 in A.
tumefaciens infection as a molecular adaptor between VirE2
and karyopherin-a that results in nuclear uptake of the T-
complex [109]. Recently, Tzfira and colleagues proposed that
VirF, which binds to VIP1 but not VirE2, is involved in the
nuclear proteasome-dependent degradation of VIP1 and
indirectly in that of VirE2, and may thus play a role in
uncoating the T-complex from VirE2 molecules prior to
integration of the T-DNA in the host genome [100]. A host-
dependent role in virulence for VirF by indirectly targeting
another effector protein for degradation is intriguing; yet, it
remains to be determined whether VirF is able to destabilize
VIP1 and VirE2 when complexed with T-DNA and, more
importantly, during infection. In preliminary experiments,
using the C-terminal part of VirF (lacking the F-box domain)
as bait in a yeast two hybrid screen, several Arabidopsis
proteins have been identified as putative targets of VirF (E.
Jurado-Jácome, P. Hooykaas, and A. Vergunst, unpublished
data). Among these are proteins that have been shown to be
involved in host defense–related processes. Although the
interaction of some of these proteins has been confirmed in
vitro, the relevance of these interactions during infection and
their VirF-mediated degradation remains to be confirmed. As
described above, a function in disarming host proteins
involved in defense against bacterial attack and suppression
of the immune response seems to be a general mode of action
for effectors of both mammalian and plant pathogens.

The plant pathogen Ralstonia solanacearum uses a T3SS to
promote ‘‘bacterial wilt’’ on a variety of plant hosts [110–112].
Among the large repertoire of T3SS effectors identified in
this bacterium [110–112] is a family of proteins that is likely
to function as eukaryotic FBPs [113]. Indeed, each of the
seven members of this effector family harbors both an N-
terminal F-box motif for interaction with other subunits of
the E3 Ub ligase complex, and a long leucine rich repeat
(LRR) domain. A characteristic feature of the LRR is the
presence in each of the 24 amino acid–long repeats of
conserved residues forming the motif GAxALA, hence the
name ‘‘GALA’’ proteins. The structure of these T3SS effector
proteins is highly similar to the LRR subclass of plant FBPs

[114]. We further showed that GALAs are capable of
interacting with several of the 19 Arabidopsis SKP1-like
proteins (ASKs). Like A. tumefaciens VirF, GALAs interact with
ASK1 and ASK2, but also interact with other ASKs, in a
manner that is reminiscent of plant FBPs [114,115].
Pathogenicity tests revealed that none of the individual
GALA effectors is indispensable for virulence of R.
solanacearum on Arabidopsis or tomato [112]. The finding that a
strain deleted of all seven GALA genes is significantly less
virulent on tomato and Arabidopsis [113] suggests that two or
more non-functionally overlapping GALAs are required.
Interestingly, when tested on Medicago truncatula, another host
plant, a single mutant for the GALA7 gene appears
dramatically affected in its virulence. The virulence capacity
of this single mutant is restored by complementation with a
full length GALA7 construct, but not by a GALA7 gene
construct deleted of its F-box domain. These results support a
model, similar to VirF, in which specific GALAs (GALA7 on
Medicago truncatula) and combinations of GALAs could form
bacterium/plant composite SCF-type E3 Ub ligases in specific
host cells, possibly to ubiquitinate and subsequently degrade
mediator(s) of plant defenses.

Only the Tip of the Iceberg

The bacterial plant pathogens A. tumefaciens and recently R.
solanacearum were the first prokaryotes shown to harbor
proteins with an F-box that is essential for virulence [98,113].
These FBPs are substrates of T4SS and T3SS, respectively
[98,113]. The F-box–containing protein Msi061 of the plant
symbiont Mesorhizobium loti was also demonstrated to be
transported into plant cells in a heterologous translocation
assay by the A. tumefaciens T4SS [116]. The recent completion
of the genome sequences of the Legionella pneumophila strains
Paris and Lens enabled the annotators to identify three genes
that likely encode FBPs, and one gene that encodes a protein
with two U-box domains [117], making these proteins
attractive candidates for participating in E3 Ub ligases within
eukaryotic host cells. The complete genome sequence of
many bacteria, including human and plant pathogens, and
other bacteria that have close associations with eukaryotes
during their life cycle, are now available. Our curiosity about
the extent of bacterial effector candidates exploiting the host
UPS made us mine the most recent protein database release
using the protein domain signature search tool available at
InterPro (http://www.ebi.ac.uk/interpro, data release 13.0). We
searched for the eukaryotic-specific putative E3 Ub ligase U-
box (IPR003613) and F-box (IPR001810) motifs. In addition to
the L. pneumophila U-box protein Lpp2887 that was recently
annotated [117], we identified one gene encoding a putative
U-box domain (locus pc1652) in Candidatus Protochlamydia
amoebophila UWE25, an obligate endosymbiont of free-living
amoebae [118]. In contrast, the search for F-box domains
encoded by bacterial genomes was more productive and
yielded several new candidates (Table 2). Although InterPro
identified the A. tumefaciens VirF protein [98], it only found
three out of the seven R. solanacearum GALA proteins [113],
and did not detect the Mesorhizobium loti msi061 protein [116],
indicating that our screen was not saturating. In L.
pneumophila, however, our analysis found not only the three
already annotated FBPs [117,119], but also three additional
FBP candidates (Table 2). Coxiella burnetii, the agent of Q-fever
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[120] closely related to L. pneumophila, also contains three
genes encoding putative FBPs (Table 2). Candidatus
Protochlamydia amoebophila UWE25 [118] has numerous (11)
proteins containing putative F-boxes. This bacterium is a
recently characterized relative of pathogenic Chlamydia, but
has a much larger genome size, indicating that massive
reorganization and genome reduction took place in Chlamydia
sp. after divergence in pathogenic and symbiontic Chlamydia
[118]. The absence of any detectable FBP in pathogenic
Chlamydia sp. might be the result of this genome reduction,
and the large number of FBPs in UWE25 possibly originate
from ancient lateral transfer [118]. This suggests a greater
importance of these putative FBPs in symbiosis than in the
control of the virulence of its pathogenic relative.

Our screen also revealed conserved F-box–encoding genes
among several sequenced plant pathogens, including
Xanthomonas sp., and several P. syringae pathovars. In summary,
our in silico analysis indicates a wide range of bacteria, from
the class of Chlamydiae to a-, b- and c-proteobacteria,
predicted to contain putative FBPs. It will be interesting to
find out whether the bacteria with putative FBPs can indeed
inject these proteins as substrates of the T3/4SS into host
cells, where they could interfere with UPS-controlled
mechanisms to benefit in the survival of the pathogen.

Our purpose in this review was to illustrate the different
mechanisms used by bacteria to explore the host’s UPS by
their T3SS or T4SS effectors. To put the exploitation of the
UPS by bacterial effectors of T3/4SS into perspective with
other mechanisms used by pathogens to interfere with their
host’s UPS, we would like to just touch on several rapidly
expanding groups. Bacterial toxins, transported into host
cells by mechanisms other than T3/4SS, have been shown to
interfere with the host UPS. Inside the host cell, the
subcellular localization of Listeria monocytogenes listeriolysin O
and phospholipase C are partially controlled by the host UPS
machinery [121,122].The Escherichia coli cytotoxic necrotizing
factor-1 toxin induces the permanent activation of host Rho
proteins by locking them in a GTP-bound state. These Rho
proteins are then rapidly ubiquitinated and degraded by the
host cell [123–125]. The overall effect is an increase in Rho
activity followed by Rho depletion, resulting in an efficient
bacterial internalization and a weaker host inflammatory
response [126]. Rickettsia conorii, an obligate intracellular
pathogen, also seems to require its host UPS for contact-
mediated internalisation [127]. Viruses are well known for
their ability to subvert their host UPS either by regulating, or
by mimicking, host UPS subunits [128–130]. Recent studies
suggest that eukaryotic pathogens can also deliver proteins
that interfere with the UPS in host cells. Indeed, thanks to a
feeding stylet, plant parasitic nematodes can deliver gland-
secreted ubiquitin extension proteins potentially interfering
with the Ub pathway in plant cells [131,132].

Conclusion

A number of animal and plant pathogenic bacteria have
evolved type III and type IV effectors that, once translocated
into the host cell, have the capacity to interfere directly with
ubiquitin signaling, a mechanism fundamental to the
eukaryotic host cell. These bacteria have developed different
strategies to exploit the host cell ubiquitin/proteasome system
to their advantage to (i) control the timing of action of their

virulence effectors, as exemplified by the Salmonella sp.
effectors SopA and SptP, (ii) target specific signaling
intermediates involved in mammal or plant innate immunity,
as performed by Yersinia sp. YopJ/P, or (iii) mimic specific
host-like UPS components, illustrated by the bacterial FBPs.
The variety of examples presented in this review illustrates

the effectiveness of pathogens in interfering with host Ub
signaling pathways. It also illustrates that each bacterium has
developed a different mode of interference with the UPS by
its effectors, depending on its infection strategy. Some
bacteria suppress their host’s immune response (inhibition of
innate immune signaling, inhibition of vesicle trafficking),
wheras others control the host cell actin cytoskeleton for
bacterial internalization. This exciting area of research is
advancing at high speed; future research will certainly result
in the discovery of more effectors that interfere with the UPS
and the identification of specific host targets and the host
functions affected. Such discoveries will supplement research
on other (eukaryotic and prokaryotic) pathogens and on
mechanisms other than T3/4SS that bacteria have evolved to
interfere with the host’s UPS. It will undoubtedly result in a
better understanding of this intimate host–pathogen
interaction, as well as provide new insights in eukaryotic
ubiquitination processes. In addition, it may also form the
basis for the development of a specific new class of
antimicrobials. &
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