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ABSTRACT. The environmental integrity of a mechanism rewarding Reduced Emissions from Deforestation and Degradation
(REDD) depends on appropriate accounting for emission reductions. Largely stemming from a lack of forest data in developing
countries, emission reductions accounting contains substantial uncertainty as a result of forest carbon stock estimates, where
the application of biome-averaged data over large forest areas is commonplace. Using a case study in the Bale Mountains in
Ethiopia, we exemplify the implications of primary and secondary forest carbon stock estimates on predicted REDD project
emission reductions and revenues. Primary data estimate area-weighted mean forest carbon stock of 195 tC/ha ± 81, and biome-
averaged data reported by the Intergovernmental Panel on Climate Change underestimate forest carbon stock in the Bale
Mountains by as much as 63% in moist forest and 58% in dry forest. Combining forest carbon stock estimates and uncertainty
in voluntary carbon market prices demonstrates the financial impact of uncertainty: potential revenues over the 20-year project
ranged between US$9 million and US$185 million. Estimated revenues will influence decisions to implement a project or not
and may have profound implications for the level of benefit sharing that can be supported. Strong financial incentives exist to
improve forest carbon stock estimates in tropical forests, as well as the environmental integrity of REDD projects.
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INTRODUCTION
Deforestation and forest degradation is driven largely by
private incentives, with the benefits of ecosystem services
often overlooked. A Reduced Emissions from Deforestation
and Degradation (REDD) mechanism can help address this
market failure by financially rewarding greenhouse gas
(GHG) emission reductions from conservation, sustainable
management, and forest enhancement activities (Chomitz
2007, Parker et al. 2008, Paquette et al. 2009, Mustalahti et
al. 2012). A REDD mechanism under the United Nations
Framework Convention on Climate Change (UNFCCC) is yet
to be defined (Angelsen and McNeill 2012). Voluntary carbon
markets (VCM) are the main platform through which emission
reductions from forestry are currently traded (Diaz et al. 2011).
The environmental integrity of REDD requires the generation
of real, permanent, and verifiable emission reductions (UNDP
2009). Despite a proliferation of REDD activities, the
assessment of emission reductions contains substantial
uncertainty (Brown and Lugo 1992, Monni et al. 2007,
Grainger 2008, Larocque et al. 2008). 

In the case of avoided deforestation, emission reductions
accounting requires the quantification of forest area, forest
area change, and forest carbon stocks. The measurement of
forest area and forest area change is being advanced through
better coverage and accessibility of remote sensing imagery
(Achard et al. 2004, Mayaux et al. 2005, DeFries et al. 2007,
Ramankutty et al. 2007, Goetz et al. 2009, Baker et al. 2010).
It is increasingly being used to infer forest carbon stocks over
large spatial scales, although limitations still exist in linking
imagery to on-the-ground data and in the ability to monitor

forest degradation and carbon stored in deadwood and litter
(Baccini et al. 2008, Baker et al. 2010, Bucki et al. 2012).
Discussions are ongoing to develop and agree on methods to
establish past and predicted future rates of deforestation from
which the emission reductions of an intervention can be
estimated (Angelsen 2008, Olander et al. 2008, Bond et al.
2009, Griscom et al. 2009, Huettner et al. 2009, Estrada 2011).
In the VCM, standards set out detailed methods of good
practice for establishing baselines. The Voluntary Carbon
Standard is the most commonly applied, with certified projects
commanding a price premium (Diaz et al. 2011, Estrada 2011).
Despite advances, there remain capacity gaps in forest
monitoring for REDD in countries that lack the resources and
expertise to make the most in advances in satellite imagery
technology or to model the drivers of deforestation (Romijn
et al. 2012).  

We focus on uncertainty in the estimation of forest carbon
stock. Uncertainty in the carbon content of the dry biomass of
a forest per unit area often results from a lack of data on key
forest variables and parameters, resources, or capacity (Brown
et al. 1989, Smith and Heath 2001, Andersson et al. 2009).
Changes in the estimates of forest carbon stock in the FAO
Forest Resource Assessment, a widely used database of global
and national forest statistics, have been attributed to
information availability rather than forest carbon stock change
(Houghton 2005, Grainger 2008). The lack of forest
monitoring data is particularly acute for Africa (FPAN 2010,
Romijn et al. 2012). Reported estimates of forest carbon stocks
for Africa are highly variable, from 0 to 454 tC/ha (IPCC 2006,
Gibbs et al. 2007, Baccini et al. 2008). Lewis et al. (2009)
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estimated forest carbon stocks from permanent plots across
Africa with an average of 202 tC/ha. While methods of
generating forest carbon stock estimates are well accepted and
tested by forest scientists, such local measurements or
permanent sample plots are resource intensive and thus hard
to conduct across large spatial scales (Nagendra and Ostrom
2011). As REDD grows in popularity, however, project
developers and policy-makers have greater need for large-
scale forest information. 

The application of biome-averaged data for forest carbon
stocks has become commonplace in emission reductions
accounting from avoided deforestation (Brown and Gaston
1995, Gibbs et al. 2007, Djomo et al. 2010). The
Intergovernmental Panel on Climate Change (IPCC) guidance
for GHG inventories has three method tiers intended to
promote broad engagement irrespective of a country’s data
and capacity (IPCC 2003, 2006, Baker et al. 2010). Tier 3 uses
advanced estimation approaches with complex models and
highly disaggregated data. Tier 2 uses country-specific forest
carbon stock information with activity data at small scales.
Tier 1 is based on biome-averaged and default values for forest
carbon stocks and contains the greatest level of uncertainty
(Böttcher et al. 2009). While IPCC guidance was not designed
to produce emission estimates for REDD projects, it is the
basis of many REDD standards, and the UNFCCC supports
the use of IPCC guidance in REDD development (UNFCCC
2009). While data used in Tier 1 are able to capture broad
ecological factors influencing forest carbon stocks, such as
temperature and rainfall (Chave et al. 2004, GOFC-GOLD
2008), forest heterogeneity is obscured (Bradford et al. 2010,
Houghton et al. 2001). The discrepancies in forest carbon stock
methods are further compounded by the need to combine forest
carbon stocks with other forest variables in emission
reductions accounting (Waggoner 2009, Ciais et al. 2011). 

Literature is emerging on the uncertainty in forest carbon
stocks and resultant implications (Houghton and et al. 2001,
Houghton 2005, Mollicone et al. 2007, Ramankutty et al. 2007,
Pelletier et al. 2010). A comparison across six countries by an
international panel on Global Observation of Forest and Land
Cover Dynamics (GOFC-GOLD 2008) indicated that biome-
averaged data overestimated forest carbon stock by 33% in
Mexican temperate forest and underestimated it by 44% in
African rain forest when compared to primary forest data.
Saatchi et al. (2011) produced a global map of forest carbon
stocks based on satellite imagery and on-the-ground forest
plots. Propagating errors through the estimation process, they
found uncertainty in forest carbon stocks of 38% over Latin
America, Sub-Saharan Africa, and Southeast Asia. By
translating errors in estimating forest carbon stocks into the
environmental integrity of emission reductions in Costa Rica,
Kerr et al. (2004) found uncertainty is impacted by forest type,
with highest uncertainty in tropical wet forest. Pelletier et al.
(2010) used five carbon stock estimates for Panamanian

forests in land conversion and transition models, and found
144% difference in emission reductions between the highest
and lowest forest carbon stock estimate. 

A discrepancy in emission reductions as a result of forest
carbon stock methods could mean the difference between a
decision to implement a REDD project or not, as revenues
available to alter incentives for forest conservation are
dependent on the market value of the emission reductions and
the costs of getting them to market. REDD project feasibility
studies will often combine emission reductions estimates with
VCM variables such as price, implementation, and transaction
costs, further compounding the uncertainty. No standardized
method of assessing or communicating uncertainty in
emission reductions accounting exists, and being conservative
remains a dominant approach (Mollicone et al. 2007, Grassi
et al. 2008). By omitting carbon pools or taking lower bounds,
the principle of conservativeness ensures a low probability
that carbon emission reductions are overestimated (GOFC-
GOLD 2008). By assuming zero uncertainty, conservativeness
can leave decision-makers without a confidence interval of
the emission reductions estimate (Andersson et al. 2009). With
biome-averaged forest carbon stocks often applied in REDD
feasibility studies and more complex accounting methods
applied during project development, conservativeness may
result in missed climate change mitigation opportunities if
emission reductions are more substantial than a feasibility
assessment indicates (Shoch et al. 2011). Discrepancies in
emission reductions between feasibility study and project
development can also erode the credibility of a REDD project,
questioning its environmental integrity. Unrealistic
expectations can be ameliorated if uncertainty can be
quantified, reduced where possible, and communicated more
appropriately (Waggoner 2009, Baker et al. 2010).  

We demonstrate the financial significance of forest carbon
stock methods using a proposed REDD project in the Bale
Mountains of Ethiopia. Aiming to highlight the implications
of the uncertainty in forest carbon stocks, we explore the
emission reductions and potential REDD revenues and profits
under three forest carbon stock estimates and two carbon
market prices. The implications for project implementation at
the case study site are then addressed. We add to current
knowledge through the estimation of forest carbon stock in
the Bale Mountains. We build on a limited literature on the
environmental integrity of REDD and the financial
implications of forest carbon stock methods, and make
recommendations for improving forest data, with an
overarching aim to aid REDD policy decisions.

METHODS

Study area
In the Oromia state of southeast Ethiopia, the Bale Mountains
lie between 50º22'–80º08'N and 38º41'–40º44'E. Average
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annual temperature is 17.5ºC, and ranges from 10ºC to 25ºC,
with average annual rainfall of 875 mm experienced in one
long season between June and October, and one short season
between March and May (Yimer et al. 2006). Moist tropical
forest occurs between 2600 m above sea level (masl) and 1500
masl, and is characterized by Hagenia abyssinica and wild
coffee (Coffea arabica). North of the plateau, habitats are
comprised of dry forest, woodlands, grasslands, and wetlands,
largely between 2500 masl and 3500 masl. Dry forests contain
high-value commercial species such as Juniperus procera and
Podocarpus falcatus as well as Prunus africanus, a threatened
species. The lower altitude land of the southeast of the Bale
Mountains, below 1500 masl, is dominated by acacia
woodland (UNIQUE 2008, Teshome et al. 2011). The large
topographical variation in the Bale Mountains is observed
across wider Ethiopia, and the forest is representative of other
east African montane habitats that extend through Tanzania,
Kenya, and Uganda (FPAN 2010).  

Rural communities in the Bale Mountains deforest to procure
land for crops and livestock grazing and to meet timber and
firewood needs (BERSMP 2006, BMNP 2007). This pattern
is replicated over Ethiopia, with large-scale conversion of land
to agriculture also playing a role at the national level (Forest
Carbon Partnership Facility 2011). Between 1986 and 2009,
annual deforestation in the Bale Mountains ranged from 1%
to 8%, with an average rate of 3.7% (Dupuy 2009), almost
four times the 1% country-wide forest loss (FAO 2010). In
order to address forest decline in the Bale Mountains, a REDD
project is being developed by the Oromia Regional State Forest
and Wildlife Enterprise, which is supported by the Bale Eco-
Region Sustainable Management Program (BERSMP), a joint
nongovernmental organization program between FARM-
Africa and SOS Sahel Ethiopia. The REDD project area covers
923,593 ha, including 576,856 ha of tropical dry and moist
forest. To achieve a reduction in deforestation to 1% in project
Year 20, participatory forest management (PFM) is being
implemented across the Bale Mountains, which includes the
establishment of community-based organizations, development
of forest management plans, and implementation of
sustainable forest management practices. PFM is regarded as
a tool for REDD implementation alongside additional support
for sustainable agricultural intensification, woodlot
establishment, and improved fire management.

Estimating forest carbon stocks and emission reductions
Three sources of forest carbon stock information were used to
model emission reductions in the Bale Mountains: 

1. Ecological zone-specific forest carbon stock from the
IPCC Land Use, Land-Use Change and Forestry Good
Practice Guidance (IPCC 2003) 

2. Africa-specific forest carbon stock from the IPCC
Agriculture, Forestry and Other Land Use guidelines
(IPCC 2006) 

3. An estimate of forest carbon stock based on field
sampling in the Bale Mountains 

Forest plots
Primary data collection focused on the above-ground tree
carbon pool of 108 forest plots of 20 m x 20 m sampled between
December 2008 and April 2010 (Fig. 1). Because this carbon
pool contains the greatest fraction of total living biomass in a
forest, it is most immediately impacted by deforestation and
degradation (Brown 1997, FAO 2003). Plots were undertaken
in tropical moist degraded forest, tropical moist nondegraded
forest, and tropical dry degraded forest; no nondegraded
tropical dry forest remains. Stratification of the forest area was
undertaken by forestry consultants using satellite imagery and
expert consultation (UNIQUE 2008). Stratification helps
capture forest carbon stock clusters based on variation in
factors such as elevation, temperature, precipitation, and soil
fertility (Houghton 2005). While uncertainty due to errors in
stratification is not dealt with in this study, it is recognized
that higher resolution satellite imagery or post-stratification
based on factors that affect carbon stock could reduce
uncertainty in forest carbon stock estimates. Plot coordinates
were selected using random number generation to identify
numbered map crosshairs but were limited to logistically
accessible areas for which field sampling permissions had
been granted. Drawing on existing forest inventory protocol
(MacDicken 1997, Pearson et al. 2005, Greenhalgh et al.
2006), the diameter at breast height (dbh) was recorded for all
trees within each forest plot, with a lower limit of 5 cm dbh
used to define a “tree.” Canopy cover and plot slope were also
recorded. Retrospective power analysis was undertaken to
illustrate the minimum number of forest plots required for the
mean forest carbon stock estimate to be within an error bound
of 20% of the mean with 95% probability. Logistical issues
prohibited a priori calculation of the sample size; however,
retrospective power analysis allowed comparison of the
desired number of plots to the actual number of plots sampled
for a given predictive power (Pearson et al. 2005).

Biomass regression equations
To determine forest carbon stock, the above-ground biomass
was first estimated per tree by applying pan-tropical mixed
species broadleaf allometric regression equations that
statistically relate forest attributes to above-ground biomass
(Brown 1997, Eq 3.2.1 and 3.2.4). While 95% of the variation
in the above-ground biomass of trees can be explained by dbh
(Brown 2002), studies indicate that using measurements of
tree height and wood density—the dry weight per unit volume
of wood—in allometric equations can improve biomass
estimates (Brown et al. 1989, Chave et al. 2005, van Breugel
et al. 2011, Marshall et al. 2012). However, it is also noted
that for trees with large dbh, mechanical or physiological limits
can alter the relationship between height and dbh (Chave et
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Fig. 1. Forest cover map of the Bale Mountains showing the location of
forest plots used to estimate mean carbon stocks and forest type.

al. 2005). Few site and species-specific allometric equations
exist for Sub-Saharan Africa, however, and only 15% of 850
Sub-Saharan African allometric equations use height (Henry
et al. 2011, Shackleton and Scholes 2011). Ethiopian
allometric equations are often single species, and equations
are found to be of varying quality (Henry et al. 2011). Pan-
tropical allometric equations were applied because no mixed
species allometric equations exist for the Bale Mountains, and
destructive sampling to generate equations was not feasible.
The allometric equation was based on dbh and not height or
wood density in light of the lack of data at the case study site
and the difficulties in measuring tree height accurately in
tropical forests. Chave et al. (2005) found that tree allometry
is conserved across the tropics of Latin America, Southeast
Asia, and Oceania, although insufficient data were available
to assess if this was the case for the African continent.
However, allometry is conserved only where applied to trees
within the maximum and minimum tree dbh used to generate
the equation. Trees with diameters that exceeded the upper
limit of the range used to create the regression equations were
therefore assumed to fall at the maximum dbh of the equation
(148 cm). Although a necessary assumption, this is likely to

underestimate the carbon stock in the reference period and the
emission reductions if large trees are conserved in the
assessment period. If in the assessment period, instead, such
trees were selectively removed, emission reductions could be
overestimated.

Forest carbon stocks
Tree biomass was converted using a carbon fraction of 0.47
(IPCC 2006). Plot areas were adjusted for their average slope
angle using cos (slope), and carbon stock per hectare was
established. The slope correction improves the likelihood that
each forest plot contained the same total area as seen on a
satellite image. The area-weighted means of forest carbon
stocks were calculated parametrically and compared to an
empirical bootstrap distribution that re-sampled with
replacement 1000 times (Efron 1979, Guan 2003).  

In addition to natural variation, the forest carbon stock estimate
contains uncertainty from sampling error, measurement error,
and the errors inherent in underlying equations and
assumptions. Table 1 identifies these sources of uncertainty
and the methods applied in this study to reduce uncertainty,
emphasizing our focus on sampling error.
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Table 1. Inputs and sources of uncertainty in estimates of forest carbon stock, as well as methods applied to reduce these
uncertainties.

 Input Source of uncertainty Method to reduce uncertainty
Selection of forest plots Sampling error Forest plot geo-coordinates were selected using random number generation, within

logistical constraints, and good practice for sampling design and forestry inventory was
followed (MacDicken 1997, Pearson et al. 2005, Greenhalgh et al. 2006, Grassi et al.
2008).
 

Measurement of diameter at
breast height (dbh)

Measurement error Training and education in measurement of dbh was conducted to reduce measurement
error. It was ensured that trees were not measured twice or dead trees counted as living.
Measurement uncertainty on a single tree of diameter 10 cm or greater has been
estimated at 16% but found to average out at forest stand level (Chave et al. 2004).
 

Application of allometric
equation

Estimation error:
allometric equations originating
from Asian and Latin American
data

Pan-tropical equations are based on a large number of trees from Asia and Latin America
spanning a range of diameters. Because destructive sampling of trees to create an area-
specific allometric regression equation was not possible, the application of pan-tropical
allometric equations was appropriate within dbh values used to create the regression
equations. Error attributable to the allometric equation is estimated at 10–20% (Clark
and Clark 2000, Keller et al. 2001, Ketterings et al. 2001, Chave et al. 2004).
 

Application biomass to
carbon ratio

Estimation error:
the carbon density of biomass
components and tree species differ

The IPCC 2006 present a default value of 0.47 for tropical and subtropical forest but
within an interval estimate of 0.44–0.49. This is an improvement on 0.5 suggested by
Westlake (1966), but suggests a relative error of 5%.

Emission reductions
Emission reductions are evaluated by the difference between
a business-as-usual (BAU) deforestation scenario and a REDD
project scenario. Analysis of LANDSAT TM images from
1986, 2000, 2006, and 2009 by the BERSMP established a
deforestation rate of 4%. This estimate was based on differing
sensed spectral reflectance that are classified into vegetation
types and then ground-truthed (Achard et al. 2001, Andersson
et al. 2009). The BAU deforestation scenario in the Bale
Mountains was therefore assumed to be a basic linear
deforestation rate of 4% of the 2009 forest area in all forest
types, as also modeled in the Bale Mountains REDD feasibility
studies (UNIQUE 2008, 2010). Future project development
would require the acquisition of a broader time scale of satellite
imagery in addition to more complex models of forest changes,
for example linked with models of the forest transition or to
the drivers of deforestation (e.g., Barbier et al. 2010, Estrada
and Joseph 2012).  

Avoided deforestation under a REDD project is based on
project goals, with the effect of PFM on deforestation being
subjective rather than based on past experience. While there
are findings that community forest management and greater
rule-making autonomy at the local level can lead to emissions
reductions and greater carbon storage (Chhatre and Agrawal
2009, Skutsch and Ba 2010), this is not universally the case.
Experience of the Integrated Forest Management Project of
Adaba-Dodola documented by Kubasa and Tadesse (2002)
and Tesfaye et al. (2011), also located in the Bale Mountains,
for example, suggests that deforestation is occurring more
rapidly immediately outside of the PFM area; thus, leakage is

being experienced. The estimate of reductions in
deforestation, therefore, will need to be revised regularly as
the intervention progresses and new information is acquired. 

The annual emission reductions generated by the Bale
Mountains REDD project is expressed in Eq. 1. Et,i are
emission reductions in tons of carbon dioxide (tCO2) in year
t, utilizing forest carbon stock estimate Ci (tC/ha) where i can
take the value of 1, 2, or 3, representing the three forest carbon
stock estimates used to model emission reductions. DBAU is the
annual BAU deforestation in hectares in a without-project
scenario ; DREDD is the area of deforestation (ha) during the
project in year t; and 44/12 is the ratio of the molecular weight
of carbon dioxide to that of carbon.
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The annual area of deforestation under a REDD project
scenario, DREDD, is based on reducing deforestation below the
annual BAU scenario of 4% in three stages. In years 1 to 5,
DREDD is 3%, in years 6 to 10, DREDD is 2%, and in years 11 to
20, DREDD is 1%. The total emission reductions generated by
the project, Eproject, i (tCO2), can be represented by Eq. 2, which
sums annual emissions over the 20-year project lifespan.
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This emission reductions accounting is a static representation
of the Bale Mountains. The methodology inherently assumes
a steady state in mature forest, but this assumption is still under
debate (Phillips et al. 1998, Houghton 2005, Bonan 2008,
Grote et al. 2011). It is also assumed that all carbon in biomass
is emitted to the atmosphere at the time of forest loss. This
may overestimate emission reductions as harvested wood
products such as housing and farm implements are
manufactured (Karjalainen et al. 1999, Lim et al. 1999).
However, with no consensus on how to account for harvested
wood products, this assumption is necessary (Winjum et al.
1998).

Estimating revenues and REDD profits
Potential revenues under a REDD project scenario were
calculated using the best- and worst-case emission reductions
estimates. Discounted REDD profit is expressed by Eq. 3,
where πi is the profit in 2010 US$ over the 20-year lifespan
project utilizing forest carbon stock estimates denoted by
subscript i, Et,i are the emission reductions generated by the
project in year t (tCO2), B is a nontradable risk buffer of
emission reductions expressed as a proportion, p is the price
per ton of CO2 in US$, r is the registry cost per ton of CO2 in
US$, A is the annual operating cost of the project in US$, δ is
the discount rate, and K is the up-front costs (US$) of project
establishment experienced in project year 1.
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The buffer accounts for the risk that emission reductions from
forestry carbon projects may not persist over time, termed
“nonpermanence,” or may be displaced, termed “leakage.”
Permanence concerns arise because forest carbon stocks could
deteriorate or be depleted over time due to natural disturbances
such as fire, pests, and disease, or anthropogenic disturbances
such as political instability (Sedjo and Marland 2003).
Leakage concerns arise where emission-generating activities
are relocated rather than reduced, leading to fewer, or even
no, net emission reductions resulting from REDD project
activities (Sohngen and Brown 2004). To deal with these
nondelivery risks, a nontradable buffer, or reserve, of emission
reductions is commonly set aside as insurance (Peskett et al.
2008). In this study, 40% of emission reductions was set aside
for nonpermanence, and a further 25% of emission reductions
was set aside for leakage. These buffers are at the higher ranges
for project activities, and reflect imminent infrastructure
development, a history of forest fire, and potential land tenure
disputes and political instability in the Bale Mountains
(UNIQUE 2010).  

The remaining emission reductions were valued at predicted
over-the-counter (OTC) VCM prices. While social costing of

carbon would value emission reductions more highly at US$23
per ton of carbon dioxide equivalents (tCO2e) (Tol 2008), the
VCM is currently the only trading platform to realize the value
of avoided deforestation. The VCM contracted by 47% in
2009, and there was an 11% decline in the price of emission
reductions over all sectors following three years of steady
growth. Emission reduction prices ranged from US$0.30 to
US$111/tCO2e, with an average price of US$6.50/tCO2e
(Hamilton et al. 2010). Since 2009, OTC prices have stabilized
around US$6/tC02e. The average price for REDD in 2009 was
lower than the market average of US$2.9/tCO2e but increased
to US$5/tCO2e in 2010, and ranged from US$1 to US$125/
tCO2e (Peters-Stanley et al. 2011). There is uncertainty in the
price that can be expected for emission reductions from the
Bale Mountains. Early interest in the project from buyers
indicated that emission reductions could sell for US$3/tCO2e
(UNIQUE 2010). If the Bale Mountains REDD project is
certified to VCM standards, emissions reductions might
receive a price premium; therefore, potential revenues were
estimated using both US$3 and US$6.  

Listing emission reductions in a public registry increases
transparency within the VCM, and the costs of doing so, r,
were estimated at $0.10/tCO2e. Annual monitoring,
verification, and operational costs of PFM, A, were estimated
by forest carbon consultancy UNIQUE and the BERSMP at
US$650,000 and subtracted from sales revenues. One-off
project establishment costs in year one, K, were similarly
estimated at US$3,225,000 (UNIQUE 2010). This cost
includes establishment woodlots, 15 PFM units, project design
documentation development, and validation to Voluntary
Carbon Standards (UNIQUE 2010). While substantial, these
cost estimates concur with existing literature on REDD project
implementation costs (Cacho et al. 2005, Antinori and Sathaye
2007, Nepstad et al. 2007, WCS 2009). Resultant profits over
the full 20-year REDD project lifespan were calculated in 2010
US$ using constant discount rates of 5% and 10% following
Grieg-Gran (2006) and the Stern Review (Stern 2007).
Because the details of revenue sharing between the various
forest stakeholders are yet to be decided, profits are reported
pre-tax and with no prior assumptions made about the returns
to stakeholders. The uncertainties impacting REDD profits,
as well as the method by which these uncertainties are
addressed in this study, are summarized in Table 2.

RESULTS
Within 108 forest plots, the dbh of 2698 trees was measured.
An average of 35 trees per plot was found, with nondegraded
moist forest (59) containing more than dry forest (20).
Allometric equations applied to primary field data indicated
forest carbon stocks of 289 tC/ha ± 108 (expressed as the 95%
confidence interval of the mean) in moist nondegraded forest,
followed by moist degraded forest at 199 tC/ha ± 54 and dry
degraded forest at 132 tC/ha ± 73 (Fig. 2). Although forest
carbon stock distribution was non-normal for all forest types
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Table 2. Inputs and sources of uncertainty in profit assessment and methods by which uncertainty is dealt with in this study.

 Input Source of uncertainty Method to deal with uncertainty Values used
Project risk Uncertain impact and

success of project
A nontradable buffer of emission reductions is set
aside to deal with leakage (Sohngen and Brown
2004) and nonpermanence (Sedjo and Marland
2003).

Under high project risks faced in the Bale
Mountains, 25% of emission reductions are
set aside for leakage and 40% for
permanence nondelivery risk.
 

Carbon price Subjective judgment,
variability

Best guesses of over-the-counter voluntary carbon
market prices are made given lack of price trends and
the unclear future role of forestry emission reductions
in climate policy.
 

The sensitivity to market price is assessed
by modeling two carbon market prices:
US$3/tCO2e and US$6/tCO2e.
 

Implementation costs Subjective judgment,
variability

Expert judgment of the implementing agencies in the
Bale Mountains generated realistic cost estimates as
implementation and transaction costs of REDD are
often high and underappreciated (Grieg-Gran 2006,
Antinori and Sathaye 2007, Nepstad et al. 2007,
Boucher 2008, Böttcher et al. 2009).

Brokerage costs of 2.5% of emission
reductions; registry costs of US$0.1/tCO2e;
one-off costs of US$3,225,000 to establish
participatory forest management; and annual
costs of US$650,000, as predicted by
UNIQUE (2010).
 

Discount rate Subjective judgment,
variability

The choice of discount rate follows best practice in
environmental cost-benefit analysis and forestry
(Weitzman 1998, Pearce et al. 2003, Groom et al.
2005, Hepburn and Koundouri 2007).

The sensitivity to discount rate is shown by
modeling discount rates of both 5% and
10% following Greig-Gran (2006) of the
Stern Review (Stern 2007).

(Shapiro-Wilks for moist nondegraded forest: n = 32, W =
0.77, p < 0.000; moist degraded forest: n = 58, W = 0.76, p <
0.000; dry forest: n = 18, W = 0.68, p < 0.000), a robust
bootstrapped distribution that re-sampled with replacement
1000 times gave a very similar result to the normal
approximation (Table 3). Nonparametric comparison of
carbon stock showed a significant difference between forest
types at the 5% level (Kruskall-Wallis, K = 6.942, df = 2105,
p = 0.0311).

Fig. 2. Average forest carbon stocks in the Bale Mountains
by forest type with 95% bootstrapped confidence intervals.
The highest carbon stocks were found in moist non-
degraded forest, followed by moist degraded and dry
degraded forest.

The standard error of the forest carbon stock estimate was 19%
in moist nondegraded forest, 14% in moist degraded, and 28%
in dry degraded forest. The sampling error of the primary field
data was, therefore, much higher than Chave et al.’s (2004)
reported sampling error of 10% of the mean. However, the
sample size of 108 plots was past the point where substantial
gains in precision are made by increasing sample size (Fig. 3).
Increasing the precision of the forest carbon stock estimate to
10% would require data from three times as many, or 347,
forest plots. The confidence interval of the primary forest
carbon stock estimate was also large, particularly for dry
degraded forest, due to the small sample size (n = 18). High
variation in above-ground forest carbon stocks due to variation
in temperature, precipitation, and soil fertility has been
observed in other studies but was not captured here (Houghton
2005). Signs of human disturbance were also observed in a
number of plots, ranging from pathways to evidence of cattle
grazing, although average canopy cover was greater than 50%
in all forest types. 

Area-weighted mean forest carbon stock across the forests of
the Bale Mountains was 195 tC/ha ± 81. This is consistent
with global forest ranges of 20–400 tC/ha reported by Hairiah
et al. (2001), but higher than published Ethiopia-wide data of
37 tC/ha and 47 tC/ha (Brown 1997, FAO 2000). It is more
comparable to the Africa-wide estimates of Gibbs et al. (2007)
of 30–200 tC/ha, and of Lewis et al. (2009), who estimated
average forest carbon stocks from permanent plots across
Africa at 202 tC/ha. It is also comparable to smaller scale
studies. Glenday (2006) found forest carbon stocks of 330 tC/
ha in tropical moist forest in Kenya, although this included
below-ground carbon stocks, and Munishi et al. (2010) found
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Table 3. Bale Mountains forest carbon stock by forest type (tC/ha), comparing mean and confidence intervals between normal
approximation and re-sampling with bootstrapped percentile confidence intervals.

 Mean and 95% confidence intervals
Bootstrap (1000 reps)

Forest type Normal approximation Mean Upper CI Lower CI Min. Max.
Moist nondegraded (n = 32) 289 ± 108 289 187 400 0 1439
Moist degraded (n = 58) 199 ± 54 199 148 258 0 1024
Dry degraded (n = 18) 132 ± 73 132 66 208 25 569
All forest (weighted mean) 195 ± 81 195 120 278 0 1439

Fig. 3. Power curve showing the total number of forest plots
required to accept the outcome with given level of
confidence. The figure demonstrates that 108 forest plots
achieve a power of 80%, or 20% precision, and that
increasing this precision to 10% would require 347 forest
plots to be surveyed.

comparable tropical moist forest in the Eastern Arc Mountains
of Tanzania to be in the range of 252–581 tC/ha. As Baccini
et al. (2008) note in their mapping of above-ground biomass
in Africa, the continent is very diverse, hosting a wide range
of ecosystems that explain variation in biomass and carbon
content. Comparing primary data forest carbon stock estimates
to biome-averaged and IPCC defaults, in both moist and dry
forest, the secondary data are within the lower bound of the
primary data confidence interval. Biome-averaged data would,
however, underestimate the mean moist forest carbon stock
of the Bale Mountains by between 47% and 63% and dry forest
carbon stock by an average of 56% (Table 4).  

Cumulative emission reductions generated over the 20-year
project lifespan based on primary data are twice those
generated using IPCC data: 180,272 ktCO2 compared to
between 71,305 and 89,723 ktCO2 using ecological zone and
Africa-specific data, respectively. This result is comparable
to the 144% difference between emission reductions using five

Fig. 4. Estimated cumulative profits over the Bale
Mountains REDD project lifespan showing primary and
secondary IPCC data under variable carbon price and
discount rates (DR).

forest carbon stock estimates in Panamanian forest (Pelletier
et al. 2010). Over the forested project area, positive net
revenues are generated under all forest carbon stocks. Primary
data estimates generate between US$115 and US$445 per
hectare, and IPCC ecological zone data, the lower of the two
IPCC estimates, return US$21 to US$152 per hectare. The
differences between forest carbon stock methods are marked;
in the worst-case scenario using secondary data, US$3/tCO2e
and a 10% discount rate, the project does not break even until
year 6 (Fig. 4). At a conservative market price of US$3/tCO2e
and a 10% discount rate, primary data suggest that a REDD
project in the Bale Mountains could generated US$48 million
compared to US$9 million using IPCC data (Table 5).

DISCUSSION AND CONCLUSION
Comparing primary data from the Bale Mountains to biome-
averaged forest carbon stocks reported by the IPCC reveals
discrepancies higher than the 44% for African rain forest
reported in GOFC-GOLD (2008). It supports findings that the
application of biome-averaged data tends to underestimate
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Table 4. Comparison of primary data from this study with secondary above-ground forest carbon stock data, by forest type,
showing the discrepancy between forest carbon stock methods (tC/ha). Secondary data sourced from IPCC (2006); note that the
ecological zone data have only a point estimate.

 Primary data Ecological zone specific Africa specific
Forest classification tC/ha tC/ha As a % of primary data tC/ha As a % of primary data
Tropical moist 231 85 -63% 122 -47%

(179–283) (-) (75–202)
Tropical dry 132 61 -54% 56 -58%

(59–205) (-) (56–61)

forest carbon stocks as compared to local-level estimates
(Grassi et al. 2008, Pelletier et al. 2010, Preece et al. 2012).
Primary data reveal high uncertainty surrounding the use of
mean estimates. The 95% confidence intervals for primary
forest carbon stock estimates are, on average, 39% of the forest
strata mean. The large uncertainty results in the overlap of the
lower confidence interval bounds of primary data with the
upper bounds of the interval around the IPCC estimates. These
results suggest that diversity of forests is not sufficiently
captured by the 20 ecological zones and four climate domains
encompassed by the IPCC data. While our focus is on the
impact of forest carbon stocks, it should be recognized that
uncertainty in other aspects of the forest carbon stock and in
emission reductions accounting, such as the stratification of
forest area, application of allometric equations, carbon
fraction, forest area estimates, and generation of the baseline
will serve to further increase and compound uncertainty as
would the inclusion of other carbon pools, such as the below-
ground biomass of tree roots or soil carbon (Waggoner 2009,
Ciais et al. 2011). In particular, forest area change under the
project—activity data—will need to be collected, whereas
here it is based on projected deforestation goals of the PFM
project. The method used to gather and analyze this activity
data will also impact the error of the emission reductions
estimate (Achard et al. 2007, Duveiller et al. 2008). Further
research is required to understand if additional sources of
uncertainties act to reduce or increase estimates of forest
carbon stocks, as well as to consider how emission reductions
accounting is carried out for the suite of REDD activities that
go beyond avoided deforestation. 

The discrepancy between carbon stock estimates leads to more
than a two-fold difference in emission reductions from a
REDD project in the Bale Mountains, a substantial amount in
potential profits. This highlights research needs for forest
carbon stock methods using local data despite the fact that
emissions accounting using biome-averaged data can be
undertaken immediately for low or no cost, making them an
attractive option. We demonstrate a financial incentive for
investing in the capacity to gather primary data. With the
popularity of REDD partially dependent on the transfer of
finance from developed to developing countries, more
complex accounting can also ensure that rewards for reducing

deforestation and degradation are of appropriate scale.
However, with costs of reducing uncertainty rising as methods
become more data intensive, trade-offs may emerge. The costs
of increasing the statistical power of forest carbon stock
estimates, for example, may be greater than the benefits of
improved estimates given diminishing returns in sampling
effort. Tools such as sensitivity analysis could be employed
to identify components with the most impact on total
uncertainty which can then be prioritized (Elston 1992).  

Financial analysis is commonplace to guide decisions to
implement REDD projects. If estimated revenues are
insufficient to meet cost demands of REDD, then other tools
to fund forest conservation might be considered (e.g., Morse
et al. 2009, Fisher et al. 2011). Conversely, climate change
mitigation potential may be lost where emission reductions
are more substantial than a feasibility assessment would
indicate. All scenarios of the Bale Mountains REDD project
predicted net positive profits at year 20, despite underlying
differences in forest carbon stocks and VCM prices. Low
returns to investment and a long return period, however, may
not be sufficient to justify investment in the high up-front costs
of REDD. Our financial calculation does not include taxes to
federal and regional government or consider the share of
payments between numerous forest stakeholders. These
details are likely to make the cost-to-benefit ratio even less
favorable. Given that finance for forest conservation in the
Bale Mountains is low and largely donor funded, however,
even small net positive revenues may be a sufficient argument
for implementing REDD. As noted in Potapov et al. (2008),
forests are important for a variety of purposes. The Bale
Mountains is an area of high biodiversity value that supports
numerous livelihoods and provides water to many downstream
users; thus, other ecosystem services will be generated from
avoided deforestation, which might factor into decision-
making (BMNP 2007). Using PFM to generate REDD may
also shift forest resource use onto a sustainable pathway,
supporting livelihoods and contributing towards clarifying
property and forest-use rights for local peoples. Decisions on
whether to implement REDD may therefore not rely
completely on financial feasibility analyses. This decoupling
of REDD policy decisions and cost-benefit analysis is
evidenced by cases where the costs of REDD project and
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Table 5. Net present value of profits under different forest carbon stock methods calculated by subtracting the costs of REDD
project implementation from revenues generated through sale of emission reductions. Two price scenarios, US$3 and US$6,
and two discount rates (5% and 10%) are presented and net profits are given in 2010 US$.

 Primary data Ecological zone IPCC default
Carbon price US$6 US$3 US$6 US$3
Discount rate 5% 10% 5% 10% 5% 10% 5% 10%
Profit US$ (000) 184,978 113,607 82,671 47,591 63,359 35,129 22,893 9017
Profit US$/ha project area 445 273 199 115 152 85 55 21

policy development are being absorbed by intermediaries or
met through donor finance (Watson and Nakhooda 2012).  

Many national forest inventories in developing countries are
not comprehensive, and limited resources exist for new field
measurement (DeFries et al. 2006). The implications of the
discrepancy in forest carbon stocks makes the case for
earmarking existing REDD finance flows to build the capacity
of developing countries to prepare for a future UNFCCC
mechanism, for reducing uncertainty and improving national
forest inventories through long-term institutional backing and
resources. Not only for forest carbon stocks, support could
ensure that developing country governments benefit from
advances in satellite imagery and improved understanding of
emission reductions leakage, which may be more appropriate
at a national rather than project level. Improving data on forest
monitoring is important regardless of the ultimate financing
mechanism for REDD and will serve to reduce the distance
between broad averages and spatially limited estimates
(Grainger 2010). While we have provided a static assessment
of forest carbon stocks, it is also worth noting that a functioning
REDD project will require performance to be assessed on an
ongoing basis. Ongoing assessments will reduce uncertainties
in forest carbon stocks, and when applied to community
forestry it can also capture forest carbon stock changes
resulting from degradation in addition to deforestation
(Skutsch et al. 2011). As implementing REDD through PFM
gains prominence, particularly in East Africa (Klooster and
Masera 2000, Murdiyarso and Skutsch 2006, Agrawal and
Angelsen 2009, Hayes and Persha 2010, Mustalahti et al.
2012), earmarked finance might also be directed to broadening
research into linking community forestry with tropical forest
science and community-level forest monitoring (Michon et al.
2007, Somanathan et al. 2009, Skutsch and Ba 2010).  

We emphasize the financial implications of uncertainty in
emission reductions accounting for REDD projects. When
biome-averaged carbon stock estimates are compared with
estimates established from direct tree measurements, the
financial discrepancy is sizeable. If such discrepancies become
commonplace, they could call into question the environmental
integrity of REDD. Uncertainty may also generate unrealistic
expectations of profits that erode the credibility and potential
of the mechanism. Delivering REDD has proven more

complicated than many initially thought (Watson and
Nakhooda 2012), and these findings demonstrate the need to
improve the quantification of uncertainty in forest carbon
stocks, reduce uncertainty where possible, and communicate
uncertainty in a way that can be utilized in policy decisions.
Reducing reliance on the conservativeness principle could aid
this shift. While conservativeness will remain important to
ensure emission reductions are not underestimated in the
reference period and overestimated in the assessment period,
it should not preclude efforts to reduce forest carbon stock
uncertainties. Dealing with decision-making under uncertainty
is not novel in climate change policy (Webster et al. 2002),
and presently, countries are encouraged but not obliged to
include uncertainty estimates in their national communications
to the UNFCCC (UNFCCC 2002). While highly uncertain
GHG accounting might be acceptable for national
communications, it is insufficient for a performance-based
incentive mechanism like REDD. Although additional costs
will be incurred to reduce uncertainty, and trade-offs between
factors in the accounting process may be introduced, the
financial incentives for improved emission reductions
accounting are clear.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/5670
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