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ABSTRACT. Invasive species are a major cause of environmental change and are often costly to control.
Decision theory should offer managers guidance to formulate the optimal allocation of resources.
Unfortunately, current decision theory models typically do not consider invasion dynamics and do not
make full use of the best models of biological spread and best biological data from theoretical models. We
developed a decision theory model that integrated population dynamics, spread, uncertainty, and changes
in management policies. We applied this model to leafy spurge (Euphorbia esula), a high-priority invasive
weed in North America. We used field data to construct a biological model that included stochastic
population dynamics and spatial spread and integrated it with decision theory using stochastic dynamic
programming (SDP). The SDP model considered three control strategies: no control, biological control,
and herbicide control. Solutions from the SDP model determined the optimal strategy to apply at a given
state for any time horizon. The optimal strategy depended on the area and density of leafy spurge and varied
with the time horizon; therefore, dynamic control is important in management programs. Biological control
was consistently indicated as the optimal strategy for all time horizons. Herbicide control was the optimal
strategy for small areas with high-density infestation for long time horizons. We conclude that dynamic
control, forecasting, and the time horizon are important considerations for invasive species managers who
are under financial, logistical, and time constraints.
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INTRODUCTION

Invasive species present a complex and dynamic
problem for ecosystems and society. Here, we use
the term invasive to specify nonindigenous species
that arrive and establish at a new geographic
location and cause significant damage to indigenous
species. The costs of invasive species are twofold:
ecological and economic. Invasive species lead to
decreased biodiversity (Vitousek et al. 1996). They
alter ecosystem (Mack et al. 2000, Sakai et al. 2001,
Shea and Chesson 2002), genetic (Grapputo et al.
2005), and evolutionary processes (Sakai et al.
2001, Hoffmeister et al. 2005). The annual
economic burden of invasive species eradication
and control is > U.S. $137 billion in the United
States (Pimentel et al. 2000) and ranges from Can.
$13 to $34 billion in Canada (Colautti et al. 2006).

Given the costliness of invasive species, it is
imperative to study them and implement the best

management decisions and policies. Decision
theory is a branch of research that provides formal
frameworks with which to make optimal decisions
using explicit criteria, often based on the costs and
benefits associated with each action. Decision
theory tools are used in a variety of areas, including
fire control (McCarthy et al. 2001), macroparasite
infection (Fenton and Rands 2004), and species
distributions (Raimundo et al. 2007), yet they have
rarely been applied to invasive species
management. This omission might be because of
the difficulties of including key processes involved
in invasion biology. Although it is not possible to
consider all of the details in nature, certain
fundamental processes that underly invasions
should form the biological basis of management
decisions. Simply put, nonindigenous species are
usually problematic and costly when their
populations grow out of control and when they
spread to a large spatial extent. As well, uncertainty
exists in management decisions as environmental
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stochasticity; management decisions are based on
expected future outcomes that ultimately depend on
current and future environmental conditions. Thus,
management decisions should be dynamic and
incorporate the fact that if control is effective, the
environment should change; as the environment
changes, so too should control efforts.

Few studies have considered these components of
invasion, i.e., population dynamics, spread,
uncertainty, and temporal changes in management
policies, in an integrated manner with decision
theory, but several have considered individual
components (Pandey and Medd 1991, Shea and
Possingham 2000, Leung et al. 2002, Taylor and
Hastings 2004). There are several possible reasons
for the lack of integrated studies. First, population
dynamics and spread may be measured at different
spatial scales, so linking the two with management
might require the construction of submodels.
Second, data may often exist in a form that is
inappropriate for integration into bioeconomic
models. Lastly, the inclusion of environmental
stochasticity may require more complex models and
increase the computational burden. Nevertheless,
given that these components are central to processes
of invasion, they should be built into decision
models.

Here, we introduce theoretical advances in the
application of decision theory models to biological
problems. Putative methods of decision theory have
been brought forth in the invasion literature
specifically and in conservation ecology in general.
One such method is stochastic dynamic
programming (SDP). Researchers are beginning to
present decision theoretic and bioeconomic models
in applications with invasive species (Leung et al.
2002, Taylor and Hastings 2004), and putative
approaches such as SDP are being put forward
(Pandey and Medd 1991, Shea and Possingham
2000). SDP explicitly incorporates uncertainty and
allows dynamic management decisions in its
forecasting of future environmental conditions and
future optimal policies. SDP is flexible enough to
incorporate ecology, management, and economics
(Leung et al. 2002). In SDP, the optimal decision is
based on the current state of the system; a state can
represent ecological properties of the system such
as spread and population size, and by extension,
spatial and population dynamics, which dictate
movement between states. Thus, SDP should be
useful to build integrative decision models for
biological invasions.

We used leafy spurge (Euphorbia esula) as a case
study. We think that the application of models to
real-world systems makes theoretical developments
more compelling, ensures that theory considers
constraints and challenges associated with real data,
and is useful to address current environmental
issues. We used leafy spurge because it is a major
pest that is widespread largely in the United States
and Canada (http://www.team.ars.usda.gov/images/
lsdistnox.jpg). Leafy spurge is an exotic, perennial
weed. Its aggressive and rapid spread is attributed
to a deep root system, an early and rapid growth
phase, and prolonged seed viability of up to 8 yr
(Foley 2004). Leafy spurge was first reported in
North America in 1827. Its range today extends from
southwest Ontario and northeast United States to
the Canadian prairie provinces, central United
States, and California (White et al. 1993). The
problem is most troublesome in the Great Plains
region of the United States. Leafy spurge is the most
costly and damaging weed in North Dakota, from
where our empirical data were obtained (North
Dakota Department of Agriculture 2005).
Currently, leafy spurge is controlled using
biological control agents, herbicides, multispecies
grazing, or a combination of these three strategies.
Each control strategy has its own trade-offs in terms
of cost and efficacy, making leafy spurge an ideal
model system for decision theory.

Decision theoretic approaches such as SDP
potentially have important contributions for
invasion biology. However, there is typically a lack
of integration between biology and decision theory
whereby only a few simplified environmental states
are considered. Ideally, the best of decision theory
and biological models should be used. The
integration of modeling approaches from various
disciplines, although difficult, is necessary if these
decision theory models are ever to be used outside
of a pure academic arena. Additionally, in biology,
simulation models are often simplified by assuming
parameter values such as dispersal parameters from
data that have been collected in experiments or other
systems (Nehrbass et al. 2006, Pausas et al. 2006).
Alternatively, the observed pattern of interest, i.e.,
the spatial spread of leafy spurge, could be used
directly to parameterize the model. Recent
publications have highlighted the rarity and argued
for the use of this alternative approach to infer
parameters directly from patterns in plant biology
(Winkler and Heinken 2007). We used this approach
to demonstrate its utility for invasion biology.
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We developed a methodology for the integration of
SDP with a spatially explicit model of population
spread that represents the best descriptor of spread
and population dynamics that is available. Further,
we incorporated time lags in the effectiveness of
control methods, which is an important concept in
invasion biology, but is not common in SDP. We
developed these techniques with the consideration
of real-world data. To take advantage of real-world
data, we developed a biological submodel to directly
parameterize the observed pattern of interest: the
spatial spread of leafy spurge. We applied our
approach to the case of leafy spurge to demonstrate
the application of SDP in answering the following
questions: Which strategy is optimal? How does the
optimal strategy change with the state of the
environment, e.g., density and spatial extent of leafy
spurge? How does the time frame, i.e., short-term
vs. long-term control, affect economic gains?

METHODS

Biological model for leafy spurge (Euphorbia
esula)

We constructed a biological model based on
empirical data on the spread and population
dynamics of leafy spurge obtained from the
literature. Data were collected from economic
reports to determine the spatial extent of leafy
spurge in North Dakota (Table 1). For population
dynamics, we used Selleck et al.’s (1962) empirical
data on density (Table 2) to parameterize a logistic
growth model of the form

(1)

where Nt+1 and Nt are the density of leafy spurge in
stems per square meter at time t + 1 and time t,
respectively; r is the intrinsic growth rate of leafy
spurge; and K is the carrying capacity of the
environment.

Selleck et al. (1962) reported density in shoots per
square meter, but we assumed this to be equivalent
to stems per square meter because both units

indicate the presence of a leafy spurge individual,
which is sufficient for the biological model. To
determine the values of r and K, we took the
derivative of eq. 1 as

(2)

.

We calculated ∆N and Nt from the empirical data
using a quadratic polynomial with an intercept of
zero. We determined the best fitting parameters for
the polynomial function and derived the values of
0.4791 and 218 for r and K, respectively. We set
N0 = 19.1 for the fitting procedure because leafy
spurge is unlikely to be completely eradicated in the
field (Harris et al. 1985, Lajuenesse et al. 1994) and
this was the lowest value reported in the literature
(Selleck et al. 1962). We then explicitly
incorporated the above information on spread and
population dynamics into a model of spatial spread
for leafy spurge.

We used coupled map lattices (CMLs) to build a
model of spatial spread that incorporates essential
invasion biology components such as population
dynamics and stochasticity. In CML modeling,
processes occur within and over grid cells, and
model fitting is computationally intensive because
of the number of parameters to be estimated and the
parameter space. Therefore, we set the grid size of
our CML model to 2000 × 2000 cells, where each
cell represented an area of 9 ha. This grid size was
> 10 times larger than the extent of the actual
invasion, such that the bounds of the grid were never
reached in the simulations and we could entirely
avoid the problem of boundary effects.

We based the biological model on a simple invasion
process with stages of dispersal and establishment.
One cell was initially infested at the beginning of
the simulation, after which growth occurred
according to eq. 1, followed by dispersal. Dispersal
was characterized by a probabilistic dispersal
kernel. We calculated the number of propagules
(seeds) that arrived at uninfested cells as a
propagule’s probability of dispersal from an
infested cell to an uninfested cell multiplied by the
number of propagules in the infested cell:
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Table 1. Spread of leafy spurge in North Dakota, USA.

Year Time (yr) Infested area (ha)

1909 0‡ 0

1962 53 80900.00

1973 64 171400.00

1982 73 348800.00

1987 78 404685.64

1990 81 526091.33

Note: Data were obtained from Leistritz et al. (1992), Lym et al. (1993), Leitch et al. (1994), and
Bangsund et al. (1997).
‡Time since leafy spurge is thought to have entered North Dakota rangeland.

(3)

where Nu,t is the number of propagules that reach an
uninfested cell u, Ni,t is the number of propagules
generated by infested cell i at time t, and pi→u is
the probability of propagules reaching cell u from
cell i. 

Infested cells near an uninfested cell contribute
seeds; thus, we summed the number of propagules
coming from n infested cells that were within a
critical distance of L cells away. The negative
exponential dispersal kernel has been widely used
to approximate seed dispersal in other models (He
and Mladenoff 1999, Ellison and Parker 2002).
Dispersal kernels in ecology incorporate vectors
such as wind, animals, and humans, in addition to
seeds simply dropping around a plant. As well,
dispersal is not only limited to movement, but
incorporates seasonality, time, and other processes
that are not known to the modelers of a system.
Therefore, the use of the negative exponential kernel
is justified for our model. We calculated the critical
distance L from the probability density function
PDF of the dispersal kernel as follows:

(4)

.

Using the cumulative probability function, the
following equations can be formulated:

(5)

and

(6)

where p is the cumulative probability of propagule
dispersal up to distance L, a is the intercept of the
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Table 2. Changes in the density of leafy spurge (shoots/m²) during 1951–1957 according to the intial density
(Selleck et al. 1962).

Initial density Year Mean density

1951 1952 1953 1954 1955 1956 1957

1–35 shoots/m² in 1951 19.1 38.0 56.9 69.4 109.3 121.2 144.2 79.7

36–99 shoots/m² in 1951 61.5 84.5 102.0 112.0 162.9 179.9 199.4 128.9

≥ 100 shoots/m² in 1951 122.5 125.5 141.3 156.7 202.8 241.6 207.7 171.1

Note: The study site was divided into quadrats that were classified according to the intial density, and
the density was determined annually for each density class.

probability density, β is the dispersal coefficient,
and x is the distance between two cells.

Solving eq. 6 results in

(7)

.

We solved for L by setting a = 0.9995, which means
that 99.95% of the propagules are dispersed by the
kernel up to distance L from the source. The
combination of L and the fitted parameters α and β 
from eq. 7 determined the pattern of spread; one
parameter could compensate for the other to
generate a similar pattern of invasion. Thus, we
chose a value of L that incorporated the majority of
the dispersal kernel (99.95%) while remaining
computationally feasible.

The term pi→u in eq. 3, i.e., the probability of
dispersal from infested cell i to uninfested cell u, is
determined as

(8)

.

The establishment of leafy spurge was considered
to be a probabilistic process because of variable
environmental and ecological conditions in nature.
We used a modified version of the Weibull
distribution (Dennis 2002, Leung et al. 2004) to
determine the probability of establishment:

(9)

where α is a scalar for propagule pressure, and c is
a shape coefficient. We chose this form because it
incorporates propagule pressure α and indicates an
Allee effect if c > 1.

The arrival of propagules within a cell was
stochastic and depended on several environmental
and biological conditions in nature. We included
stochasticity in the invasion process by drawing a
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random number R such that 0 ≤ R ≤ 1 and comparing
it with E(Nu,t); establishment occurs if E(Nu,t) > R.
We also assumed that once leafy spurge established
within a cell, additional dispersal into the cell was
negligible, i.e., the population dynamics of the
infested area were dominated by local population
growth, rather than seed dispersal from other cells.
Therefore, a cell in which leafy spurge has
established becomes a source of propagules that are
capable of invading other cells in which leafy spurge
has not yet become established. We parameterized
the unknown variables α, β, and c in eqs. 7 and 9
via a grid search algorithm using an absolute
difference fit statistic:

(10)

where M(α, β, c) is the measure of model fit
generated using a given set of values for α, β, and
c; On is the total observed infested area over the 81
yr for which we had data; and En is the expected
infested area from the field data (Table 1).

From eq. 7, we determined that β > 2 resulted in
biologically impossible critical dispersal distance L.
Hence, the algorithm was set to search for values
of β between 0 and 2. Similarly, the initial values
of β and c were chosen such that the algorithm was
computationally feasible. After determining the
best fitting parameters, we used them to calculate
the critical distance L and generated simulated
trajectories to be used by the decision theory model.

Control strategies and stochastic dynamic
programming formulation

The goal of our decision theory model was to
provide optimal strategies for any given area and
density of leafy spurge infestation. We integrated
the results of the biological model for spatial spread
into the decision theory model. We describe the
stochastic dynamic programming (SDP) model
using the terminology of Leung et al. (2002). The
main components of the SDP method are states,
strategies, and a welfare function that is analogous
to the objective function in other publications. States
in SDP define the system; in our model, they were
the area and density of leafy spurge. We used density

as a state to describe the system because it correlates
well with leafy spurge cover (Scheiman et al. 2003)
and provides an intuitive way to describe the leafy
spurge system in terms of management and the
effect of control strategies, for which data exist (i.
e., the effect of control is to reduce density). Our
system consisted of 120 area states and 19 density
states, resulting in a total of 4180 possible states for
the entire system (Appendix 1). Movement between
states is governed by transition matrices that are
strategy dependent. We considered three control
strategies for leafy spurge: no control, biological
control, and herbicide control. Biological control
involves the release of the flea beetle Apthona
nigriscutis (other species of Apthona are also used
by managers) over the infested area. The
effectiveness of biological control, in terms of the
percentage of leafy spurge controlled, increased
over time and peaked after 3–5 yr of application
(United States Department of Agriculture-
Agricultural Research Service TEAM Leafy Spurge
2002). To incorporate this time lag in the
effectiveness of biological control, we constructed
a transition matrix for 4 yr of biological control
(Appendix 1). Herbicide control involves the
spraying of infested areas with Picolarm and 2,4-D.
Other chemicals are also applied to leafy spurge,
but we used the most widely applied ones that were
mentioned in the literature. We estimated the
percentage control of leafy spurge density for the
biological control and herbicide control strategies
by averaging the percentages of values from several
field experiments (Table 3). We also assumed in the
model that the response of grass to management was
linearly related to the effect of management on leafy
spurge area and density (Kirby et al. 2000, Rinella
and Sheley 2005).

The SDP method maximizes a welfare function that
is state dependent. For a given area a and density d 
of leafy spurge infestation, which defines a state i, 
the welfare function is

(11)

where Wt(i) and Wt+1(i) are the welfare for state i at
times t and t + 1, respectively; K is the index of the
strategy applied, where 1 = no control, 2 = biological
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Table 3. Control of leafy spurge density using biological control and herbicide control strategies.

Strategy Years of control Decrease in leafy spurge density
(%)

Data source

1 67 McClay et al. (1995), Stromme et al. (1996),
Lym and Nelson (2000), Kirby et al. (2000),

Lym and Nelson (2002), Lym (2005)†

2 76

3 81

4 97

Biological control

Herbicide control 1 95 Lym and Nelson 2002‡

†The mean percent control was calculated by combining all data sources and attempting to ensure that
the experimental conditions were similar.
‡The chemicals and quantities used were Picolarm at 0.56 kg/ha and 2,4-D at 1.1 kg/ha, applied in the
fall.

control, and 3 = herbicide control; R(i) is the net
revenue from North Dakota rangeland for state i 
(Appendix 1); TK is the probability transition matrix
for strategy K to change from state i to j; n is the
total number of future states for current state i that
have nonzero probability; and C(i,K) is the cost of
using strategy K for state i (Appendix 1).

The welfare function calculated the net revenue at
time t by applying control strategy K. The SDP
model functioned via backward optimization from
the time horizon T to t = 0. It was backward in the
sense that the welfare at time t + 1 was already
maximized when it was used to calculate the welfare
at time t. In SDP, the time horizon is the time frame
of interest or the duration in which the consequences
of management actions are considered. SDP
solutions for long-term control programs were
modeled by considering lengthy time horizons up
to Tmax = 81 yr, which was the number of years for
which we had data from North Dakota (Table 1).
More details about the SDP model are provided in
Appendix 1.

To visualize the results of the SDP model, SDP
solutions are displayed in state-space graphs for
different time horizons and for the difference in
welfare between the optimal strategy and only a

single strategy for all t. In the state-space graphs,
each panel shows the optimal strategy identified by
SDP for each state (a density and area combination).
We used three panels to show different time
horizons to illustrate the effect of time frame in
determining the optimal strategy, i.e., they illustrate
the recommended actions at a particular time for
each environmental condition. Although we only
show the results for three times, the SDP approach
actually generates a panel for each time. Thus, a
manager would know which strategy to apply for
all times and environmental states. We use a
differences graph to show a more intuitive and
informative picture of the SDP model by placing
the results in terms of economics.

RESULTS

We used field data on the spread of leafy spurge to
fit the coupled map lattice (CML) model using a
grid-search algorithm (Table 4). The best fitting
model parameters indicated no Allee effect (c < 1),
and the critical distance L was 28 cells or 8.4 km.
Therefore, 99.95% of propagules were distributed
within this distance with an exponentially
decreasing probability as the distance from the
source cell increased.

http://www.ecologyandsociety.org/vol13/iss2/art12/
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The average simulated trajectory from the CML
model fit the field data well (Fig. 1). A lag phase
was observed in the simulated trajectory, followed
by exponential growth after 40 yr. The range of
simulated trajectories increased over time, but well
encompassed the actual data from the literature.

Using the CML model, we constructed the
stochastic dynamic programming (SDP) model to
determine the optimal control strategy for leafy
spurge. We obtained optimal control strategies for
the state space at different time horizons using the
SDP model (Fig. 2). We examined the optimal
strategy to apply in the first year of management
given the current state of the system (i.e., area and
density of leafy spurge) to maximize the revenue at
time horizon T. At short time horizons, biological
control was the optimal strategy for all states, except
area states with low density. In a low-density state,
the no-control strategy was optimal, regardless of
the area of leafy spurge infestation. At longer time
horizons, biological control was the optimal
strategy for small areas of leafy spurge with low
density. Herbicide control increasingly became the
optimal strategy for areas < 2.0 × 105 ha and
densities > 65 stems/m² as the time horizon
increased.

The difference in welfare between the optimal
strategy and the use of only a single strategy was
clearly in favor of the optimal strategy (Fig. 3). For
a small area and low-density state, the difference in
welfare was highest for the no-control strategy and
lowest for the biological control strategy. In
contrast, for a larger area and high-density state,
herbicide control was the most expensive strategy,
whereas biological control remained the least costly
compared to the optimal strategy.

DISCUSSION

An optimal management program for the costly
invasive species leafy spurge was determined by
integrating available empirical data with biological
models in a decision theory framework. Typically,
there is a gulf between theory and management
decisions. Decision theory is often examined using
models that do not fully make use of empirical data,
and the applicability of these models to real systems
remains unknown. In contrast, current control
recommendations for leafy spurge are based on
empirical data and do not take advantage of the body

of work on decision theory. Few researchers and
managers have used theory and experimental data
to construct models to guide management decisions.
We integrated population dynamics, spread,
uncertainty, and temporal changes in management
policies to develop a more complete decision theory
model than currently in use.

Such integration has been rare for invasive species
(but see Taylor and Hastings 2004), and more case
studies are needed to define the challenges and
solutions for the management of invasive species.
Integrative models should be developed using a
variety of approaches, and the management tool box
should be expanded to allow the comparison of pros
and cons, as well as the results of models. For
instance, Taylor and Hastings (2004) made
decisions using genetic algorithms. However, there
are other decision theory techniques available such
as optimal control theory (Shastri and Diwekar
2006) and stochastic dynamic programming (SDP;
Shea and Possingham 2000, Fenton et al. 2002).
Genetic algorithms are very flexible, but techniques
such as SDP allow the determination of global
optima, as well as the development of a full decision
matrix for all possible states over time. Therefore,
SDP allows dynamic management decisions based
on future expectations and allows the analysis of the
role that time horizons play in management
decisions. Previously, researchers have applied
SDP models to biological control (Shea and
Possingham 2000, Fenton et al. 2002) and herbicide
control (Pandey and Medd 1991, Sells 1995) and
have generated insightful heuristics. However,
these models mostly relied on theoretical data;
therefore, the ability to extend these models to real
systems remains unknown. Leung et al. (2002) used
SDP in conjunction with empirical data, but only
considered management at small scales, rather than
regional spread, which is often of interest for
invasive species. As well, Taylor and Hastings
(2004) recommended applying their methodology
at a regional scale. We have demonstrated that it is
possible to integrate decision theory using SDP with
empirical data and biological models that contain
the most relevant components of invasion biology:
population and spatial dynamics, uncertainty, and
alternative management strategies.

We highlight three key observations from the state-
space graphs (Fig. 2) and discuss their biological
and management significance. First, we observed
that the optimal strategy in state space was
dependent on the state and time horizon. This
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Table 4. Initial and best fitting values of parameters for the coupled map lattice model.

Parameter Initial value Best fit value

Start End Increase

Dispersal coefficient (β) 0.010000 2.00 0.010 0.090000

Propagule pressure coefficient (α) 0.001005 10.00 0.001 0.003005

Allee effect coefficient (c) 0.000000 10.00 0.500 0.500000

dependence points to the importance of dynamic
control. Dynamic control occurs when optimal
strategies differ in different years of the control
program and is especially relevant to consider when
previous decisions affect future states, i.e.,
environmental conditions change after applying a
strategy such that a different strategy may be
optimal in the next time period. Second, the
importance of including essential components of the
invasion process was highlighted by including
dynamic growth in the biological simulation. We
further contend that excluding density as a state
variable in the SDP model would have provided
limited and suboptimal recommendations for
managers. Third, the herbicide control strategy was
optimal for more states at longer time horizons than
at shorter time horizons. The application of
herbicides to densely infested patches resulted in
reduced rates of spread because density was related
to propagule pressure, which in turn was related to
the probability of establishment. At longer time
horizons, the lost revenue caused by the larger
spatial extent of leafy spurge accumulated over time
such that an initial higher investment in control was
worthwhile: The benefits of having greater control
outweighed the higher costs of herbicide control. At
lower density states, this was no longer the case, and
the marginal reduction in density was not
worthwhile. It is also meaningful to note that despite
the time lag in the effectiveness of the biological
control strategy, it remained the most frequently
applicable optimal strategy at all time horizons.
Biological control costs less to apply than does
herbicide control and has similar effectiveness after
the lag phase. Therefore, a trade-off between cost
and effectiveness occurs such that the benefits of
applying biological control accumulate quickly.

This is one of the benefits of decision theory models
such as SDP: these costs and benefits over time can
be examined rigorously. In economic terms, the
expected savings from applying the optimal strategy
were accumulated faster for larger area and higher
density states than for smaller area and lower density
states (Fig. 3). This was probably because of the
initial welfare, which would have been higher for
the large-area and high-density states and much
lower for the small-area and low-density states. The
smallest difference in welfare among all strategies
occurred between the optimal strategy and the
biological control strategy (Fig. 3). This
corresponds with the conclusions from the state-
space graphs (Fig. 2) in which the optimal strategy
for most environmental states was biological
control. Herbicide control was likely the most
expensive strategy for the large-area and high-
density state because it was the costliest of the three
strategies considered. Overall, our results point to
some generalizations about important concepts in
the management of invasive species.

The ability to forecast future costs and resources, as
well as management outcomes, is useful and highly
regarded in any management plan. It is likely that a
biological model based on real data should further
increase the reliability of management plans. Our
forecasted SDP solution incorporated components
of population dynamics, space, and economic costs
of two widely used control strategies for leafy
spurge. In long-term forecasting, each of these
components was important to consider because of
their strong interdependency in predicting the
spread of leafy spurge. Time horizons were
ultimately important for many reasons, but mainly
because managers must plan ahead to allocate
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Fig. 1. Actual and simulated spread of leafy spurge in North Dakota rangeland over 81 yr. The simulated
data are based on the mean of 100 simulations from the coupled map lattice model. The actual data are
based on field measurements (see Table 1).

optimally resources from limited budgets. Although
managers typically operate on short time horizons
and small spatial scales, we argue that such
decisions should be examined explicitly to identify
their possible consequences. By examining time
horizons, we were able to compare different
scenarios of control such as 5–10 yr of control vs.
a multidecade management plan. The time horizon
influenced the optimal strategy for some
environmental states, but not others. Our biological
spread model indicates that coordination and large-
scale management plans should be considered,
given that invasion dynamics in new areas over time

are dependent on whether invaders are present in
other areas. As well, improved decision theory
models in which environment, economics, and
management are linked would be of interest to the
various stakeholders involved in invasive species
management.

Future considerations

In our model, we assume that the area of infestation
is a homogenous entity, whereas leafy spurge
displays patchy growth. It is difficult to build
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Fig. 2. The optimal control strategy to be applied for a given state (area of infestation in hectares) and
density (stems of leafy spurge per square meter) using the stochastic dynamic programming solutions for
three time horizons. The time horizons were selected to demonstrate the appearance of herbicide control
as an optimal strategy at long time horizons.

models that incorporate patchy growth and
landscape structure to derive information for
decision theory. The difficulties include the
formulation of the biological model and
computational limitations caused by the complexity
of modeling heterogeneity in such a system. For the
percentage control of leafy spurge under each
control strategy, we used the average of values
obtained from several studies and assumed that
herbicides were applied in the fall. These
generalizations may not be applicable to all
infestations of leafy spurge because of differences
in soil type, habitat suitability for flea beetles, and

restrictions on herbicide usage. Regardless, the
general trends observed in our model should still be
applicable to most areas of the United States and
Canada where leafy spurge occurs.

Future extensions to our model could include the
consideration of alternative control strategies and
the comparison of results from different decision
theory models. Although the examination of
biological and herbicide control strategies was
sufficient for our purpose of developing a
methodology to integrate decision theory and
biological spread models, other potential control

http://www.ecologyandsociety.org/vol13/iss2/art12/


Ecology and Society 13(2): 12
http://www.ecologyandsociety.org/vol13/iss2/art12/

Fig. 3. Difference in welfare for the application of the optimal strategy versus the application of only
one strategy (no control, biological control, or herbicide control). The cumulative welfare difference
over time starting from a state with (A) a small area and low density and (B) a large area and high
density of infestation.
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strategies such as sheep grazing and integrated pest
management (Lym 2005) may also be worth
considering. Similarly, an explicit comparison of
the pros and cons of different decision theory
frameworks has rarely been done for ecological
issues and would be worth exploring. Control
theory, genetic algorithms, and neural networks are
some other decision theory approaches to consider.
Future directions may include the application of our
techniques to other invasive species, with
modifications in the biological and decision models
as required. Regardless of future improvements, our
results add to the literature by presenting a
methodology for integrating biological models
based on empirical data with decision theory, which
can then be applied to a to a real-world problem in
a management context and provide recommendations
based on the model.

Responses to this article can be read online at:
http://www.ecologyandsociety.org/vol13/iss2/art12/responses/
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Appendix 1. Further details of the SDP model

Please click here to download file ‘appendix1.pdf’.
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