
CEAI, Vol.15, No.4 pp. 37-46, 2013 Printed in Romania

Transparent Real Time Monitoring for Multi-tenant J2EE Applications

Octavian Morariu*, Cristina Morariu**, Theodor Borangiu*

* University Politehnica of Bucharest, Dept. of Automation and Applied Informatics, Bucharest, Romania
e-mail: { octavian.morariu, theodor.borangiu}@cimr.pub.ro

** CloudTroopers Intl. , Cluj-Napoca, Romania
e-mail: cristina@cloudtroopers.ro

Abstract: With the emergence of PaaS and SaaS cloud delivery methods, accurate monitoring and
metering become an important challenge for the cloud providers, as they assure the input that drives the
elasticity of the solution, by dynamically provisioning and de-provisioning resources, and at the same
time enable the chargeback for the resources used. This paper presents an approach for real time
monitoring of multi-tenant Java J2EE based applications. The main requirements of such a monitoring
solution are: low monitoring performance overhead on the JVM, capability to monitor code execution by
JVM thread based on the tenant running it and dynamic granularity adjustment at Java method level,
enabling relevant reporting of code execution. The solution proposed in this paper combines three
methodologies of JVM and J2EE monitoring to achieve a correlated view of the code execution. The first
layer is at JVM Tooling Interface by using a native agent that captures the thread execution events and
adds dynamic instrumentation in the code of the target application at method level. The second layer is at
JAAS level in J2EE where the authentication operations are hooked and linked to the JVM threads.
Finally the third layer is at EJB container level where the EJB 3.0 interceptors are used to monitor EJB
calls. The real time data from these three layers is consolidated based on the tenant's identity and reported
to a metering application. The experimental results are focused on the accuracy of the monitoring
solution implemented on Apache Geronimo 3.0.0 application server, using a benchmark application.
Finally the paper presents the monitoring performance overhead introduced by the solution proposed
measured on SPECjvm2008 benchmark application, focusing on the granularity of monitored data.

Keywords: multitenancy, j2ee, monitoring, shared resources, isolation, ejb, JAAS, JVMTI, multi agent
system, ESB, SOA.

1. INTRODUCTION

All cloud computing business models have one common
characteristic that makes this new computing model so
attractive for customers: the pay-as-you-go model (Armbrust
et al., 2010). This is the key aspect because it enables
flexibility for customers, allowing them to grow and shrink
their IT architecture as dictated by the business needs. For
cloud providers, implementing a low granularity, accurate
pay-as-you-go model raises a serious challenge on the usage
monitoring side (Patel et al., 2009). The monitoring
capabilities are vital for this type of business model, as they
provide the recorded metrics that are driving the elasticity of
the solution and are used to generate the invoices for the
customers. Commercial cloud providers today use various
metrics for charge-back, starting from a "per user" fee in
SaaS environments, CPU and storage usage in PaaS
environments and direct resource allocation in IaaS
environments (Buyya et al., 2009; Morariu et al., 2012). SaaS
and PaaS cloud models assure superior resource utilization by
implementing multi-tenancy at some level.

Multi-tenancy represents the operating mode of a software
application in which multiple organizations or tenants are
using the same application in a shared environment (Tharam

et al., 2010). The tenants are isolated from each other at
various levels, depending on the multi-tenancy model
implemented by the cloud provider. Gardner Inc. (Yefim,
2012) provides a reference architecture for multi-tenancy in
cloud computing, identifying seven models for multi-tenancy
by dividing the vertical stack in four layers from bottom up:
infrastructure layer, data platform, application platform and
application logic. The multi-tenancy models identified are:
(1) shared nothing, (2) shared hardware, (3) shared OS, (4)
shared database, (5) shared container, (6) shared everything
and (7) custom multi-tenancy.

1. In shared nothing model each tenant has its own complete
stack (Abadi, 2009). The isolation between tenants is in this
case complete as each application instance runs on separate
hardware. The costs of such an operating model is high for
the cloud providers as they still have to maintain the
complete systems. However the benefit is on the release
management side where the application provider has to
support a single version of the application used by all
customers. The resource utilization is not improved, being
similar to a hosted environment model.

2. The shared hardware model relies on virtualization
technologies to obtain better resource utilization (Bezemer et
al., 2010). The isolation is realized in this model at the
hypervisor level. The complete software stack in this case is

mailto:@cimr.pub.ro
mailto:cristina@cloudtroopers.ro

38 CONTROL ENGINEERING AND APPLIED INFORMATICS

still separate for each tenant. Compared to the shared nothing
model the costs are reduced by achieving better resource
utilization.

3. The shared OS model implies using a single OS instance to
host the application software stacks. From the application
perspective, each tenant is still using a separate stack but the
isolation is assured by the operating system which provides
process execution and memory isolation. The resource
utilization is comparable to the shared hardware model, but it
has the advantage of eliminating the hypervisor induced
performance overhead. Also, from licensing perspective it is
cost effective to use a single operating system instance for all
tenants.

4. The shared database model is the first model where the
application software stack is shared between tenants. This
model offers a reduced isolation between tenants compared to
the previously mentioned models, but is more cost effective
and enables an elastic design of the underlying resource
models (Dean and Aulbach 2007).

5. In the shared container model the application platform
layer is shared by leveraging a cloud-enabled container for
applications and a shared database (Soltesz et al., 2006). This
high level sharing implements isolation between tenants at
the container level, each tenant using a different application
instance deployed in the same container and the same shared
data layer. This model provides the best resource utilization
as the load can be globally scaled up and down at both
middleware layer and database layer.

6. The shared everything model represents the delivery model
where there is only one application instance for all the
tenants. This is the most effective delivery method for the
cloud providers, but is the most restrictive in regards of
customizations for the customers.

7. Finally the custom multi-tenancy model is realized by
using custom cloud enabled application logic to handle the
multi-tenancy. In this model each tenant is using a shared
application stack and the isolation is implemented in the
application logic (Afkham et al., 2010). This model is very
cost effective for the cloud providers as the resource
utilization is very high and the maintenance costs are not
impacted by the number of tenants.

Regardless of the implementation model chosen, multi-
tenancy has a series of challenges that must be handled by the
cloud providers. One of the most important challenges is
application performance (Li et al., 2008). The application
performance is a concern even in classic single tenant
application deployments where it would affect only that
single tenant; however in a multi-tenant scenario the shared
resources model can amplify the effects by propagating the
performance degradation to the other tenants depending on
the isolation level (Wang et al., 2008). One common
technique to assure even performance across all tenants in
shared hardware model is to allocate a fixed and similar share
of the physical resources to each tenant. This approach
however has the disadvantage of limiting the overall physical
resource utilization. Another important challenge for

multitenant application deployments is related to data
security (Takabi et al., 2010). The shared application stack
reduces the data isolation and increases the risk of accidental
data disclosure. This becomes even more important as tenants
are usually competing in the same market area so confidential
data disclosure can have a huge negative impact. Data
encryption (Subashini and Kavitha, 2011) is a method to
prevent such situations but it has a significant impact on the
overall application performance.

This paper focuses on describing a mechanism for monitoring
multi-tenant single instance applications based on JAAS. The
main objective is to monitor CPU time per JVM thread and
Heap Space by each tenant using the application. We
consider the single instance JAAS-based separation for
tenants. The solution proposed has a low overhead (<2%)
demonstrated with SPECjvm2008 benchmark. The novel
approach consists in the fact that the monitoring solution
gathers data from multiple layers (JAAS, JVMTI, and EJB)
and consolidates the data around tenants. The solution
presented is transparent assuring that no code changes are
required in the target application.

2. STATE OF THE ART IN M-T MONITORING

Currently around 30% of the enterprise applications in the
world are running on the Java platform using technologies
like Enterprise Java Bean (JSR220, 2006) (EJB), Servlets
(JSR154, 2007), J2EE (JSR244, 2006), OSGi (OSGi 2009)
and others. These technologies are expected to play an
important part in the PaaS and SaaS developments in the
years to come. However, Java technology itself predates
multi-tenant cloud computing and so at this time there is no
mechanism available out of the box for implementing such
applications (Smith, 2011). Another problem observed in
practice is that J2EE application servers usually run a single
web application, even if these are designed to host multiple
applications. The reason behind this is the lack of isolation
between applications and this leads to poor resource
utilization. There are three main approaches to multi-tenancy
in Java described in the literature as illustrated in Fig. 1.

Fig. 1. Approaches to multi-tenancy with Java.

1. Waratek (Waratek Cloud VM) is providing a commercial
implementation of the JVM that allows multi-tenancy by
application isolation at JVM level. The Waratek Cloud VM
introduces a feature called Virtual Containers (VC), which is
a meta circular VM within the VM which shares the host VM
environment (heap, classes, JIT) with other VCs. A VC is
extremely lightweight adding a small overhead, allowing a
single VM to host thousands of VCs. CPU priority, memory
limits and bandwidth are isolated at VC level. Waratek Cloud
VM aims at delivering Java-as-a-Service, allowing execution
of existing Java/J2EE platform software as a multitenant

CONTROL ENGINEERING AND APPLIED INFORMATICS 39

cloud service without code change. This is possible because
the
VM claims to be binary compatible with existing applications
and platforms. Essentially the isolation allows every .war/.ear
application to run in a separate VC. By adding this VC layer
at the JVM level some advanced functionality like VC
mirroring for disaster-recovery, live snapshot and live
migration can be implemented.

2. Java EE 6 Platform was released in December 2009 and
has gained a lot of traction within the developers community
mainly because of the POJO-based programming model,
numerous extension points and Web Profile model. This is
reflected also by the large number of application servers that
support this technology (13 at this time). However Java EE 6
Platform was not designed with the new cloud introduced
requirements in mind. In 2011 Oracle announced Java EE 7

Fig. 2. Monitoring mechanism for a typical J2EE application.

which was planning to include new JSRs that reflect
emerging needs in the community and to add support for use
in cloud environments. The enhancements targeted directly at
cloud deployments of Java EE are focused on PaaS
enablement and multi-tenancy support. Despite the initial
plans, in August 2012 the cloud related enhancements from
Java EE 7 were deferred to the next version Java EE 8,
planned for 2015. Even with Java EE 6, there are several
cloud providers like IBM, Red Hat, CloudBees (CloudBees
AnyCloud, 2012) and Oracle that support deployment of
standard Java EE applications in the cloud. IBM Smart Cloud
(IBM, 2012) offering allows monitoring of the deployed Java
EE applications by providing IBM SmartCloud Application
Performance Management tool. This tool is designed to
intelligently manage traditional IT, virtualized, cloud and
hybrid environments. IBM SmartCloud Application
Performance Management can collect metrics like client

volume, response time as well as transactions timings in the
application server. The application monitoring tool offered by
CloudBees is called New Relic and is available to all
CloudBees subscribers for free. New Relic (New Relic
Application Monitoring Solution, 2012) offers metrics like
browser load time, application server response time and time
taken by key transactions and various historical usage reports.
While these monitoring solutions are enough for the scenario
in which a single-tenant Java EE application is deployed in a
PaaS environment, they fall short in a multi-tenant Java EE
application scenario as it becomes impossible to distinguish
between the tenants.

3. Finally, the third class of applications are using J2EE 6
technology and the isolation is enforced by using the Java
Security mechanism. This class of applications is achieving
multi-tenancy support by enhancing the Java Authentication

and Authorization Service (JAAS)-based authorization
mechanism to allow tenants access and customize their
specific access control lists and privileges in an isolated way.
Implementing multi-tenancy using JAAS involves providing
authentication services by supporting multiple authentication
sources which are tenant specific. Along authentication, the
JAAS module handles authorization by maintaining a set of
access control lists of users in the context of each tenant
organization. A detailed study on how to implement this
approach using IBM WebSphere is provided in an IBM
devWorks article (Bo et al., 2009).

3. A MECHANISM FOR TENANT MONITORING

The Java 2 Platform Enterprise Edition (J2EE) provides a
standard for building enterprise multi-tier applications. The
current business dynamics have created the need for better
larger-scale solutions for information management. The J2EE

40 CONTROL ENGINEERING AND APPLIED INFORMATICS

specification comes as an answer for these challenges by
offering a development platform that improves productivity,
promotes standards for enterprise applications, and ensures
portability.

The J2EE architecture offers component-based development
of multi-tier enterprise applications. A J2EE application
system typically includes client tier, middle tier and
enterprise data tier. In the client tier, Web components such
as Servlets and JavaServer Pages (JSPs) or standalone Java
applications provide a user interface to the middle tier. In the
middle tier, enterprise java beans (EJBs) and Web Services
encapsulate reusable and distributable business logic for the
application. These middle tier components are running in a
J2EE Application Server, which provides the platform for
these components to perform actions and store data. In the
data tier, the application data is stored usually in a relational
database. J2EE applications are comprised of components,
containers, and services. Web components are Servlets and
JSPs that provide responses to requests from a Web page.
EJBs contain server-side business logic implementation for
enterprise applications. Web and EJB component containers
host services that support Web and EJB modules.

The monitoring mechanism proposed is illustrated in Fig. 2.
There are four main components involved: a JAAS login
module that links the current thread servicing a tenant with
the thread identifier, a EJB interceptor that monitors EJB
calls for each thread at the container layer and a JVMTI agent
responsible with collecting thread CPU time and allocated
heap objects. The information is aggregated and consolidated
on tenants inside an external monitoring agent and then
reported on real time tenant monitoring data streams. These
data streams are consumed by an external reporting
application described in (Morariu et al., 2012). The following
sections detail the implementation of each module.

3.1 Web Filter

Web Filter component definition was introduced in Java
Servlet specification version 2.3. The filter intercepts requests
and responses and has full access to the information
contained in these requests or responses. Filters are useful for
many scenarios where common processing logic can be
encapsulated. Historically filters have been used for access
management (blocking requests based on user identity),
logging and tracking users of a web application, data
compression, localization, XSLT transformations of content,
encryption, caching, triggering resource related events,
mime-type processing and many others. The implementation
of a Web Filter is governed by the following interfaces:
Filter, FilterChain, and FilterConfig in the javax.servlet
package. The actual filter is a implementation of the Filter
interface. The filters are invoked in a chained fashion by the
servlet container. The Filter interface declares the doFilter
method, which contains the actual processing of the
request/response objects.

In our implementation, the doFilter method sends a message
to the Monitoring Agent containing the resource being
requested by the user. The information sent by the Web Filter

to the monitoring agent has the following structure:

Table 1. Web Filter message structure.
ThreadID The ID of the thread in which the web filter is called

Resource URL URL of the resource requested by the end user

Time Time taken between request and response

The role of the Web Filter in the overall monitoring solution
is to link the JVM thread with the resource URL and the
HTTP session requested by the end user. In complex
deployments with several nodes (with several JVM instances)
that implement session replication, the HTTP session might
be linked to several JVM threads in distributed nodes.
Capturing the session information across all the nodes
enables distributed resource monitoring per session and per
tenant.

3.2 EJB Interceptor

The EJB Interceptor module consists in the implementation
of a default external interceptor conforming to the EJB 3.0
standard. The interceptor implementation has the
intercept(InvocationContext ctx) method with the following
structure:

@AroundInvoke

public Object intercept(InvocationContext ctx) throws
Exception {

 try{

 notifyMonitoringAgent(ctx,Constants.ENTRY);

 //do nothing

 return ctx.proceed();

 }finally{

 notifyMonitoringAgent(ctx,Constants.EXIT);

 }

 }

The interceptor is configured as Default interceptor, meaning
that it will be called by the EJB container for every EJB
method invocation.

The invocation context contains information about the target
EJB and the target method in the context of which the
interceptor was called. From the thread local data associated
with the SecurityContext structure, the current JAAS
principal that was authenticated by the EJB container is
determined. The time taken to execute the EJB method is
computed as the difference between the ENTRY and EXIT
times using the System.getCurrentTimeMillis() JVM API.
The information sent by the EJB interceptor to the
monitoring agent has the following structure:

The registration of the EJB interceptor is done at the EJB
container layer, during deployment of the target application,
avoiding the need to directly instrument the target
application.

CONTROL ENGINEERING AND APPLIED INFORMATICS 41

Table 2. EJB Interceptor message structure.

3.3 JAAS Login Module

The Java Authentication and Authorization Service (JAAS)
was introduced in Java 2 SDK as an extension and integrated
into the Java 2 SDK 1.4. JAAS offers two important services
for Java based applications.

• The first service is authentication of users, allowing
determining what user is executing the Java class.
This applies to all the layers of a Java application,
like standalone application, applet, Java Bean,
Servlets and so on.

• The second service is authorization of users.
Authorization checks are enforced based on access
control rights or permissions, whenever a user tries
to perform an action.

From an architectural perspective JAAS is an implementation
in Java of the standard Pluggable Authentication Module
(PAM) framework. Historically Java has used code source
based access controls that were based on where the code
originated from and who signed the code. This approach was
not enough to enforce access controls based on who runs the
code.

Fig. 3. JAAS Monitoring Module integration.

JAAS is a framework that extends the standard Java security
architecture by adding information about the user that
executes the code.

JAAS, just as PAM, provides a pluggable architecture
allowing applications to remain independent from underlying

authentication technologies (LDAP, Kerberos, etc.). The
authentication process begins when the client is instantiating
a LoginContext object, which in turn references a
Configuration to determine the LoginModules to be used in
performing the authentication. The JAAS framework calls the
login() method on each LoginModule registered. Once all the
login modules have authenticated the user the commit()
method is called and the Subject object containing all the
Principals are returned to the caller. The integration diagram
for the monitoring login module developed and standard
JAAS implementation is presented in Fig. 3.

The JAAS module consists in an implementation provided
for javax.security.auth.spi.LoginModule interface. This
implementation always returns a positive authentication
response to JAAS, as is designed to monitor the user activity
rather than to authenticate the users. The login() and logout()
methods are sending a data structure to the monitoring agent,
as detailed in Table 3.

Table 3. JAAS Login Module message structure.

The monitoring Login Module captures each login and logout
operation in the application server and notifies
asynchronously the monitoring agent. This asynchronous
approach is done to improve performance on the JAAS
module and is implemented using an internal queue where the
data structure instances are posted. A push thread is used to

send the objects from this queue to the monitoring agent. By
capturing the login() and logout() operations, the JAAS
module provides the link between the thread ID and the
Subject, allowing monitoring data to be consolidated for each
tenant.

ThreadID The ID of the thread in which the interceptor is invoked

JAAS
Principal

Principal object which identifies the user that called the
EJB method

EJB Name Name of the EJB being called

EJB Method Name of the EJB method being called

Time Time taken to execute the EJB method

Thread ID The ID of the thread in which the user is authenticating

JAAS
Subject

Subject object which identifies the user that performs the
action

Operation Operation (Login, Logout)

Result Result of the operation

Time Timestamp when the operation was attempted

42 CONTROL ENGINEERING AND APPLIED INFORMATICS

3.4 JVM TI Native Agent

The JVMTM Tool Interface (JVM TI) is the new generation
of native programming interface that allows external tools to
access the JVM. It provides both a way to inspect the state
and to control the execution of applications running in the
Java virtual machine (JVM). JVM TI is designed to support
various tools that need access to JVM state for activities like
profiling, debugging, monitoring and thread analysis. JVM TI
replaces the Java Virtual Machine Profiler Interface (JVMPI)
and the Java Virtual Machine Debug Interface (JVMDI)
available before 1.5 version. JVM TI is a bi-directional
interface. A JVM TI agent can be notified by an event
registration mechanism. JVM TI can also control the running
application by calling specific functions, either in the context
of an event or at give times. A JVM TI Agent runs in the
same process as the JVM and the communication with the
JVM is through a native interface which allows maximal
control with minimal intrusion.

JVM TI Agents are native agents that are implementing using
a language that supports C language calling conventions and
C or C++ definitions. The function, event, data type, and
constant definitions needed for using JVM TI are defined in
the include file jvmti.h. On JVM start-up the agent library is
loaded. The library must export a start-up function with the
following prototype:

JNIEXPORT jint JNICALL Agent_OnLoad(JavaVM *vm,
char *options, void *reserved)

This function is called by the VM when the agent library is
loaded, but after all the other native libraries are loaded.
Similarly the agent may export a shutdown function with the
following prototype:

JNIEXPORT void JNICALL Agent_OnUnload(JavaVM *vm)

This function will be called by the VM when the library is
about to be unloaded. Agents are notified by the JVM by
using events. To handle events, the agent registers a callback
function by calling SetEventCallbacks() API. For each event
the corresponding callback function will be called by the
JVM providing arguments that contain additional information
about the event. The callback function is called
synchronously by the JVM TI. The agent implemented for
the monitoring solution registers callbacks for the events
listed in Table 4.

The JVMTI Native monitoring agent collects monitoring data
for each thread. The THREAD_START event handler creates
a new ThreadData internal structure in the memory storage.
This data structure contains initially the thread ID and the
time-stamp of the thread creation. The THREAD_END event
handler fills in the time-stamp of the thread exit and sends the
ThreadData to the external monitoring agent via the Data
Monitoring Bus.

The Data Monitoring Bus implements a simple queue
mechanism in order to assure temporal decoupling between
the Thread End callback function and the external monitoring

agent. This queuing mechanism improves performance by
allowing return of the control to the JVM without any
external delays (Fig. 4).

Table 4. JVM TI Events and callbacks.

JVMTI Event Callback Handler Description

JVMTI_EVENT_T
HREAD_START

void JNICALL
 MONThreadStart(...)

This method is called
by the JVM when a
new thread is started
in the application.
The agent extracts
the thread ID from
the jthread structure
and stores it in the
internal memory
store.

JVMTI_EVENT_T
HREAD_END

void JNICALL
MONThreadEnd(...)

This method is called
by the JVM when a
thread dies. The
agent extracts the
thread ID from the
jthread structure.

Fig. 4. JVM TI Monitoring Agent Architecture.

3.5 J2EE Monitoring Agent

The J2EE Monitoring Agent is an external application that
collects the raw metrics provided by the JVM TI agent, the
EJB Interceptor and the JAAS module and consolidates the
information in tenant specific monitoring streams. The agent
is implemented as a JADE agent (Bellifemine et al., 2001),
implementing an incoming message queue and an internal
cyclic behaviour. The incoming message queue accepts FIPA
INFORM messages (O'Brien et al., 1998) and submission to
this queue is asynchronous. The typical sequence of messages
for a user resource request is illustrated in Fig. 5.

When a user requests a resource, or in other words the web
browser invokes a URL, the first event detected by the
JVMTI agent is a Thread Start event. The monitoring agent
receives the event and stores in memory the thread ID of the
newly created thread. The next event Resource Requested is
generated by the Web Filter when the request is handled by
the Web Container. As this event is generated from the same
thread that was recorded previously, the monitoring agent
associates the resource requested with the thread ID stored.

At this point the user will authenticate with JAAS, which
generates a JAAS Login event. Now, the monitoring agent
adds the user authentication information (obtained from the

CONTROL ENGINEERING AND APPLIED INFORMATICS 43

JAAS Subject) to the thread servicing the request. The CPU
time recorded by the JVMTI agent for this thread is summed
and represents the Web Tier CPU usage.

Fig. 5. Typical sequence of messages for a user resource
request.

During the JAAS session one or more EJB calls are
performed depending on the application design and the
operation performed by the user. The EJB calls are monitored
using EJB interceptors and generate EJB Call Pre and EJB
Call Post events. In between these two events, several
Method breakpoint events are generated by the JVMTI agent
for the monitored methods. The JVM TI agent sends CPU
Time usage information during the Method Entry and
Method Exit events which are associated with the JAAS user
owning that thread and summed up. After the EJB calls, the
next event is JAAS Logout which represents the end of the
JAAS session for the user. The request processing is ending
with the Resource Response event generated by the Web
Filter and with the Thread End event generated by the JVM
TI agent, representing the exit of the worker thread. The
monitoring agent consolidates the CPU time allocated to the
JAAS user which corresponds to the thread ID against the
organization of the JAAS user. The organization of the JAAS
user represents the tenant.

This approach allows mapping of the CPU time consumed by
the JAAS user to the tenant organization and enables low
granularity reporting such as: CPU time in Web Tier / tenant,
CPU time in Business Tier/ tenant for relevant (pre-
configured) methods, total CPU time/ tenant, total CPU time/
resource requested, total CPU time/ EJB call.

4. JVMTI AGENT PERFORMANCE OVERHEAD

To evaluate the performance overhead of the JVM TI agent
developed, the SPECjvm2008 benchmark was executed
several times and results were consolidated (Table 5).
SPECjvm2008 (Java Virtual Machine Benchmark) is a
benchmark suite for measuring the performance of a Java
Runtime Environment (JRE), containing several real life

applications and benchmarks focusing on core java
functionality. The suite focuses on the performance of the
JRE executing a single application; it reflects the
performance of the hardware processor and memory
subsystem, but has low dependence on file I/O and includes
no network I/O across machines. The SPECjvm2008
workload mimics a variety of common general purpose
application computations. These characteristics reflect the
intent that this benchmark will be applicable to measuring
basic Java performance on a wide variety of both client and
server systems (Shiv et al., 2009; Gu et al., 2009).

Table 5. SPECjvm2008 benchmark results and
performance overhead of the agent.

Benchmark Without agent
Ops/m

With agent
Ops/m

Overhead
%

xml 408.17 395.41 3.13%

sunflow 78.78 75.48 4.19%

serial 161.81 161.41 0.25%

scimark.small 259.07 253.93 1.98%

scimark.large 43.85 41.11 6.25%

mpegaudio 121.78 121.41 0.30%

derby 255.67 241.83 5.41%

crypto 193.49 191.56 1.00%

compress 183.58 180.16 1.86%

compiler 338.56 327.58 3.24%

Overall 146.49 Base ops/m 144.02 Base
ops/m

1.68%

The OS image used for the test is a virtual image running
Oracle Linux 5 x64, configured with 4 CPU and 16GB RAM,
running on top of IBM CloudBurst 2.1 System x. The
underlying hardware is IBM HS22V Blade Server, equipped
with two Intel Xeon 5600 processors and 74GB RAM DDR-
3. The JVM used Sun Java HotSpot(TM) 64-Bit Server VM
20.6-b01 mixed mode.

It can be observed from the above results that the most
significant performance overhead is obtained in the
scimark.large tests, due to extensive usage of threads within
the benchmark design. However, the overall results show a
1.68% performance overhead (Fig. 6).

Fig. 6. SPECjvm2008 benchmark results.

44 CONTROL ENGINEERING AND APPLIED INFORMATICS

5. BENCHMARK APPLICATION AND MONITORING
DATA

The benchmark application used for testing the solution is the
classic DayTrader application. DayTrader is a benchmark
application designed to simulate an online stock trading
system. The application was originally developed by IBM for
WebSphere and was known as the Trade Performance
Benchmark Sample. In 2005, IBM donated the DayTrader
application to the Apache Geronimo community. The
functionality implemented in the DayTrader application
includes user authentication, portfolio management, lookup
of stock quotes, buy or sell stock. Using a load generation
tools like Apache JMeter, the workload provided by
DayTrader can be used to evaluate the performance of Java
Enterprise Edition (Java EE) application servers. Additionally
the application is designed to offer a set of primitives for
functional and performance testing of various Java EE
components in the J2EE platform and as well some common
design patterns. These characteristics make DayTrader the
perfect benchmark application to evaluate the capabilities of
the monitoring system described in this paper. The
application configuration was modified to integrate with
JAAS for user authentication and authorization similar to the
concept presented by IBM [25]. The multi-tenant JAAS
configuration is based on two LDAP authenticators as
illustrated in Fig. 7.

Fig. 7. Multitenant JAAS configuration.

The test environment was built using IBM CloudBurst 2.1
with the following architecture of workloads: 4 nodes
running the DayTrader application configured in an Apache
Geronimo 3.0.0 cluster configured with session replication.
The application server runs embedded Tomcat 7.0.27.1.

Fig. 9. CPU time monitoring per tenant.

The operating system is Solaris 10 x86_64 configured with
8GB RAM, a HTTP Load Balancer based on Apache 2.0 on
CentOS Linux 5.5 x86_64 with 4GB RAM,with Round
Robin balancing of requests, two LDAP servers running
OpenLDAP 2.4.33 on CentOS Linux 5.5 x86_64 with 8GB
RAM each (Fig. 8).

The client machine is based on Windows XP SP3 with 4GB
RAM, running Apache Jmeter 2.8 software. The user base is
divided among tenants, 10 users in CIMR tenant (a Research
Lab within University Politehnica of Bucharest - UPB) and 5
users in CS Dept. - UPB tenant. The test scenario involves a
repetitive behaviour for each user, which includes login to the
application and invocation of the Trade Scenario URL
(/daytrader/scenario). This URL generates a random action in
the application at each invocation. Users are started with a 5
second delay, starting with the CIMR tenant and alternating
after each user. The test involves three stages: the idle stage
during start to second 45, the warm up stage during second
46 and second 100 during which all users become active, and
the running stage with all users active starting with second
100 and finishing at second 300.

Fig. 8. Test Workload setup in IBM CloudBurst 2.1.

The monitoring data is collected from each of the four
Geronimo nodes and averaged for each tenant, due to Round
Robin load balancing mechanism. The monitoring streams
for each tenant are logged in a CSV file and compared to the
total CPU time and memory obtained from JConsole
connected to each JVM.

CONTROL ENGINEERING AND APPLIED INFORMATICS 45

In Fig. 9 the CPU time allocated to the threads summed up
for each tenant is shown in blue and red. The dotted line
shows the total CPU time for tenants, while the black line
shows the total CPU time as indicated by JConsole. The
spikes in the graph represent the request processing for each
request created by JMeter. The amplitude depends on the
operation performed in the DayTrade application when the
Trade Scenario URL is invoked. The difference between the
black line and the dotted line represents the CPU time of the
application server threads that are not in the context of a
JAAS user (application server overhead).

Fig. 10 illustrates the heap memory usage for each tenant,
against the total heap usage of the JVM. One can see that the
usage remains generally low and is directly proportional to
the number of users for each tenant. These results are
explained by the nature of the load test, which imply multiple
user sessions that start and end relatively quick without
allocating large objects in the heap. The large spikes seen in
the idle stage and in the warm up stage are caused by the
garbage collector. Unlike the CPU time which is accurately
measured for each thread, the heap memory usage is derived
from the EJB calls. Each EJB call has an estimated memory
footprint for its execution.

Fig. 10. Heap Memory monitoring per tenant.

This approach was chosen instead of an customized GC
approach because of the low overhead on the JVM. A
customized GC approach would offer higher accuracy but
would require traversing the heap to tag each object
accessible only from the given thread and compute the size.
The results presented in Fig. 10 use a 4Mb / EJB call
estimation for heap allocation in DayTrader application. This
estimation was determined by source code analysis of the
trade operation implementation considering the default
dummy data provided by the application initial configuration.

Fig. 11. JVM Threads per tenant.

Finally Fig. 11 shows the number of JVM threads per tenant
during the test. As expected the number of threads is

dependent on the number of users for each tenant. Also, the
application server overhead from a thread perspective
remains constant during the load test.

6. CONCLUSIONS

This paper presented the main approaches available today to
implement multi-tenant Java applications discussing the
particularities associated with real time monitoring of each.
Focusing on the JAAS based multi-tenancy solution
described by IBM as the most promising approach for adding
multi-tenancy support for today's applications; a monitoring
mechanism has been presented. This mechanism uses a series
of probes at JVM, Servlet Container, EJB container and
JAAS layers and allows gathering accurate usage data for
each JVM thread. The JAAS custom module links the JVM
threads with a user identity and with the tenant organization
allowing consolidation of monitoring data per tenant. The
JVMTI agent is able to gather CPU time for each JVM thread
at a 1.68% performance overhead as indicated by the
SpecJVM2008 benchmark.

Real time monitoring per tenant of JVM resources has two
important benefits for the provider of multi-tenant enabled
applications. First it allows a low granularity charge-back
mechanism, enforcing the pay-per-use paradigm, where
customers are not charged on a fixed (per user) subscription,
but rather on the actual user activity recorded during a period
of time. Application providers can define charge-back
schemes based on CPU time per tenant and Memory time per
tenant. Another benefit is the ability to scale the resources
allocated to the application (number of nodes for example)
based on real time data and user behaviour, rather than on an
historic estimation based on number of active users. The
monitoring mechanism presented is capable to distinguish
between Web Tier load and Business Tier load, allowing
independent scaling of these layers.

One important aspect of code execution monitoring in the
context of multi-tenant applications running on J2EE
platform is the ability of the solution to distinguish between
tenant specific code execution that should be recorded,
reported and charged-back, and common utility code
executed in the context of a tenant. This common utility code
execution should not be assigned to the tenant even if it is
executed in the context (thread) of the tenant user. To
accomplish this goal future research is focused on enhancing
the JVM TI agent described in this paper, to allow definition
of tenant code and common utility code distinction by
external configuration while keeping the overall performance
overhead as low as possible. A dynamic byte-code injection
approach is considered in order to replace the event handler
approach used currently for method execution monitoring.

REFERENCES

*** (2012). Move beyond monitoring to holistic management
of application performance. IBM SmartCloud Application
Performance Management: Actionable insights to minimize
issues, Whitepaper IBM.

46 CONTROL ENGINEERING AND APPLIED INFORMATICS

*** (2012). New Relic Application Monitoring Solution,
http://newrelic.com/product/real-user-monitoring, Available
Online.

Abadi, D. J. (2009). Data management in the cloud:
Limitations and opportunities. IEEE Data Eng. Bull 32.1, p.
3-12

Afkham, A. et al. (2010). Multi-tenant SOA middleware for
cloud computing. Proceedings of 3rd International
Conference on Cloud Computing (CLOUD’10).

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,
Konwinski, A. and M. Zaharia (2010). A view of cloud
computing. Communications of the ACM, 53(4), p. 50-58.

Bellifemine, F. Poggi, A. and G. Rimassa (2001). JADE: a
FIPA2000 compliant agent development environment,
Proceedings of the 5th International Conference on
Autonomous Agents, ACM.

Bezemer, C-P., et al. (2010). Enabling multi-tenancy: An
industrial experience report. SM), Proceedings of IEEE
International Conference on Software Maintenance.

Bo, G., Chang, J.G., Zhi, H.W., Wen, H.A. and W. Sun
(2009). Develop and Deploy Multi-Tenant Web-delivered
Solutions using IBM middleware: Part 4: Design patterns
for sharing resources in single instance multi-tenant
applications, IBM developerWorks.

Buyya, R., Yeo, C., Venugopal, S., Broberg, J. and I. Brandic
(2009). Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering computing as the
5th utility. Future Generation Computer Systems 25(6), p.
599-616.

CloudBees AnyCloud: Business Value, Architecture and
Technology (2012). Whitepaper CloudBees Inc., Available
Online.

Dean, J. and S. Aulbach (2007). Ruminations on multi-tenant
databases. BTW Proceedings 103, p. 514-521.

Gu, X. et al. (2009). Virtual reuse distance analysis of
SPECjvm2008 data locality. Proceedings of the 7th
International Conference on Principles and Practice of
Programming in Java, ACM.

JSR154 (September 2007). Java Specification Request 154:
Java Servlet 2.5 Specification, Available Online.

JSR220 (May 2006). Java Specification Request 220:
Enterprise Java Beans 3.0, Available Online.

JSR244 (May 2006). Java Specification Request 244: Java
Platform, Enterprise Edition 5 (Java EE Specification),
Available Online.

Li, X.H., Liu, T., Li, Y. and Y. Chen (2008). SPIN: Service
performance isolation infrastructure in multi-tenancy
environment. In Proc. Int. Conf. on Service-Oriented
Computing (ICSOC), vol. 5364 of Lecture Notes in
Computer Science, Springer, p. 649-663.

Morariu, O. at al. (2012). Resource Monitoring in Cloud
Platforms with Tivoli Service Automation Management.
Proceedings of INCOM’12, IFAC PapersOnLine, Vol. 14.
No. 1.

O'Brien, P.D. and R.C. Nicol (1998). FIPA - towards a
standard for software agents. BT Technology Journal 16.3,
p. 51-59.

OSGi (June 2009). OSGi Service Platform Core
Specification, Available Online.

Patel, P., Ranabahu, A. and A. Sheth (2009). Service Level
Agreement in cloud computing. Cloud Workshops at
OOPSLA.

Shiv, K. et al. (2009). SPECjvm2008 performance
characterization, Computer Performance Evaluation and
Benchmarking, p.17-35.

Smith, D.M. (2011). Hype cycle for cloud computing.
G00214915 Gartner.

Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A. and L.
Peterson (2006). Container-based operating system
virtualization: A scalable, high-performance alternative to
hypervisors. In: Proceedings of EuroSys’06 Conference.

Subashini, S. and V. Kavitha (2011). A survey on security
issues in service delivery models of cloud computing.
Journal of Network and Computer Applications 34.1, p. 1-
11.

Takabi, H., Joshi, J.B.D. and G.-J. Ahn (2010). Security and
privacy challenges in cloud computing environments,
Security & Privacy, IEEE 8.6, p. 24-31.

Tharam, D., Wu, C. and E. Chang (2010). Cloud computing:
Issues and challenges., Proceedings of the 24th IEEE
International Conference on Advanced Information
Networking and Applications (AINA).

Wang, Z. H. et al. (2008). A study and performance
evaluation of the multi-tenant data tier design patterns for
service oriented computing. Proceedings of IEEE
International Conference on e-Business Engineering.

Waratek Cloud VM,
http://www.waratek.com/resources/whitepapers/technical-
architecture-overview, Technical Architecture Overview,
White Paper, Available Online.

Yefim, N. (2012). Gartner Reference Model for Elasticity
and Multi-tenancy, Gartner Inc.

http://newrelic.com/product/real-user-monitoring
http://www.waratek.com/resources/whitepapers/technical

