
The Python Papers 8: 3

 - 1 -

A Python Module for FITS Files with Full C Level Programming

Functionality

Ian Bond
Institute of Natural and Mathematical Sciences

Massey University

Private Bag 102-904, North Shore Mail Centre

Auckland, New Zealand

i.a.bond@massey.ac.nz

Abstract

A Python module for manipulating files in the FITS format is described. The module was

constructed using the capabilites of ctypes to dynamically create foreign function

interfaces from a C library. Here this was used to import the CFITSIO library into Python. I

describe how this module can be used to call the functions from the C library in their near

native form, and how one can manipulate FITS files in a style that Python programmers are

accustomed. The ctypes and ctypeslib modules allows one to import all routines and

data structures from the C library and avoids the need to manually write language bindings

for each routine. Moreover, these modules allow the Python programmer to enjoy the full

functionality of the the underlying C library.

Keywords: flexible image transport system, ctypes, foreign function interface.

1. Introduction

The Flexible Image Transport System (FITS) is a digital file format that grew out of the

needs of the astronomical community (Wells, Greisen, & Hartan 1981). It is the standard for

storing, analyzing, and transporting data based on astronomical observations using all

telescopes and instruments that operate at wavelengths from radio to gamma rays. The FITS

format is primarily used for storing astronomical imaging data, but it is also used for

spectroscopic and tabular data. FITS support is available in most specialized astronomical

data analysis platforms such as IRAF (Tody 1993), and is also available to a limited extent in

some popular off-the-shelf open source and commercial applications such as Gimp and

Photoshop. For C programmers, the CFITSIO library (Pence 1999) is available and provides

an extensive and well documented library that has everything one needs to read, write, and

manipulate FITS files.

If programmers in other languages wish to make use of C library functions, the common

practice is to develop “wrapper” functions that utlize the foreign function interface

capabilites of the higher level language. Also these wrappers are designed to hide any messy

details involved in calling the C functions, behind clean interfaces that also provide a

convenient user view of the library. Existing Python wrappers for CFITSIO based on this

approach include pyfits (Barrett and Bridgeman 1999) and pfits (Parsons 2013).

The Python Papers 8: 3

 - 2 -

Implementing Python bindings to C libraries can be a tedious affair – in particular, CFITSIO

contains over 330 routines. Consequently not all features of the library may be implemented.

Also, one is tied into a particular user view of the developer of the Python bindings, and

what may be a convenient user view for some programmers may not be the case for others.

In this paper I discuss an approach using the capabilities of the Python ctypes and

ctypeslib modules to automatically generate foreign function interfaces. The power of

ctypes and ctypeslib is being increasingly recognized. For example, Kloss (2011)

discusses this approach for the LittleCMS colour management library. With a single import,

one has access to the full functionality and features provided by the underlying C library. I

will then show how it is straightforward to write one's own custom wrappers that are

convenient to each individual user and project. I also show how one can manipulate FITS

files in a “pythonic” manner whereby file objects are created and manipulated in a way that

Python programmers are accustomed and follows common Python programming style and

practice. All these capabilities are conveniently packaged into a Python module I have

developed called fitsio. I have made this module available through the Google Project

Hosting Service under the code license GNU GPL v3. Detailed instructions on how to obtain

and install this package are given in Appendix A.

The FITS format is used extensively by astronomers engaged in data analysis. However,

scientists and engineers outside that community, who work with imaging data, may also find

the FITS format useful. The main purpose of this paper is to provide a how-to guide for

Python programmers who wish to use the CFITSIO library through the ctypes mechanism.

The ideas described in this paper were presented at the 2011 Kiwi Python meeting, and this

paper is also an attempt to adapt the related handouts for that presentation into a full written

article.

2. Overview of the Python Module

2.1. Anatomy of a FITS file

The FITS standard is maintained by the FITS Working Group of the International

Astronomical Union. The full technical specification for the FITS standard can be found at

the FITS Support Group
1
. There are also many articles and online resources at varying levels

of technical detail that describe the FITS standard and how one can work with files in that

format. Here a broad description of the structure of a FITS formatted file is given.

A FITS file comprises one or more header-data units (HDUs). The “header” part of an HDU

component is a sequence of 80 character ASCII records that encode metadata for the “data”

part. Each record in the header can either comprise a keyword-value-comment triplet or can

be a special record identified by either the COMMENT or HISTORY keywords. The first

header-data unit is commonly referred to as the primary HDU. Any subsequent HDUs are

known as FITS extensions. A FITS file with more than one HDU is often referred to as a

multi-extension FITS file. In many cases it is sufficient to use FITS files without any

extensions – for example storing a grayscale two dimensional image from a CCD camera. In

1
See http://fits.gsfc.nasa.gov/

The Python Papers 8: 3

 - 3 -

fact, there are a number of applications that claim support for FITS but do not support multi-

extension FITS files.

The data component of an HDU commonly comprises an array of values in binary format

that correspond to the values in each pixel of a two dimensional image. However, ”imaging”

arrays of any number of dimensions are possible. In the primary HDU, the data may only be

imaging data (or it could be empty). However, for HDUs that are part of the extensions, the

data component can be used to store imaging data or alternatively store tabular data in either

ASCII or binary format. For tabular data the associated header records are used to encode

metadata for the fields of the table. In both imaging and tabular data, all manner of word

sizes (short, int, float, etc) are allowed.

2.2. Importing CFITSIO into Python

The CFITSIO library provides a full suite of routines for manipulating and navigating the

components of a FITS file. Common operations include opening and closing files, creating

new files, accessing header records by keyword, reading/writing imaging and tabular data,

plus many other operations. The reader is refered to the CFITSIO reference manual for more

information and the full documentation of all the routines in the library (Pence 2004).

The build process can be configured to produce a shared library file. The Python ctypes

foreign function interface can then be used to load all routines in the library without having

to explicitly define bindings for them. This is done by a call to ctypes.loadDLL(), with

the details depending upon the OS platform. On a Linux platform, for example, one may use

something like:

import ctypes

cfitsfio = ctypes.loadDLL('/usr/local/lib/libcfitsio.so')

With this call, all routines in the CFITSIO shared library are available in the Python script

and can be accessed through the above cfitsio namespace. There are, however, some

other steps that need to be carried out before using the routines.

Each struct datatype in the C library needs to be mapped to a Python class that extends

ctypes.Structure. Each field in the C structure requires a counterpart in the python class

that associates a datatype class instance from ctypes with the C datatype. Also it is

desirable to specify the types of the parameters and return types for each function. If done

manually, this can be tedious and error prone for libraries such as CFITSIO that define large

numbers of routines and uses elaborate C structures. In particular the fitsptr structure

contains several nested structures that go several layers deep, and some of these sub-

structures contain a large number of fields.

Fortunately the Python ctypeslib module can be used to automatically generate python

code from the structure and function definitions provided in C header files. This module will

also map out any symbolic constants defined in the C header file via the #define construct.

The code generation is a two step process. First gccxml is used to convert the definitions in

the library header file (in this case fitsio.h) into an XML file. This XML file is then

The Python Papers 8: 3

 - 4 -

sourced in the second step to generate python code that maps all structures and routines. I

have written a script, generate_stubs.py to carry out these steps in one smooth

operation. Each routine in the CFITSIO library is defined by a short name together with a

longer alias. The ctypeslib module was able to resolve all function aliases, but there were

some “unresolved aliases” associated with some constants. However, I have not yet

encountered any problems.

2.3. The fitsio Moodule

I provide here a python module called fitsio that contains two sub-modules: cfitsio and

pyfitsio. The Python code generated in the above procedure are all gathered into

cfitsio. All CFITSIO routines, data structures, and symbolic constants can be accessed in

a Python script via an import such as:

from fitsio import cfitsio

This simple import is all that is needed to handle FITS files with access to the full

functionality offered by CFITSIO. In Section 3, I describe how one can manipulate FITS

files using just the C routines that are imported via cfitsio. In Section 4, I show how one

can use the pyfitsio module to manipulate FITS files in a pythonic manner. This module

provides a class implementation to represent FITS files together with an exception class.

The examples given here are not exhaustive and do not cover all of the capabilities of

CFITSIO. However, the CFITSIO library is well documented and the abilty of ctypes to

dynamically generate a foreign function interface from the shared library gives the Python

programmer the same level of access to CFITSIO as a C programmer. These examples will

show that the Python programmer can select any of the CFITSIO routines and quickly write

their own convenience functions to suit their own particular style and needs. The emphasis

here is on how rather than what.

3. Python CFITSIO Interface

3.1. Opening and closing FITS files

The CFITSIO routine to open an existing FITS file is defined in the C header file as:

int ffopen(fitsfile** fptr, char* filename, int iomode, int* status);

The fitsfile construct defines a C structure in fitsio.h which is mapped to a Python

class called fitsfile in the code generated by ctypeslib. Most of the routines in

CFITSIO are defined using a very similar pattern. The first argument is a pointer or double

pointer to fitsfile and the last argument is a pointer to a status variable in which a non-

zero value means that some problem had occurred in the call. Also a non-zero value is

returned by the function in case of any problem.

In opening a FITS file, the input/output mode is specified by assigning one of the symbolic

constants, READONLY or READWRITE, defined in fitsio.h to the variable iomode. These

The Python Papers 8: 3

 - 5 -

constants are mapped into the Python code for the cfitsio module that is generated by

ctypeslib. The following example shows how one could write a convenience function in

Python to open an existing FITS file as read-only:

import ctypes

from fitsio import cfitsio

def open_fits(filename):

 # Get a pointer to the FITS file

 fptr = ctypes.pointer(cfitsio.fitsfile())

 # Initialize status to zero

 status = ctypes.c_int(0)

 # Open the file. Note the use of byref to get the value of the pointer

 # to fitsfile()

 cfitsio.ffopen(ctypes.byref(fptr), filename, cfitsio.READONLY,

 ctypes.byref(status))

 return fptr

To close a FITS file, the following CFITSIO routine is available

int ffclos(fitsfile* fptr, int* status);

In Python this can be implemented simply as
def close_fits(fptr):

 status = ctypes.c_int(0)

 cfitsio.ffclos(fptr, ctypes.byref(status))

A non-zero value for the status variable means that some problem had occurred in the call to

the CFITSIO routine. For example, if one attempts to open a nonexistent FITS file, the status

will be set to the value defined by the symbolic constant FILE_NOT_OPENED in the

CFITSIO header file. CFITSIO provides a number of routines for generating error messages.

One of these is

int ffgerr(int status, char* err_text);

In Python, one could then write an error handler, that uses this routine, as follows:

import sys

import ctypes

from fitsio import cfitsio

def handle_error(status):

 '''Print out CFITSIO error message and exit program.'''

 # Create a string buffer to hold the error message

 errtext = ctypes.create_string_buffer('\000' * cfitsio.FLEN_STATUS)

 cfitsio.ffgerr(status)

 print 'Error status code =', status.value

 print 'Error message reads:', errtext.value

 print 'Exiting program'

 sys.exit(status.value)

Note here that status is not a primitive int, but a class instance generated by the

ctypes.c_int() routine.

The Python Papers 8: 3

 - 6 -

I re-emphasize here that the design of convenience functions such as these is purely a matter

of choice for the individual programmer. The users have considerable flexibility in designing

an error handler that best suits their needs. In Section 4 I will describe an exception class to

handle non-zero status values.

3.2. Navigating the HDUs

As mentioned earlier, a FITS file can have one or more header-data units. The following

CFITSIO routine can be used to find out the number of HDUs in a given FITS file:

int ffthdu(fitsfile* fptr, int* hdunum, int* status);

When the file is first opened, the file pointer is located at the primary HDU. One can move

to any numbered HDU using the following CFITSIO routine

int ffmahd(fitsfile* fptr, int hdunum, int* hdutype, int* status);

The data in an HDU can either be imaging data, an ASCII table, or a binary table. These

correspond to the symbolic constants IMAGE_HDU, ASCII_TBL, and BINARY_TBL. The

following Python code shows how these routines can be used to walk through the HDUs in

an opened FITS file and examine their types.

def check_hdus(fptr):

 status = ctypes.c_int(0)

 # Get the total number of HDUs

 hdunum = ctypes.c_int()

 cfitsio.ffthdu(fptr, ctypes.byref(hdunum), ctypes.byref(status))

 # Loop over all HDUs and compare their type with possible values

 for n in range(1, hdunum.value+1):

 hdutype = ctypes.c_int()

 cfitsio.ffmahd(fptr, n, ctypes.byref(hdutype),

 ctypes.byref(status))

 if hdutype.value == cfitsio.IMAGE_HDU:

 hdu_descr = 'Image HDU'

 elif hdutype.value == cfitsio.ASCII_TBL:

 hdu_descr = 'ASCII table'

 elif hdutype.value == cfitsio.BINARY_TBL:

 hdu_descr = 'Binary table'

 else:

 hdu_descr = 'Unknown HDU type'

 print n, hdutype.value, hdu_descr

 # Move back to the primary HDU

 cfitsio.ffmahd(fptr, 1, ctypes.byref(hdutype), ctypes.byref(status))

Note that the numbering of HDUs starts at 1 for the primary HDU.

3.3. Reading and writing FITS headers

The CFITSIO library provides an extensive set of routines for manipulating the header

component of HDUs in a FITS file. The most common operations are reading and writing a

The Python Papers 8: 3

 - 7 -

value associated with a keyword name. However, routines are available for other operations

like stepping sequentially through the header records and copying headers from one opened

FITS file to another. The reader is referred to the CFITSIO reference manual for more

details.

One CFITSIO routine that can be used to write a new keyword-value-comment record is

int ffpky(fitsfile* fptr, int datatype, char* keyname, DTYPE* value,

 char* comment, int* status);

This writes the value and comment string associated with the given key name. Here DTYPE

can be any of the primitive data types (short, float, etc). The parameter datatype tells

FITSIO the data type that will be used in the C program – this value must be set to one of the

symbolic constants defined in fitsio.h (refer the reference manual). Where possible,

CFITSIO will perform automatic type conversion from DTYPE regardless of how the value is

encoded in the header.

A Python implementation of this function whereby the value is encoded as a float could

be:

def write_key_as_float(fptr, keyname):

 status = ctypes.c_int()

 value = ctypes.c_double()

 comment = ctypes.create_string_buffer('\000' * cfitsio.FLEN_COMMENT)

 cfitsio.ffpky(fptr, cfitsio.TDOUBLE, keyname, ctypes.byref(value),

 comment, ctypes.byref(status))

A CFITSIO routine to read a value and comment for a given key name is:

int ffgky(fitsfile* fptr, int datatype, char* keyname, DTYPE* value,
 char* comment, int* status);

In a very similar fashion, one could write a Python function to implement this as follows:
def read_key_as_float(fptr, keyname):

 status = ctypes.c_int()

 value = ctypes.c_double()

 comment = ctypes.create_string_buffer('\000' * cfitsio.FLEN_COMMENT)

 cfitsio.ffgky(fptr, cfitsio.TDOUBLE, keyname, ctypes.byref(value),

 comment, ctypes.byref(status))

 return value.value

In this example, the comment string is discarded and only the value associated with the key

is returned.

3.4. Reading and writing imaging data

As with writing and reading FITS headers, CFITSIO provides a number of routines for

writing and reading pixel data to and from the data component of the current HDU. Before

writing imaging data to a FITS file, it is necessary to set up the header with the appropriate

The Python Papers 8: 3

 - 8 -

records giving the image dimensions and the imaging data encoding as the number of bits

per pixel. This can be done with the following CFITSIO routine:

int ffccrim(fitsfile* fptr, int bitpix, int naxis, long* naxes,

 int* status);

Here naxis is the number of dimensions of the image with the sizes in each dimension

stored in the array pointed to by naxes. This is straighforward to implement in Python.

Suppose, for example, one wishes to write a two dimensional image with 256 columns and

301 rows with 32 bit floats per pixel. The above routine would then be called as follows:

npixx = 256

npixy = 301

Make a ctypes array of the sizes in each dimension

naxes = (ctypes.c_long * 2)(npixx, npixy)

cfitsio.ffcrim(fptr, cfitsio.FLOAT_IMG, 2, naxes, ctypes.byref(status)

After calling ffcrim, the FITS file can accept imaging data to be written. A CFITSIO

routine to write pixel data to a FITS file is:

int ffppx(fitsfile* fptr, int datatye, long* fpixel, long nelements,

 int naxis, long* naxes, int* status);

This will write a number of pixels specified by nelements onto a FITS file with the

coordinates of the first pixel on the file given by the array fpixel. The array of pixels is

addressed by DTYPE* array which must point to enough memory. If fpixel is set to the

first pixel in the file and nelements is set to the total size of the array, then the entire image

will be written in a one-to-one correspondence between memory and file. This routine will

work for any number of dimensions. Also the variable datatype and DTYPE function in the

same way as automatic data conversion mechanism for reading from headers.

This routine provides a lot of functionality and would present a number of dilemas if one

was to try and hand code a C binding to this method using, for example, the native Python

API. Some Python users may wish to write the data from a C style array which can be

referenced in ctypes. Others may wish to write from a multi-dimensional numpy array.

Some users may wish to have the capability of writing sub rasters of the imaging data,

whereas it may suit others to dump the entire image into the file in one go. Moreover, there

is the choice of data type to consider. All of this presents a number of design decisions faced

by the developer of a C binding.

However, the ability to dynamically load the CFITSIO library into Python, makes it

straightforward for individual users to quickly implement a wrapper to this function that is

best suited to their specific needs. For example, consider a project where one is dealing

exclusively with 2 dimensional imaging data stored in numpy arrays with 32 bit floating type

per element of the array (dtype=numpy.float32). A Python function such as the followng

could serve as a useful convenience function that writes the entire array onto the current

HDU that is pointed to by the cfitsio.fitsfile() instance fptr

The Python Papers 8: 3

 - 9 -

def write_numpy_2d(fptr, pixdata):

 # Number of X (columns) and Y (rows). Note the row major format

 npixy, npixx = pixdata.shape

 # C style pointer to the numpy array

 pixptr = pixdata.ctypes.data_as(ctypes.POINTER(ctypes.c_float))

 fpixel = (ctypes.c_longlong * 2)(1,1)

 nelements = ctypes.c_longlong(npixx * npixy)

 status = ctypes.c_int(0)

 cfitsio.ffppx(fptr, TFLOAT, fpixel, nelements, dataptr,

 ctypes.byref(status))

Note here the need to obtain a C style pointer to the numpy array that is then used as input

to ffppx. The above example shows how this is done. Also, the data type specified in the

2nd argument of the CFITSIO routine must match the data type of the numpy array.

Now suppose one wish to read the pixel data in the FITS array into two dimensional numpy

array. First one could use the following CFITSIO routine that determines the image

dimensions and pixel encodings from the header:

int ffgpxv(fitsfile* fptr, int datatype, long firstelem, long nelements,

 DTYPE* nulval, DTYPE* array, int* anynul, int* status);

This is straightforward to call in Python:

maxdim = 2

naxes = (ctypes.c_longlong * maxdim)()

naxis = ctypes.c_int()

bitpix = ctypes.c_int()

status = ctypes.c_int(0)

cfitsio.ffgpxv(fptr, maxdim, ctypes.byref(bitpix), ctypes.byref(naxis),

 naxes, ctypes.byref(status))

npixx, npixy = naxes

If a two dimensional image is expected, a check could be added to the above code comparing

the image dimensions in the FITS header, naxis, with maxdim.

The following CFITSIO routine reads imaging data from a FITS file into memory with

starting address DTYPE* array

int ffgpxv(fitsfile* fptr, int datatype, long firstelem, long nelements,

 DTYPE* nulval, DTYPE* array, int* anynul, int* status);

This also allows one to check for undefined pixels in the FITS array where the pixels values

are equal to nullval, with the total number of such pixels return in anynul. If nulval=0,

no checks are made. Suppose one simply wished to gobble the entire array into a two

dimensional numpy array. Given the image dimensions determined from above, here is a

possible Python implementation:

imdata = numpy.zeros((npixy, npixx))

dataptr = imdata.ctypes.data_as(ctypes.POINTER(ctypes.c_double))

fpixel = (ctypes.c_longlong * 2)(1,1)

The Python Papers 8: 3

 - 10 -

nelements = ctypes.c_longlong(npixx * npixy)

nullval = ctypes.c_double(0.0)

anynull = ctypes.c_int()

status = ctypes.c_int(0)

cfitsio.ffgpxv(fptr, TDOUBLE, fpixel, nelements, ctypes.byref(nullval),

 dataptr, ctypes.byref(anynull), ctypes.byref(status))

These code fragments can easily be adapted to suit the needs of the individual user. For

example, some may wish to store the data as a flat one dimensional array, regardless of the

number of dimensions of the image represented in the FITS file. Others may prefer not to

use numpy arrays at all, and just store the data in ctypes arrays.

In the code samples that come with the fitsio package, I provide examples of generalized

image read and write routines that will work for any number of dimensions and will match

the dimensions in the FITS arrays with those in the numpy arrays.

3.5. Reading and writing tabular data

As mentioned earlier, the data component of a primary HDU can only be imaging in nature.

However, for HDUs that are part of the FITS extensions, the data can be tabular rather than

imaging. The CFITSIO library provides a number of routines for manipulating and reading

FITS tables, and reading table metadata. All of these are well documented in the CFITSIO

Reference Guide and can be easily adapted to Python.

To create a table in the current HDU, the following CFITSIO routine can be used:

int ffcrtbl(fitsfile* fptr, int tbltype, long naxis2, int tfields,

 char* ttype[], char* tform[], char* tunit[], char* extname,

 int* status)

The type of table (ASCII or binary) is specified by tbltype and is set to one of the

symbolic constants ASCII_TBL or BINARY_TBL. The number of rows is specified by

naxis2 while tfields gives the number of columns. The names of each column are given

by ttype[], while tform[] and tunit[] list the printing formats and physical units of

the columns.

When using this routine in Python the tricky part here is in implementing the arrays of

strings in the above routine. The easiest way to do this is to use ctypes arrays. For example,

for a table with 3 columns named Planet, Diameter, and Density, an array suitable for

input into ffcrtbl can be constructed as follows:

ttype = (ctypes.c_char_p * 3)('Planet', 'Diameter', 'Density')

Their formats and units can also be set up in a similar fashion:

tform = (ctypes.c_char_p * 3)('a8', 'I6', 'F4.2')

tunit = (ctypes.c_char_p * 3)('\0', 'km', 'g/cm^3')

An ASCII table in the current HDU can then be created as follows:

The Python Papers 8: 3

 - 11 -

tfields = ctypes.c_int(3)

nrows = ctypes.c_longlong(6)

extname = 'PLANETS_ASCII'

cfitsio.ffcrtbl(fptr, cfitsio.ASCII_TBL, nrows, tfields, ttype, tform,

 tunit, extname, ctypes.byref(status))

Having created a table in the current HDU, data can then be written to the table column by

column using the following CFITSIO routine:

int ffpcl(fitsfile* fptr, int datatype, int colnum, long firstrow,

 long firstelem, long nelements, DTYPE *array, int* status)

Here the column number is specified along with a pointer to the array with the data for the

column. The following code fragment shows how this could be called in Python:

planet = (ctypes.c_char_p * nrows)('Mercury', 'Venus', 'Earth', 'Mars',

 'Jupiter', 'Saturn')

diameter = (ctypes.c_long * nrows)(4880, 12112, 12742, 6800, 143000,

 121000)

density = (ctypes.c_float * nrows)(5.1, 5.3, 5.52, 3.94, 1.33, 0.69)

firstrow = ctypes.c_longlong(1)

firstelem = ctypes.c_longlong(1)

cfitsio.ffpcl(fptr, cfitsio.TSTRING, 1, firstrow, firstelem, nrows,

 planet, ctypes.byref(status))

cfitsio.ffpcl(fptr, cfitsio.TLONG, 1, firstrow, firstelem, nrows,

 diameter, ctypes.byref(status))

cfitsio.ffpcl(fptr, cfitsio.TFLOAT, 1, firstrow, firstelem, nrows,

 density, ctypes.byref(status))

The above can be easily adapted if the column data were encoded in numpy arrays. One just

has to make sure that a pointer to the array is obtained, as described in the previous sub-

section, and use that as the input to ffpcl.

Reading data from a table can also be done out column by column using the following

CFITSIO routine:

int ffgcv(fitsfile* fptr, int datatype, int colnum, long firstrow,

 long firstelem, long nelements, DTYPE* nulval, DTYPE *array,

 int *anynul, int* status)

To use this in Python to read, for example, the density column where a value of -99.0 is

defined as a null value, one can can use something like the following;

frow = ctypes.c_longlong(1)

felem = ctypes.c_longlong(1)

nullval = ctypes.c_float(-99.)

density = (ctypes.c_float * nrows)()

anynulls = ctypes.c_int()

cfitsio.ffgcv(infptr, cfitsio.TFLOAT, colnum, frow, felem, nrows,

 ctypes.byref(nullval), density, ctypes.byref(anynulls),

 ctypes.byref(status))

The Python Papers 8: 3

 - 12 -

Again, it can be easily adapted if one prefered to read the data into a numpy array instead of

a ctypes array.

4. Python Style Access to FITS Files

The routines provided in the Python cfitsio module provide the full functionality of the

CFITSIO library at the same level of access to a C programmer. However, it would be

desirable to be able to manipulate FITS files in a pythonic manner similar to how one may

work with other types of files. To this end, I have included a sub-module pyfitsio within

fitsio. This provides a Python class, FitsFile, to represent FITS files, together with a

factory style open() function that can be used to create instances of that class. Also

provided is an exception class to represent non-zero status values resulting from any calls to

the CFITSIO routines.

The FitsFile class provides a number of routines that function as wrappers to some of the

simpler and more commonly used CFITSIO routines for navigating and manipulating the

HDUs. However, the design of the class has been intentionally kept short and simple and the

more complex CFITSIO routines have been left out. This is for the reasons discussed in the

previous section where it is not very practical to try and design a wrapper for every one of

these routines.

The crucial data member of the FitsFile class is a ctypes pointer defined as follows:

class FitsFile(object):

 def __init__(self):

 '''Initialize with an empty C fitsfile pointer'''

 self.fptr = ctypes.pointer(cfitsio.fitsfile())

This pointer can be used as input to any of the relevant cfitsio routine as best illustrated

by the following walkthrough.

First import both the modules:

from fitsio import cfitsio, pyfitsio

Create a new FITS file instance for writing. If the “clobber” flag is set, then any existing file

with that name will be overwritten.

ff = pyfitsio.open(filename, mode='w', clobber=True)

Now suppose one has a numpy array of data, pixdata, encoded as 16 bit integers per

element (dtype=int16), and we wish to write this to the FITS file as 32 bit floats per pixel.

First one sets up the FITS header with the dimensions of the array. Note the need to reverse

the array of dimensions because numpy stores its data in row major ordering whereas

CFITSIO uses column major ordering.

The Python Papers 8: 3

 - 13 -

naxes = list(pixdata.shape)

naxes.reverse()

ff.create_image(naxes, cfitsio.FLOAT_IMG)

To write the pixel data to the image, we here make use of the following CFITSIO routine

int fits_write_image(fitsfile* fptr, int datatype, long firstelem,

 long nelements, DTYPE* array, int* status)

This is used as an alternative to the routine used in the previous section because here all one

needs is a single pointer, rather than an array, to the start position in the FITS file and the

total number of elements to write. Note also that here I am using the alias of the C function

that named ffppr. If we simply wish to write the entire numpy array to the start of the data

component of the HDU, one can come up with a convenience function such as the following:

def numpy_to_fits(pixdata, ff):

 # Get a C pointer to the array

 pixptr = pixdata.ctypes.data_as(ctypes.POINTER(ctypes.c_short))

 npix = pixdata.size

 status = ctypes.c_int(0)

 fpixel = ctypes.c_longlong(1)

 nelements = ctypes.c_longlong(npix)

 cfitsio.fits_write_img(ff.fptr, cfitsio.TSHORT, fpixel, nelements,

 pixptr, types.byref(status))

Note that in this case, the data type parameter, cfitsio.TSHORT, must match the type of

the numpy array. CFITSIO then performs automatic type conversion to the 32 bit float pixel

data encoding. Again, if one was using different data structures to hold the pixel data, then it

is straightforward to come up with similar convenience functions. In the case of complex

CFITSIO routines such as the above, it does not make much sense to try and come up with a

wrapper that suits everyone’s requirements, rather it is better to make it easier to use an

instance of the FitsFile class with the CFITSIO routines.

The FitsFile class provides some functions to write and read header records. So in this

example we add a few keyword-value-comment records together with a COMMENT record:

ff.write_key('EXPTIME', 302.2, 'Exposure time in seconds')

ff.write_key('SERIALNO', 12345, 'Serial number of this file')

ff.write_key('NAME', 'Ian Bond', 'The creator of this file')

ff.write_comment('This file is the result of a demo program')

When we are finished with the FITS file, it can be closed in a pythonic manner

ff.close()

In continuing with Python style object-oriented programming, an exception mechanism

would be desirable in case things go wrong. As mentioned earlier, a non-zero value of the

status variable from a call to a CFITSIO routine indicates some problem had occurred.

These include attempting to open a non-existent file for reading, attempting to access non-

existent keywords in the header, and many more. The CFITSIO library defines 139 error

The Python Papers 8: 3

 - 14 -

status codes as symbolic constants in cfitsio.h. The library also provides some routines

to generate human readable message strings associated with the integer status values.

The pyfitsio module provides an exception class, FitsIOError, that is raised by all

functions in the FitsFile class in case of a non-zero status value. Also provided is a

function check_error that will generate and raise the FitsIOError exception if that

status value input is non-zero. This can be used, for example, in the above convenience

function by simply adding the following line at the end. Note if the status value is zero, ie no

error, the routine does nothing

pyfitsio.check_error(status)

The following code fragment shows how the exception class can be used. In this example, a

FITS file is input for reading and the header is examined for particular keywords:

try:

 ff = pyfitsio.open(filename, mode='r')

 naxes = ff.read_axes()

 expo = ff.read_key('EXPTIME')

 ff.close()

 print naxes, expo

except pyfitsio.FitsIOError, e:

 print 'Caught a problem with the FITS file'

 print str(e)

except Exception, e:

 print 'Got some other problem'

 print str(e)

Note here that the FitsFile class only implements a small subset of the CFITSIO routines

for manipulating individual FITS files. No attempt has been made to try and implement a

pythonic wrapper to all of the CFITSIO routines. This would be overkill, and would defeat

the purpose here of being able to use ctypes to automatically generate a foreign function

interface to a C library. It is intended here that the pyfitsio module be used in conjunction

with cfitsio, where instances of FitsFile are used for relatively simple operations such

as opening and closing files and the user writes their own custom wrappers to the cfitsio

routines to perform more comples tasks such as reading and writing imaging and tabular

data.

5. Conclusion

CFITSIO is the most extensive library for C programmers for manipulating FITS files. The

routines in this library can be easily imported into Python as a foreign function interface

using ctypes. Also ctypeslib can automatically generate Python code that mirrors any C

structures and symbolic constants defined in the C header file. I argue that directly importing

a C library in this manner is a preferable approach than going through the tedious process of

developing Python bindings. This is particularly true if there are many complex routines in

the libary. As long as the C library is well documented, as is the case for CFITSIO, and the

programmer is competent with ctypes. It is then straightforward for the programmer to

simply choose the C routine that is required, and then start using it in Python.

The Python Papers 8: 3

 - 15 -

I have developed a Python module to make it easy to import the CFITSIO library and to

handle FITS files in a manner consistent with a pythonic style of programming. All of this

immediately provides a Python programmer the same level of access and functionality of the

library as a C programmer.

Acknowledgements

I am grateful to Guy Kloss for introducing me to ctypes and ctypeslib, and for reading

over this manuscript helping me to improve the final version.

References

Barrett, P.E. And Bridgeman, W.T. (1999): PyFits, a FITS Module for Python, in ASP Con.

Ser. Vol. 172, Astronomical Data Analysis Software and Systems, eds. D. M.

Mehringer, R. L. Plante, & D. A. Roberts, p. 483

Kloss, G. (2013): https://launchpad.net/pylittlecms/littlecms-0.5.1, last

retrieved 2013 March 10

Parsons, A. (2013): A Python FITS interface built using CFITSIO,

https://pypi.python.org/pypi/pfits, last retrieved 2013 March 10

Pence, W. (1999): CFITSIO v2.0, in ASP Con. Ser. Vol. 172, Astronomical Data Analysis

Software and Systems, eds. D. M. Mehringer, R. L. Plante, & D. A. Roberts, p. 487

Pence, W. (2004): CFITSIO User's Reference Guide: an Interface to FITS Format Files for

C Programmers, available from NASA's High Energy Astrophysics Science Archive at

http://heasarc.gsfc.nasa.gov/fitsio/, last retrieved 2013 July 18.

Tody, D. (1993): IRAF in the Nineties, in ASP Con. Ser. Vol. 52, Astronomical Data

Analysis Software and Systems, eds. R.J. Hanisch, R.J.V. Brissenden, and J. Barnes, p.

173

Wells, D.C., Greisen, E.W., and Harten, R.H. (1981): FITS: A Flexible Image Transport

System, Astronomy and Astrophysics Supplement Series, 44, 363

The Python Papers 8: 3

 - 16 -

Appendix A: Installation

The following installation instructions are for Linux systems (on which fitsio was

developed and tested). They can be adapted to other platforms.

First download the CFITSIO library available from NASA at

http://heasarc.gsfc.nasa.gov/fitsio/

Follow the installation instructions given with the package, making sure that a shared or

dynamic library is built:

make shared

The Python fitsio modules are hosted through the Google Project Hosting service. The

package can be fetched using Mercurial as follows:

hg clone https://ian.b.007@code.google.com/p/pyfitsio/

Unpack the distribution and change to the package top level directory. Examine the script

generate_stubs.py and modify the constants specifying the paths to the CFITSIO header

file and library file. Then run the script:

./generate_stubs.py

there may be some “unresolved aliases” errors but these shuld not be a problem. This script

will produce the file _cfitsio.py in the fitsio sub-directory. Do not edit this file as it is

automatically generated. This file contains all function definitions, data structures, and

symbolic constants that were found in the CFITSIO header file.

The modules are now ready to use. You can either just add the current path to fitsio to

your $PYTHONPATH environment or install in the system Python module path.

Go the samples directory and try running the example scripts that are provided.

Appendix B: List of sample scripts

CFITSIO cookbook

The CFITSIO distribution includes a sample program cookbook.c which provides a

number of routines showing how to read and write imaging and tabular data to and from

FITS files, plus a routine to show how headers can be copied from one file to another. This

Python module includes a sample script cookbook.py which shows how Python

programmers can use the C routines in cookbook.c. This sample program does not use the

pythonic module. It just imports the cfitsio module and uses the imported routines in

(almost) the same way as they are done in the C program.

The Python Papers 8: 3

 - 17 -

Python FITS file access

A series of sample scripts are provided that implement each of the routines in the above

cookbook in a pythonic manner using both the cfitsio and pyfitsio module. Each

routine is implemented as a separate script:

writeimage.py

writeascii.py

writebintable.py

copyhdu.py

selectrows.py

readheader.py

readimage.py

readtable.py

These can be run separately or they can all be run one after the other by launching the

following script:

 run_demos.py

An additional example script readff.py is also provided that shows how to walk through

the HDUs of a multi-extension FITS file.

FITS and numpy arrays

A sample script fitsnp.py is provided that shows how to write and read imaging data, of

any number of dimensions, that are stored in numpy arrays.

