
The Python Papers 7:3 (2012) 1

Designing and Testing PyZMQ Applications

Stefan Scherfke

OFFIS – Institute for Information Technology
Oldenburg, Germany

stefan.scherfke@offis.de

PyZMQ is a powerful and easy-to-use network layer. While ZeroMQ and PyZMQ are
quite well documented and good introductory tutorials exist, no best-practice guide on how
to design and especially to test larger or more complex PyZMQ applications could be found.
This article shows a possible way to design, document and test real-world applications. The
approach presented in this article was used for the development of a distributed simulation
framework and proved to work quite well in this scenario.

Keywords: PyZMQ; ZeroMQ; ØMQ; Application Design; Testing.

1 Introduction
ZeroMQ [1] (or ØMQ or ZMQ) is an intelligent messaging framework and described as “sockets on
steroids” [2]. That is, they look like normal TCP sockets but actually work as you would expect
sockets to work. PyZMQ [3] adds even more convenience to them, which makes it a really a good
choice if you want to implement a distributed application. Another big plus for ZeroMQ is that
you can integrate sub-systems written in C, Java or any other language ØMQ supports (which are
a lot).

ZeroMQ provides various socket types that let you easily implement the most common com-
munication patterns:

REQ-REP: The request-reply pattern can be used for common client/server scenarios, where the
client sends a request and the server only replies to these requests.

PUB-SUB: This pattern comprises a publisher that broadcasts messages and subscribers that
register at a publisher and receive its messages.

PUSH-PULL: This pattern can be used to implement a pipeline where a producer pushes a
message and one of multiple available consumers receives the message and processes it.

ROUTER, DEALER: Router and dealer sockets are the most flexible socket types an can be
used to implement various routing algorithms to pass messages between multiple processes.

If you’ve never heard of ØMQ before, I recommend to read ZeroMQ an Introduction by Nicholas
Piël [4], before you go on with this article.

The ØMQ Guide [2] and PyZMQ’s documentation [5] are really good, so you can easily get
started. However, when we began to implement a larger application with it (a distributed simula-
tion framework), several questions arose which were not covered by the documentation:

• What’s the best way do design our application?

• How can we keep it readable, flexible and maintainable?

• How do we test it?

Designing and Testing PyZMQ Applications 2

I didn’t find something like a best practice article that answered my questions. So in this series
of articles, I’m going to talk about what I’ve learned during the last months. I’m not a PyZMQ
expert, but what I’ve done so far works quite well and I never had more tests in a project than I
do have now.

You’ll find the source for the examples at bitbucket [6]. They are written in Python 3.2 and
tested under Mac OS X Lion, Ubuntu 12.04 and Windows 7, 64 bit in each case.

In this article, I’m going to talk a bit about how you could generally design your application to
be flexible, maintainable and testable. I also cover various types of testing, namely unit, process
and system testing.

2 Application Design
In this section, I am going to briefly outline the pros and cons of different approaches for PyZMQ
powered applications. Before you start to actually implement your application, you should sit
down and thinks about which kind of processes and communication sequences between them you
need. I will suggest a template to systematically write down your thoughts. Finally I will provide
an example for a possible application architecture.

2.1 Comparison of Different Approaches
In this section, I will compare three different approaches to implement a PyZMQ application: One,
that’s easy, but limited in practical use, one that’s more flexible, but not really pythonic and one,
that needs a bit more setup, but is flexible and pythonic.

All three examples feature a simple ping process and a pong process with varying complexity.
I use multiprocessing to run the pong process, because that’s what you should usually do in real
PyZMQ applications.

All three examples will have the following output:
(zmq)$ python blocking_recv.py
Pong got request: ping 0
Ping got reply: pong 0
...
Pong got request: ping 4
Ping got reply: pong 4

Let’s start with the easy one first. You just use on of the socket’s recv methods in a loop:
1 # blocking_recv.py
2 import multiprocessing
3 import zmq

5 addr = ’tcp://127.0.0.1:5678’

7 def ping():
8 """Sends ping requests and waits for replies."""
9 context = zmq.Context()

10 sock = context.socket(zmq.REQ)
11 sock.bind(addr)

13 for i in range(5):
14 sock.send_unicode(’ping %s’ % i)
15 rep = sock.recv_unicode() # This blocks until we get something
16 print(’Ping got reply:’, rep)

18 def pong():
19 """Waits for ping requests and replies with a pong."""
20 context = zmq.Context()
21 sock = context.socket(zmq.REP)
22 sock.connect(addr)

Designing and Testing PyZMQ Applications 3

24 for i in range(5):
25 req = sock.recv_unicode() # This also blocks
26 print(’Pong got request:’, req)
27 sock.send_unicode(’pong %s’ % i)

30 if __name__ == ’__main__’:
31 pong_proc = multiprocessing.Process(target=pong)
32 pong_proc.start()

34 ping()

36 pong_proc.join()

So this is very easy and no that much code. The problem with this is, that it only works well
if your process only uses one socket. Unfortunately, in larger applications that is rather rarely the
case.

A way to handle multiple sockets per process is polling. In addition to your context and
socket(s), you need a poller. You also have to tell it which events on which socket you are going
to poll:

1 # polling.py
2 def pong():
3 """Waits for ping requests and replies with a pong."""
4 context = zmq.Context()
5 sock = context.socket(zmq.REP)
6 sock.bind(addr)

8 # Create a poller and register the events we want to poll
9 poller = zmq.Poller()

10 poller.register(sock, zmq.POLLIN|zmq.POLLOUT)

12 for i in range(10):
13 # Get all sockets that can do something
14 socks = dict(poller.poll())

16 # Check if we can receive something
17 if sock in socks and socks[sock] == zmq.POLLIN:
18 req = sock.recv_unicode()
19 print(’Pong got request:’, req)

21 # Check if we cann send something
22 if sock in socks and socks[sock] == zmq.POLLOUT:
23 sock.send_unicode(’pong %s’ % (i // 2))

25 poller.unregister(sock)

You see, that our pong function got pretty ugly. You need 10 iterations to do five ping-pongs,
because in each iteration you can either send or reply. And each socket you add to your process
adds two more if-statements. You could improve that design if you created a base class wrapping
the polling loop and just register sockets and callbacks in an inheriting class.

That brings us to our final example. PyZMQ includes an adapted Tornado1 eventloop2 that
handles the polling and works with ZMQStreams3, that wrap sockets and add some functionality:

1 # eventloop.py
2 from zmq.eventloop import ioloop, zmqstream

1Tornado (http://www.tornadoweb.org/) is an open source non-blocking web server and one of Facebook’s open
source technologies.

2http://zeromq.github.com/pyzmq/eventloop.html
3http://zeromq.github.com/pyzmq/api/generated/zmq.eventloop.zmqstream.html#zmq.eventloop.

zmqstream.ZMQStream

http://www.tornadoweb.org/
http://zeromq.github.com/pyzmq/eventloop.html
http://zeromq.github.com/pyzmq/api/generated/zmq.eventloop.zmqstream.html#zmq.eventloop.zmqstream.ZMQStream
http://zeromq.github.com/pyzmq/api/generated/zmq.eventloop.zmqstream.html#zmq.eventloop.zmqstream.ZMQStream

Designing and Testing PyZMQ Applications 4

4 class Pong(multiprocessing.Process):
5 """Waits for ping requests and replies with a pong."""
6 def __init__(self):
7 super().__init__()
8 self.loop = None
9 self.stream = None

10 self.i = 0

12 def run(self):
13 """Initializes the event loop, creates the sockets/streams and
14 starts the (blocking) loop.
15 """
16 context = zmq.Context()
17 self.loop = ioloop.IOLoop.instance() # This is the event loop

19 sock = context.socket(zmq.REP)
20 sock.bind(addr)
21 # We need to create a stream from our socket and
22 # register a callback for recv events.
23 self.stream = zmqstream.ZMQStream(sock, self.loop)
24 self.stream.on_recv(self.handle_ping)

26 # Start the loop. It runs until we stop it.
27 self.loop.start()

29 def handle_ping(self, msg):
30 """Handles ping requests and sends back a pong."""
31 # req is a list of byte objects
32 req = msg[0].decode()
33 print(’Pong got request:’, req)
34 self.stream.send_unicode(’pong %s’ % self.i)

36 # We’ll stop the loop after 5 pings
37 self.i += 1
38 if self.i == 5:
39 self.stream.flush()
40 self.loop.stop()

This even adds more boilerplate code, but it will pay of if you use more sockets and most of
that stuff in run() can be put into a base class. Another drawback is, that the IOLoop only uses
recv_multipart()4. So you always get a lists of byte strings which you have to decode or deserialize
on your own. However, you can use all the send methods socket offers (like send_unicode() or
send_json()). You can also stop the loop from within a message handler.

Though the last example seems to be the most complex one, it’s the best approach for larger
applications. The first example would only work for very simple scenarios with only one socket
per process. The polling example can handle multiple sockets per process but its code will quickly
become cluttered and unreadable if you add more sockets.

In the next sections, I’ll discuss how you could implement a PyZMQ process that uses the event
loop.

2.2 Communication Design
Before you start to implement anything, you should think about what kind of processes you need in
your application and which messages they exchange. You should also decide what kind of message
format and serialization you want to use. PyZMQ has built-in support for Unicode5, JSON and
Pickle.

4http://zeromq.github.com/pyzmq/api/generated/zmq.core.socket.html#zmq.core.socket.Socket.recv_

multipart
5send sends plain (ASCII encoded) C strings which map to Python 3 byte objects. A string in Python 3 is

always Unicode, so there’s a separate send_unicode method to send Unicode strings. See http://zeromq.github.
com/pyzmq/unicode.html for more details.

http://zeromq.github.com/pyzmq/api/generated/zmq.core.socket.html#zmq.core.socket.Socket.recv_multipart
http://zeromq.github.com/pyzmq/api/generated/zmq.core.socket.html#zmq.core.socket.Socket.recv_multipart
http://zeromq.github.com/pyzmq/unicode.html
http://zeromq.github.com/pyzmq/unicode.html

Designing and Testing PyZMQ Applications 5

JSON is nice, because it’s fast and lets you integrate processes written in other languages into
you application. It’s also a bit safer than pickle, because you cannot receive arbitrary objects6.
The most straightforward syntax for JSON messages is to let them be triples [msg_type, args,
kwargs], where msg_type maps to a method name and args and kwargs get passed as positional
and keyword arguments.

I strongly recommend you to document each chain of messages your application sends to perform
a certain task. I do this with fancy PowerPoint graphics and with even fancier ASCII art in Sphinx7.
Here is how I would document our ping-pong:
Sending pings

* If the ping process sends a *ping*, the pong processes responds with a

pong.

* The number of pings (and pongs) is counted. The current ping count is
sent with each message.

::

PingProc PongProc
[REQ] ---1--> [REP]

<--2---

1 IN : [’ping, count’]
1 OUT: [’ping, count’]

2 IN : [’pong, count’]
2 OUT: [’pong, count’]

First, I write some bullet points that explain how the processes behave and why they behave
this way. This is followed by some kind of sequence diagram that shows when which process
sends which message using which socket type. Finally, I write down how the messages are looking.
IN is what you would pass to send_multipart and # OUT is, what is received on the other side
by recv_multipart. If one of the participating sockets is a ROUTER or DEALER, IN and OUT
will differ (though that’s not the case in this example). Everything in single quotation marks (’)
represents a JSON serialized list.

If our pong process used a ROUTER socket instead of the REP socket, it would look like this:
1 IN : [’ping, count’]
1 OUT: [ping_uuid, ’’, ’ping, count’]

2 IN : [ping_uuid, ’’, ’pong, count’]
2 OUT: [’pong, count’]

This seems like a lot of tedious work, but it really helps a lot when you need to change or look
up something a few weeks later.

2.3 Application Architecture
In the examples above, the Pong process was responsible for setting everything up, for receiv-
ing/sending messages and for the actual application logic (counting incoming pings and creating a
pong).

Such a monolithic architecture is not a very good design—at least if your application gets more
complex than our little ping-pong example. What we can do about this is to extract most of the
setup-related code into a base class which all your processes can inherit from, separate message
handling and (de)serialization from it and finally put all the actual application logic into a separate
(PyZMQ-independent) class. This will result in a three-level architecture:

6http://docs.python.org/py3k/library/pickle#restricting-globals
7http://sphinx.pocoo.org

http://docs.python.org/py3k/library/pickle#restricting-globals
http://sphinx.pocoo.org

Designing and Testing PyZMQ Applications 6

Figure 1: The refactored PongProc class now consists of three layers. The main class PongProc
inherits ZMQProcess. Every stream gets a MessageHandler. In our example it is called Rep-
StreamHandler. Finally, you can have one ore more classes containing the (PyZMQ-agnostic)
application logic. In our example, it’s called PingHandler, because it handles incoming pings.

1. The lowest level will contain the entry point of the process. It will set-up everything and
start the event loop. A common base class provides utilities for creating sockets/streams and
setting everything up.

2. The second level is message handling and (de) serialization. A base class performs the
(de)serialization and error handling. A message handler inherits this class and implements a
method for each message type that should be handled.

3. The third level will be the application logic and completely PyZMQ-agnostic.

Base classes should be defined for the first two levels to reduce redundant code in multiple
processes or message handlers. Figure 1 shows the five classes our process is going to consist of.

2.3.1 ZmqProcess – The Base Class for all Processes

The base class basically implements two things:

• a setup method that creates a context and a loop

• a stream factory method for streams with a on_recv callback. It creates a socket and can
connect/bind it to a given address or bind it to a random port (that’s why it returns the
port number in addition to the stream itself).

It also inherits multiprocessing.Process8 so that it is easier to spawn it as a sub-process. Of
course, you can also just call its run() method from you main() function.

1 # example_app/base.py
2 import multiprocessing
3 from zmq.eventloop import ioloop, zmqstream
4 import zmq

7 class ZmqProcess(multiprocessing.Process):
8 """
9 This is the base for all processes and offers utility functions

10 for setup and creating new streams.
11 """

8http://docs.python.org/py3k/library/multiprocessing#process-and-exceptions

http://docs.python.org/py3k/library/multiprocessing#process-and-exceptions

Designing and Testing PyZMQ Applications 7

12 def __init__(self):
13 super().__init__()

15 self.context = None
16 """The ZMQ "zmq.Context" instance."""

18 self.loop = None
19 """PyZMQ’s event loop ("zmq.eventloop.ioloop.IOLoop")."""

21 def setup(self):
22 """Creates a "context" and an event "loop" for the process."""
23 self.context = zmq.Context()
24 self.loop = ioloop.IOLoop.instance()

26 def stream(self, sock_type, addr, bind, callback=None, subscribe=b’’):
27 """
28 Creates a "zmq.eventloop.zmqstream.ZMQStream".

30 :param sock_type: The ZMQ socket type (e.g. ‘‘zmq.REQ‘‘)
31 :param addr: Address to bind or connect to formatted as *host:port*,
32 *(host, port)* or *host* (bind to random port).
33 :param bind: Binds to *addr* if ‘‘True‘‘ or tries to connect to it
34 otherwise.
35 :param callback: A callback for
36 "zmq.eventloop.zmqstream.ZMQStream.on_recv", optional
37 :param subscribe: Subscription pattern for *SUB* sockets, optional,
38 defaults to ‘‘b’’‘‘.
39 :returns: A tuple containg the stream and the port number.
40 """
41 sock = self.context.socket(sock_type)

43 # addr may be ’host:port’ or (’host’, port)
44 if isinstance(addr, str):
45 addr = addr.split(’:’)
46 host, port = addr if len(addr) == 2 else (addr[0], None)

48 # Bind/connect the socket
49 if bind:
50 if port:
51 sock.bind(’tcp://%s:%s’ % (host, port))
52 else:
53 port = sock.bind_to_random_port(’tcp://%s’ % host)
54 else:
55 sock.connect(’tcp://%s:%s’ % (host, port))

57 # Add a default subscription for SUB sockets
58 if sock_type == zmq.SUB:
59 sock.setsockopt(zmq.SUBSCRIBE, subscribe)

61 # Create the stream and add the callback
62 stream = zmqstream.ZMQStream(sock, self.loop)
63 if callback:
64 stream.on_recv(callback)

66 return stream, int(port)

2.3.2 PongProc – The Actual Process

The PongProc inherits ZmqProcess and is the main class for our process. It creates the streams,
starts the event loop and dispatches all messages to the appropriate handlers:

1 # example_app/pongproc.py
2 import zmq
3 import base

Designing and Testing PyZMQ Applications 8

4 host = ’127.0.0.1’
5 port = 5678

7 class PongProc(base.ZmqProcess):
8 """
9 Main processes for the Ponger. It handles ping requests and sends back

10 a pong.
11 """
12 def __init__(self, bind_addr):
13 super().__init__()
14 self.bind_addr = bind_addr
15 self.rep_stream = None
16 self.ping_handler = PingHandler()

18 def setup(self):
19 """Sets up PyZMQ and creates all streams."""
20 super().setup()

22 # Create the stream and add the message handler
23 self.rep_stream, _ = self.stream(zmq.REP, self.bind_addr, bind=True)
24 self.rep_stream.on_recv(RepStreamHandler(self.rep_stream, self.stop,
25 self.ping_handler))

27 def run(self):
28 """Sets up everything and starts the event loop."""
29 self.setup()
30 self.loop.start()

32 def stop(self):
33 """Stops the event loop."""
34 self.loop.stop()

If you are going to start this process as a sub-process via start, make sure everything you
instantiate in __init__ is pickle-able or it won’t work on Windows (Linux and Mac OS X use
fork to create a sub-process and fork just makes a copy of the main process and gives it a new
process ID. On Windows, there is no fork and the context of your main process is pickled and sent
to the sub-process [7]).

In setup, call super().setup() before you create a stream or you won’t have a loop instance
for them. We call setup from run, because the context must be created within the new system
process, which wouldn’t be the case if we called setup from __init__.

The stop method is not really necessary in this example, but it can be used to send stop
messages to sub-processes when the main process terminates and to do other kinds of clean-up.
You can also execute it if you except a KeyboardInterrupt after calling run:

1 def main():
2 try:
3 proc = PongProc(’127.0.0.1:5555’)
4 proc.run()
5 except KeyboardInterrupt:
6 proc.stop()

2.3.3 MessageHandler – The Base Class for Message Handlers

A PyZMQ message handler can be any callable that accepts one argument—the list of message
parts as byte objects. Hence, our MessageHandler class needs to implement __call__:

1 # exmaple_app/base.py
2 from zmq.utils import jsonapi as json

4 class MessageHandler(object):
5 """
6 Base class for message handlers for a "ZMQProcess".

Designing and Testing PyZMQ Applications 9

8 Inheriting classes only need to implement a handler function for each
9 message type.

10 """
11 def __init__(self, json_load=-1):
12 self._json_load = json_load

14 def __call__(self, msg):
15 """
16 Gets called when a messages is received by the stream this handlers is
17 registered at. *msg* is a list as return by
18 "zmq.core.socket.Socket.recv_multipart".
19 """
20 # Try to JSON-decode the index "self._json_load" of the message
21 i = self._json_load
22 msg_type, data = json.loads(msg[i])
23 msg[i] = data

25 # Get the actual message handler and call it ("private" methods should
26 # not be used as method handlers).
27 if msg_type.startswith(’_’):
28 raise AttributeError(’%s starts with an "_"’ % msg_type)

30 getattr(self, msg_type)(*msg)

As you can see, it’s quite simple. It just tries to JSON-load the index defined by
self._json_load. We earlier defined, that the first element of the JSON-encoded message defines
the message type (e.g., ping). If an attribute of the same name exists in the inheriting class, it is
called with the remainder of the message.

You can also add logging or additional security measures here, but that is not necessary here.

2.3.4 RepStreamHandler – The Concrete Message Handler

This class inherits the MessageHandler, that I just showed you, and is used in PongProc.setup. It
defines a handler method for ping messages and the plzdiekthxbye stop message. In its __init__
it receives references to the rep_stream, PongProcs stop method and to the ping_handler, our
actual application logic:

1 # example_app/pongproc.py

3 class RepStreamHandler(base.MessageHandler):
4 """Handels messages arrvinge at the PongProc’s REP stream."""
5 def __init__(self, rep_stream, stop, ping_handler):
6 super().__init__()
7 self._rep_stream = rep_stream
8 self._stop = stop
9 self._ping_handler = ping_handler

11 def ping(self, data):
12 """Send back a pong."""
13 rep = self._ping_handler.make_pong(data)
14 self._rep_stream.send_json(rep)

16 def plzdiekthxbye(self, data):
17 """Just calls "PongProc.stop"."""
18 self._stop()

2.3.5 PingHandler – The Application Logic

The PingHandler contains the actual application logic (which is not much, in this example). The
make_pong method just gets the number of pings sent with the ping message and creates a new
pong message. The serialization is done by PongProc, so our Handler does not depend on PyZMQ:

Designing and Testing PyZMQ Applications 10

1 # example_app/pongproc.py

3 class PingHandler(object):

5 def make_pong(self, num_pings):
6 """Creates and returns a pong message."""
7 print(’Pong got request number %s’ % num_pings)

9 return [’pong’, num_pings]

2.3.6 Summary

In this section I presented a class structure that allows you to implement applications with multiple
processes and multiple streams per process with relatively little overhead.

Each new process must inherit ZMQProcess. This class encapsulates all setup-related code and
helpers for actual process implementations (which is called PongProc in our case). Another base
class, MessageHandler, provides a similar functionality for message handlers that you attach to a
stream. In our simple example, we only need one message handler, namely RepStreamHandler.

The actual application logic should be completely PyZMQ-agnostic. This improves the testabil-
ity of your application and also eases the migration to another socket library if your requirements
should change some day.

3 Testing
Now that we have an appropriate design for our application, it’s time for testing—remember, if
it’s not tested, it’s broken.

My favorite testing tools are pytest by Holger Krekel [8] and Mock by Michael Ford [9].9 Pytest
is particularly awesome because of its re-evaluation of assert statements. If your test contains an
assert spam == ’eggs’ and the assert fails, pytest re-evaluates it and prints the value of spam.
Really helpful and you don’t need any boilerplate code for that. Mock is really nice for mocking
external dependencies and asserting that your code called them in the correct way.

If you cloned the repository for this article, just run py.test from its root directory:
$ pip install pytest mock
...
Successfully installed pytest mock
Cleaning up...
$ py.test
=================== test session starts ====================
platform darwin -- Python 3.2.2 -- pytest-2.2.3
collected 11 items

example_app/test/test_base.py
example_app/test/test_pongproc.py

================ 11 passed in 0.12 seconds =================

In the following sections, I will discuss how you can test your application on various levels,
ranging from the method level (Unit tests) to tests of complete processes to system tests of your
complete application.

9Python’s built-in unittest module and nose are viable alternatives to pytest. There are also a few other mocking
libraries available. The code coverage of your tests can be measured with Coverage.py, which can be used from
pytest via the pytest-cov plug-in. You can find more information in the Python Testing Tools Wiki (http://
pycheesecake.org/wiki/PythonTestingToolsTaxonomy) and the Testing in Python mailing list (http://lists.
idyll.org/listinfo/testing-in-python).

http://pycheesecake.org/wiki/PythonTestingToolsTaxonomy
http://pycheesecake.org/wiki/PythonTestingToolsTaxonomy
http://lists.idyll.org/listinfo/testing-in-python
http://lists.idyll.org/listinfo/testing-in-python

Designing and Testing PyZMQ Applications 11

3.1 Unit Testing
The probability that PyZMQ works correctly is very high. The probability that your code will call
a PyZMQ function in such a way that it blocks forever and halts your test runner is also very high.
Therefore, it’s a good idea to mock everything PyZMQ-related for your unit tests. And since your
application logic might also not be implemented when you start testing your process, you should
mock that, too.

What you’ll actually end up testing is the following:

• Does your message handler call your application logic in the right way given a certain input
message?

• Does your message handler create and send the correct reply based on the return value of
your application logic?

3.1.1 ZmqProcess

Let’s start with ZmqProcess again. After all, everything else depends on it. We need to test if
its stream method can handle various address formats, if it creates or binds correctly and if it
performs a default subscription for SUB sockets.

Pytest 2.2 introduced a parametrize decorator, that helps calling a test multiple times with
varying inputs. You just define one or more arguments for your test function and a list of values
for these arguments. For test_stream, I only need a kwargs parameter containing the parameters
for the stream call:

1 # example_app/test/test_zmqproc.py
2 from zmq.eventloop import ioloop
3 import mock
4 import pytest
5 import zmq
6 import zmqproc

8 class TestZmqProcess(object):
9 """Tests for "base.ZmqProcess"."""

11 @pytest.mark.parametrize(’kwargs’, [
12 dict(sock_type=23, addr=’127.0.0.1:1234’, bind=True,
13 callback=mock.Mock()),
14 dict(sock_type=23, addr=’127.0.0.1’, bind=True,
15 callback=mock.Mock()),
16 dict(sock_type=zmq.SUB, addr=(’localhost’, 1234), bind=False,
17 callback=mock.Mock(), subscribe=b’ohai’),
18])
19 def test_stream(self, kwargs):

The next step is to create an instance of ZmqProcess and patch some of its attributes. We also
need to set a defined return value for the socket’s bind_to_random_port method:

1 # example_app/test/test_zmqproc.py

3 zp = base.ZmqProcess()

5 # Patch the ZmqProcess instance
6 zp.context = mock.Mock(spec_set=zmq.Context)
7 zp.loop = mock.Mock(spec_set=ioloop.IOLoop)
8 sock_mock = zp.context.socket.return_value
9 sock_mock.bind_to_random_port.return_value = 42

For the actual test, we also need to patch ZMQStream. Although mock.patch could work as a
function decorator, we need to use it as context processor if we also use pytest funcargs (e.g., via
the parametrize decorator).

Designing and Testing PyZMQ Applications 12

1 # example_app/test/test_zmqproc.py

3 # Patch ZMQStream and start testing
4 with mock.patch(’zmq.eventloop.zmqstream.ZMQStream’) as zmqstream_mock:
5 stream, port = zp.stream(**kwargs)

Finally, we can check the return values of our stream method and it made the correct calls to
create the stream:

1 # example_app/test/test_zmqproc.py

3 # Assert that the return values are correct
4 assert stream is zmqstream_mock.return_value
5 if isinstance(kwargs[’addr’], tuple):
6 assert port == kwargs[’addr’][1]
7 elif ’:’ in kwargs[’addr’]:
8 assert port == int(kwargs[’addr’][-4:])
9 else:

10 assert port == sock_mock.bind_to_random_port.return_value

12 # Check that the socket was crated correctly
13 assert zp.context.socket.call_args == ((kwargs[’sock_type’],), {})
14 if kwargs[’bind’] and ’:’ in kwargs[’addr’]:
15 sock_mock.bind.assert_called_with(’tcp://%s’ % kwargs[’addr’])
16 elif kwargs[’bind’]:
17 sock_mock.bind_to_random_port.assert_called_with(
18 ’tcp://%s’ % kwargs[’addr’])
19 else:
20 sock_mock.connect.assert_called_width(
21 ’tcp://%s:%s’ % kwargs[’addr’])

23 # Check creation of the stream
24 zmqstream_mock.assert_called_with(sock_mock, zp.loop)
25 zmqstream_mock.return_value.on_recv.assert_called_with(
26 kwargs[’callback’])

28 # Check default subscribtion
29 if ’subscribe’ in kwargs:
30 sock_mock.setsockopt.assert_called_with(zmq.SUBSCRIBE,
31 kwargs[’subscribe’])

3.1.2 MessageHandler

The MessageHandler base class has only one method, __call__, but I split the test for it into
two methods—one that tests the JSON-loading functionality and one that checks if the correct
handler method is called:

1 # example_app/test/test_base.py

3 class TestMessageHandler(object):
4 """Tests for "base.TestMessageHandler"."""

6 @pytest.mark.parametrize((’idx’, ’msg’), [
7 (-1, [23, b’["test", null]’]),
8 (1, [23, b’["test", "spam"]’, 42]),
9 (TypeError, [23, 42]),

10 (ValueError, [23, b’["test"]23spam’]),
11])
12 def test_call_json_load(self, idx, msg):
13 handler = mock.Mock()
14 mh = base.MessageHandler(idx if isinstance(idx, int) else -1)
15 mh.test = handler

17 if isinstance(idx, int):

Designing and Testing PyZMQ Applications 13

18 mh(msg)
19 assert handler.call_count == 1
20 else:
21 pytest.raises(idx, mh, msg)

23 @pytest.mark.parametrize((’ok’, ’msg’), [
24 (True, [23, b’["test", "spam"]’, 42]),
25 (AttributeError, [23, b’["_test", "spam"]’, 42]),
26 (TypeError, [23, b’["spam", "spam"]’, 42]),
27 (AttributeError, [23, b’["eggs", "spam"]’, 42]),
28])
29 def test_call_get_handler(self, ok, msg):
30 handler = mock.Mock()
31 mh = base.MessageHandler(1)
32 mh.test = handler
33 mh.spam = ’spam’

35 if ok is True:
36 mh(msg)
37 handler.assert_called_with(msg[0], ’spam’, msg[2])
38 else:
39 pytest.raises(ok, mh, msg)

3.1.3 PongProc

Testing the PongProc is not much different from testing its base class. pytest_funcarg__pp will
instantiate a PongProc instance for each test that has a pp argument10. The tests for setup, run
and stop are easy to do. We create a few mocks and then ask them if the tested function called
them correctly:

1 # example_app/test/test_pongproc.py
2 from zmq.utils import jsonapi as json
3 import mock, pytest, zmq
4 import pongproc

6 host, port = ’127.0.0.1’, 5678

8 def pytest_funcarg__pp(request):
9 """Creates a PongProc instance."""

10 return pongproc.PongProc((host, port))

13 class TestPongProc(object):
14 """Tests "pongproc.PongProc"."""

16 def test_setup(self, pp):
17 def make_stream(*args, **kwargs):
18 stream = mock.Mock()
19 stream.type = args[0]
20 return stream, mock.Mock()
21 pp.stream = mock.Mock(side_effect=make_stream)

23 with mock.patch(’base.ZmqProcess.setup’) as setup_mock:
24 pp.setup()
25 assert setup_mock.call_count == 1

27 assert pp.stream.call_args_list == [
28 pp.stream.assert_called_once_with(zmq.REP, (host, port), bind=True)
29 assert pp.rep_stream.type == zmq.REP

31 # Test if the message handler was configured correctly

10Pytest funcargs allow you to inject objects into tests. The results of a method pytest_funcarg__NAME will
be passed to every test case that has a parameter NAME.

Designing and Testing PyZMQ Applications 14

32 rsh = pp.rep_stream.on_recv.call_args[0][0] # Get the msg handler
33 assert rsh._rep_stream == pp.rep_stream
34 assert rsh._stop == pp.stop

36 def test_run(self, pp):
37 pp.setup = mock.Mock()
38 pp.loop = mock.Mock()

40 pp.run()

42 assert pp.setup.call_count == 1
43 assert pp.loop.start.call_count == 1

45 def test_stop(self, pp):
46 pp.loop = mock.Mock()
47 pp.stop()
48 assert pp.loop.stop.call_count == 1

3.1.4 RepStreamHandler

Testing the actual message handler requires some mocks, but is, apart from that, straight forward.
A funcarg method creates an instance of the message handler for each test case which we feed with
a message. We then check if the application logic was called correctly and/or if a correct reply is
sent:

1 # example_app/test/test_pongproc.py

3 def pytest_funcarg__rsh(request):
4 """Creates a RepStreamHandler instance."""
5 return pongproc.RepStreamHandler(
6 rep_stream=mock.Mock(),
7 stop=mock.Mock(),
8 ping_handler=mock.Mock(spec_set=pongproc.PingHandler()))

11 class TestRepStreamHandler(object):
12 def test_ping(self, rsh):
13 msg = [’ping’, 1]
14 retval = ’spam’
15 rsh._ping_handler = mock.Mock(spec_set=pongproc.PingHandler)
16 rsh._ping_handler.make_pong.return_value = retval

18 rsh([json.dumps(msg)])

20 rsh._ping_handler.make_pong.assert_called_with(msg[1])
21 rsh._rep_stream.send_json.assert_called_with(retval)

23 def test_plzdiekthybye(self, rsh):
24 rsh([b’["plzdiekthxbye", null]’])
25 assert rsh._stop.call_count == 1

3.1.5 PingHandler

When we are done with all that network stuff, we can finally test the application logic. Easy-peasy
in our case:

1 # example_app/test/test_pongproc.py

3 def pytest_funcarg__ph(request):
4 """Creates a PingHandler instance."""
5 return pongproc.PingHandler()

7 class TestPingHandler(object):

Designing and Testing PyZMQ Applications 15

8 def test_make_pong(self, ph):
9 ping_num = 23

10 ret = ph.make_pong(ping_num)
11 assert ret == [’pong’, ping_num]

3.1.6 Summary

Thanks to the Mock library, unit testing PyZMQ apps is really not that hard and not much
different from normal unit testing. However, what we know now is only, that our process should
work in theory. We haven’t yet started it and sent real messages to it.

The next section will show you how you can automate testing complete processes.

3.2 Process Testing
Once you’ve made sure that your message dispatching and application logic works fine, you can
actually start sending real messages to your process and checking real replies. This can be done for
single processes—I call this process testing—and for your complete application (system testing).

When you test a single process, you create sockets that mimic all processes the tested process
communicates with. When you do a system test, you only mimic a client or just invoke your
program from the command line and check its output (e.g., what it prints to stdtout and stderr or
results written to a database).

I will start with process testing, which is a bit more generalizable than system testing.
The biggest problem I ran into when I started testing processes was that I often made blocking

calls to recv methods and these halted my tests and gave me no output about what actually
went wrong. Though you can make them non-blocking by passing zmq.NOBLOCK as an extra
argument, this doesn’t solve your problems. You will now need a very precise timing and many
time.sleep(x) calls, because recv will instantly raise an error if there is nothing to be received.

My solution for this was to wrap PyZMQ sockets and add a timeout to its send and recv
methods. The following wrapper will try to receive something for one second and raise an exception
if that failed. There’s also a simple wrapper11 for methods like connect or bind, but it is not very
interesting, so I will omit it here.

1 # test/support.py

3 def get_wrapped_fwd(func):
4 """
5 Returns a wrapper, that tries to call *func* multiple time in non-blocking
6 mode before rasing an "zmq.ZMQError".
7 """
8 def forwarder(*args, **kwargs):
9 # 100 tries * 0.01 second == 1 second

10 for i in range(100):
11 try:
12 rep = func(*args, flags=zmq.NOBLOCK, **kwargs)
13 return rep

15 except zmq.ZMQError:
16 time.sleep(0.01)

18 # We should not get here, so raise an error.
19 msg = ’Could not %s message.’ % func.__name__[:4]
20 raise zmq.ZMQError(msg)

22 return forwarder

This wrapper is now used to create a TestSocket class with the desired behavior:
11https://bitbucket.org/ssc/pyzmq-article/src/tip/example_app/test/support.py#cl-2

https://bitbucket.org/ssc/pyzmq-article/src/tip/example_app/test/support.py#cl-2

Designing and Testing PyZMQ Applications 16

1 # test/support.py

3 class TestSocket(object):
4 """
5 Wraps ZMQ "zmq.core.socket.Socket". All *recv* and *send* methods
6 will be called multiple times in non-blocking mode before a
7 "zmq.ZMQError" is raised.
8 """
9 def __init__(self, context, sock_type):

10 self._context = context

12 sock = context.socket(sock_type)
13 self._sock = sock

15 forwards = [# These methods can simply be forwarded
16 sock.bind, sock.bind_to_random_port,
17 sock.connect, sock.close, sock.setsockopt,
18]
19 wrapped_fwd = [# These methods are wrapped with a for loop
20 sock.recv, sock.recv_json, sock.recv_multipart, sock.recv_unicode,
21 sock.send, sock.send_json, sock.send_multipart, sock.send_unicode,
22]

24 for func in forwards:
25 setattr(self, func.__name__, get_forwarder(func))

27 for func in wrapped_fwd:
28 setattr(self, func.__name__, get_wrapped_fwd(func))

In order to reuse the same ports for all test methods, you need to orderly close all sockets
after each test. To handle method level setup/teardown in pytest, you need to implement a
setup_method and a teardown_method. In the setup method, you create one or more TestSocket
instances that mimic other processes and you also start the process to be tested:

1 # test/process/test_pongproc.py
2 import pytest
3 import zmq
4 from test.support import ProcessTest, make_sock
5 import pongproc

7 host = ’127.0.0.1’
8 port = 5678

10 class TestProngProc(ProcessTest):
11 """Communication test for the Platform Manager process."""

13 def setup_method(self, method):
14 """
15 Creates and starts a PongProc process and sets up sockets to
16 communicate with it.
17 """
18 self.context = zmq.Context()

20 # make_sock creates and connects a TestSocket that we will use to
21 # mimic the Ping process
22 self.req_sock = make_sock(self.context, zmq.REQ,
23 connect=(host, port))

25 self.pp = pongproc.PongProc((host, port))
26 self.pp.start()

28 def teardown_method(self, method):
29 """
30 Sends a kill message to the pp and waits for the process to terminate.
31 """

Designing and Testing PyZMQ Applications 17

32 # Send a stop message to the prong process and wait until it joins
33 self.req_sock.send_multipart([b’["plzdiekthxbye", null]’])
34 self.pp.join()

36 self.req_sock.close()

You may have noticed that our test class inherits ProcessTest. This class and some helpers in
a conftest.py12 allow us to use some magic that improves the readability of the actual test:

1 # test/process/test_pongproc.py

3 def test_ping(self):
4 """Tests a ping-pong sequence."""
5 yield (’send’, self.req_sock, [], [’ping’, 1])

7 reply = yield (’recv’, self.req_sock)
8 assert reply == [[’pong’, 1]]

You can just yield send or recv events from your test case! When you yield a send, the test
machinery tries to send a message via the specified socket. When you yield a receive, ProcessTest
tries to receive something from the socket and sends its result back to your test function, so that
you can easily compare the reply with the expected result.

The example above is roughly equivalent to the following code:
1 self.req_sock.send_multipart([] + [json.dumps([’ping’, 1])])

3 reply = self.req_sock.recv_multipart()
4 reply[-1] = json.loads[reply[-1]]
5 assert reply == [[’pong’, 1]]

So how does this work? By default, if pytest finds a test function that is a generator, it
assumes that it generates further test functions. Hence, our first step is to override this behav-
ior. We can do this in a conftest.py file in the test/process/ directory by implementing a
pytest_pycollect_makeitem13 function. In this case, we collect generator functions like normal
functions. We also need to tell pytest how to run a test on the collected generator functions.
This can be done by implementing pytest_runtest_call14. If the object we are going to test is a
generator function, we call the run method of the object’s instance (this method is inherited from
emphProcessTest) and pass the generator function to it.

The run method15 simply iterates over all events our test function generates and calls a method
with the name of the event (e.g., send or recv). Their return value is sent back into the generator.
If an error occurs, the exception’s traceback is modified to point to the line of code that yielded
the according event and not to the line that actually raised the exception (e.g., TestSocket.recv),
which would not be very useful in this case.

The conftest plug-in and the run method involve a lot of magic, so I omitted their code. You
can find it at bitbucket by following the links in the respective footnotes.

The ProcessTest ’s methods send and recv roughly do the same as the snippet I showed you
above:

1 # test/support.py

3 def send(self, socket, header, body, extra_data=[]):
4 """
5 JSON-encodes *body*, concatenates it with *header*, appends
6 *extra_data* and sends it as multipart message over *socket*.

8 *header* and *extra_data* should be lists containg byte objects or
9 objects implementing the buffer interface (like NumPy arrays).

12http://pytest.org/latest/plugins.html
13https://bitbucket.org/ssc/pyzmq-article/src/tip/example_app/test/process/conftest.py#cl-4
14https://bitbucket.org/ssc/pyzmq-article/src/tip/example_app/test/process/conftest.py#cl-15
15https://bitbucket.org/ssc/pyzmq-article/src/tip/example_app/test/support.py#cl-126

http://pytest.org/latest/plugins.html
https://bitbucket.org/ssc/pyzmq-article/src/tip/example_app/test/process/conftest.py#cl-4
https://bitbucket.org/ssc/pyzmq-article/src/tip/example_app/test/process/conftest.py#cl-15
https://bitbucket.org/ssc/pyzmq-article/src/tip/example_app/test/support.py#cl-126

Designing and Testing PyZMQ Applications 18

10 """
11 socket.send_multipart(header + [json.dumps(body)] + extra_data)

13 def recv(self, socket, json_load_index=-1):
14 """
15 Receives and returns a multipart message from *socket* and tries to
16 JSON-decode the item at position *json_load_index* (defaults to ‘‘-1‘‘;
17 the last element in the list). The original byte string will be
18 replaced by the loaded object. Set *json_load_index* to ‘‘None‘‘ to get
19 the original, unchanged message.
20 """
21 msg = socket.recv_multipart()
22 if json_load_index is not None:
23 msg[json_load_index] = json.loads(msg[json_load_index])
24 return msg

You can even add your own event handler to your test class. I used this, for example, to add a
log event that checks if a PyZMQ log handler sent the expected log messages:

1 def log(self, substr=’’):
2 """
3 Receives a message and asserts, that it is a log message and that
4 *substr* is in that message.

6 Usage:
7 yield (’log’, ’Ai iz in ur log mesage’)
8 """
9 msg = self.log_sock.recv_json()

10 assert msg[0] == ’log_message’
11 assert substr in msg[1]

3.2.1 What if your process starts further subprocesses?

In some cases, the process you are about to test starts additional subprocesses that you don’t want
to test. Even worse, these processes might communicate via sockets bound to random ports. They
might also depend on excepting a KeyboardInterrupt to send stop messages to child processes or
to clean something up.

The last problem is quite easy to solve: You just a send a SIGINT (an interrupt signal) to your
process from the test:

1 import os, signal

3 def teardown_method(self, method):
4 os.kill(self.my_proc.pid, signal.SIGINT)
5 self.my_proc.join()

7 # Now you can close the test sockets

If you don’t want to start a certain subprocess, you can just mock it. Imagine, you have two
processes a.A and b.B, where A starts B, then you just mock B before starting A:

1 with mock.patch(’b.B’):
2 self.a = A()
3 self.a.start()

Imagine now, that A binds a socket to a random port and uses that socket to communicate
with B. If you want to mock B in your tests, you need that port number in order to connect to it
and send messages to A.

But how can you get that number? When A creates B, it already runs in its own process, so a
simple attribute access won’t work. Setting a random seed would only work if you did that directly
in A when it’s already running. But doing that just for the tests is not such a good idea. It also
may not work reliably on all systems and Python versions.

Designing and Testing PyZMQ Applications 19

However, A must pass the socket number to B, so that B can connect to A. Thus, we can create
a mock for B that will send us its port number via an inter-process queue from the multiprocessing
module16:

1 class ProcMock(mock.Mock):
2 """
3 This mock returns itself when called, so it acts like both, the
4 process’ class and instance object.
5 """
6 def __init__(self):
7 super().__init__()
8 self.queue = multiprocessing.Queue()

10 def __call__(self, port):
11 """Will be called when A instantiates B and passes its port number."""
12 self.queue.put(port)
13 return self

15 def start(self):
16 return # Just make sure the methods exists and returns nothing

18 def join(self):
19 return # Just make sure the methods exists and returns nothing

22 class TestA(ProcessTest):

24 def setup_method(self):

26 b_mock = ProcMock()
27 with mock.patch(’b.B’, new=b_mock):
28 self.a = A()
29 self.a.start()

31 # Get the port A is listening on
32 port = b_mock.queue.get()

34 # ...

As you’ve seen, process testing is really not as simple as unit testing. But I always found bugs
with it that my unit tests coudn’t detect. If you cover all communication sequences for a process
in a process test, you can be pretty sure, that it will also work flawlessly in the final application.

3.3 System Testing
If your application consists of more than one process, you still need to test whether all processes
work nicely together or not. This is something you cannot simulate reliably with a process tests,
as much as unit tests can’t replace the process test.

Writing a good system test is very application-specific and can be, depending on the complexity
of your application, very hard or very easy. Fortunately, the latter is the case for our ping-pong
app. We just start it and copy its output to a file. If the output is not what we expected, we
modify the file accordingly. In our test, we can now simply invoke our programm again, capture
its output and compare it to the contents of the file we created before:

1 # test/system/test_pongproc.py
2 import os.path
3 import subprocess
4 import pytest

6 def test_pongproc():
7 filename = os.path.join(’test’, ’data’, ’pongproc.out’)

16http://docs.python.org/py3k/library/multiprocessing#exchanging-objects-between-processes>

http://docs.python.org/py3k/library/multiprocessing#exchanging-objects- between-processes>

Designing and Testing PyZMQ Applications 20

8 expected = open(filename).read()

10 output = subprocess.check_output([’python’, ’pongproc.py’],
11 universal_newlines=True)

13 assert output == expected

If your application was a server, another way of doing the system test would be to emulate
a client that speaks with it. Your system test would then be very similar to your process tests,
except that you only mimic the client and not all processes your main process communicates with.

Other applications (like, for instance, simulations) might create a database containing collected
data. Here, you might check if these results match your expectations.

Of course you can also combine these possibilities or do something completely different . . .

3.4 “My Test Are now Running sooo Slow!”
System and process tests often run much slower than simple unit tests, so you may want to skip
them most of the time. Pytest allows you to mark a test with a given name17. You can then
(de)select tests based on their mark when you invoke pytest.

To mark a module e.g. as process test, just put a line pytestmark = pytest.mark.process
somewhere in it. Likewise, you can add a pytestmark = pytest.mark.system to mark a module
as system test.

You can now deselect process and system tests:
1 $ py.test -m "not (process or system)"

You can put this into a pytest.ini as a default setting. To override this again, use 1 or True as
selection expression:

1 $ py.test -m 1

4 Summary
I showed you three ways to use PyZMQ. If you have a very simple process with only one socket,
you can easily use its blocking recv methods. If you need more than one socket, I recommend using
the event loop. And polling . . . you don’t want to use that. In my opinion, it is not very pythonic
and the code will get unreadable a lot faster than with an event loop.

If you decide to use PyZMQ’s event loop, you should separate the application logic from all the
PyZMQ stuff (like creating streams, sending/receiving messages and dispatching them). If your
application consists of more then one process (which is usually the case), you should also create a
base class with shared functionality for them.

Testing is always very important and the more complex your system gets, the more crucial are
tests—both, qualitatively and quantitatively. Unit tests (a lot of them) should be the backbone of
your test suite. But since they can’t detect all kinds of errors, you also need to test larger units of
your application as a whole. These Process and System Tests require a bit more effort, but I think
they are definitely worth the extra work. They give you a lot more confidence that your program
actually works, because they are much more realistic than unit tests can be.

I hope this article provided a good overview about how to design and test applications with
PyZMQ and I hope that you now run into much less problems than I did when I first started
working with PyZMQ.

17http://pytest.org/latest/example/markers.html#mark-examples

http://pytest.org/latest/example/markers.html#mark-examples

Designing and Testing PyZMQ Applications 21

References
[1] iMatix Corporation, “ØMQ – the intelligent transport layer,” 2012. [Online] http:

//www.zeromq.org

[2] ——, “ØMQ – the guide,” 2011. [Online] http://zguide.zeromq.org/page:all#Fixing-the-World

[3] ——, “ØMQ python binding,” 2012. [Online] http://www.zeromq.org/bindings:python

[4] N. Piël, “ZeroMQ an introduction,” 2010. [Online] http://nichol.as/zeromq-an-introduction

[5] B. E. Granger and M. Ragan-Kelley, “Pyzmq documentation,” 2011. [Online] http:
//zeromq.github.com/pyzmq

[6] S. Scherfke, “Examples for ‘designing and testing pyzmq applications’,” 2012. [Online]
https://bitbucket.org/ssc/pyzmq-article

[7] Python Software Foundation, “multiprocessing — process-based parallelism,” 2012. [Online]
http://docs.python.org/py3k/library/multiprocessing#windows

[8] H. Krekel, “pytest,” 2012. [Online] http://pytest.org/latest/

[9] M. Ford, “Mock – mocking and testing library,” 2012. [Online] http://www.voidspace.org.uk/
python/mock/

http://www.zeromq.org
http://www.zeromq.org
http://zguide.zeromq.org/page:all#Fixing-the-World
http://www.zeromq.org/bindings:python
http://nichol.as/zeromq-an-introduction
http://zeromq.github.com/pyzmq
http://zeromq.github.com/pyzmq
https://bitbucket.org/ssc/pyzmq-article
http://docs.python.org/py3k/library/multiprocessing#windows
http://pytest.org/latest/
http://www.voidspace.org.uk/python/mock/
http://www.voidspace.org.uk/python/mock/

	Introduction
	Application Design
	Comparison of Different Approaches
	Communication Design
	Application Architecture
	ZmqProcess – The Base Class for all Processes
	PongProc – The Actual Process
	MessageHandler – The Base Class for Message Handlers
	RepStreamHandler – The Concrete Message Handler
	PingHandler – The Application Logic
	Summary

	Testing
	Unit Testing
	ZmqProcess
	MessageHandler
	PongProc
	RepStreamHandler
	PingHandler
	Summary

	Process Testing
	What if your process starts further subprocesses?

	System Testing
	“My Test Are now Running sooo Slow!”

	Summary

