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ABSTRACT

The formal convergence diagnosis of the Markov €hdonte Carlo (MCMC) is made using univariate
and multivariate criteria. In 1998, a multivarigetension of the univariate criterion of multipkegsiences
was proposed. However, due to some problems of nidtivariate criterion, an alternative form of
calculation was proposed in addition to the two radternatives for multivariate convergence critefia
this study, two models were used, one relatedte Beries with two interventions and ARMA (2, 2joer
and another related to a trivariate normal distridoy considering three different cases for theat@nce
matrix. In both the cases, the Gibbs sampler ardptioposed criteria to monitor the convergence were
used. Results revealed the proposed criteria tmbgquate, besides being easy to implement.

Keywords: Convergence Criterion, Gibbs Sampler, Bayesia@rémfce, Simulation

1. INTRODUCTION not use or do not clearly address the implementiézstia
to check for convergence. Moreover, in cases of

Nowadays, Bayesian inference is a matter of complicated models, Bayesian inference requireseatg
extreme interest, despite having been developed lon computational effort. This effort can be minimizbg
before frequentist statistics. In some cases, Bayes monitoring the chain convergence, thus avoiding
inference requires Markov Chain Monte Carlo (MCMC) iterations beyond the necessity.
methods. The Gibbs sampler is one of the majosetas In the literature, there are univariate and maliiate
of stochastic simulation schemes proposed, which iscriteria for monitoring the convergence of MCMC puit
being used in many situations (Gamerman and Lopesto the stationary distribution, where the Gelmard an
2006). The quality of the simulation methods re-l@  Rubin (1992) criterion is a univariate represemtatilhis
good-quality uniform random number generators, ancriterion uses parallel chains from different stayt
issue recently discussed by Lugtial. (2010). However,  points, i.e., different arbitrary initial valuesdhthe idea
a great difficulty is the empirical diagnosis of that the trajectories of the chains should be #mesafter
convergence to the stationary distribution. Severalconvergence has been formalized. This criteridmaised
techniques in the literature help in identifyingdan on the use of analysis of variance techniques,isgdk
monitoring convergence (Heidelberger and Welch6198 verify whether the dispersion within the chaingjisater
Geweke, 1992; Raftery and Lewis, 1992; Cowles andthan that between the chains. By analogy, this gg®c
Carlin, 1996; Brooks and Roberts, 1998; Brooks andhas been extended to the multivariate form by Bsook
Giudici, 2000). and Gelman (1998).

Besides Bayesian analysis being increasingly used, When dealing with many parameters, the
the results are often questioned because researdber convergence of the distribution will only occur whall
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the parameters converge. This is a practical proble elements are;, where 6 is the p-th element of the

because it turns out to be impractical for a langeber vector of the parameters of the chain | at iteratio
of parameters. The multivariate criterion is baseda For large dimension, one should estimate the

single value for assessing the convergence of &M . ariance matrix of the a posteriori chains of the
output for all the parameters. parameters by:

The possible issues of the multivariate critema a
the cases where they are impossible to compute have gon- 1W (1+ j

been pointed out in Brooks and Gelman (1998). n

Therefore, this study presents an alternative waty f

obtaining the Brooks and Gelman criterion, as weall  Where:

two new alternatives of multivariate convergendteda

and evaluates the performance of the three metfords iz”:(e__ ~8,)(8, -6,)"

convergence under two models. m(n ngeg T
The study is outlined as follows: Section 2 présen

the original convergence criterion (Brooks and Gaim And:

1998), along with the research problem and motwvati

(2.1), an alternative computation (2.2) and twoppsed

criteria (2.3). In Section 3 the methodology and

application of the criteria to the two models are

presented and in Section 4, they have been compare

Lastly, Section 5 presents the conclusions.

B_
n

-8.)®; -6.)

re p-dimensional matrices estimated from chainhef
parameters. Thus, researchers could monitor the

o convergence by using the covariance matri¢emd W.
1.1.Convergence Criterion of Brooks and The distance betweed and W is summarized as a
Gelman scalar measure that should be close to 1 when the

The original criterion of Brooks and Gelman (1998) convergence is achieved. One way to do this is by
is an extension of the criterion of Gelman and Rubi Seeking the maximum of the characteristic root ldanb
(1992) According to Gelman and Rubin (1992)’ |mma of the product W1V, which is also the maximum of the
cases, the convergence of chains to the stationary’SRF of any linear projection 6f
distribution can be easily determined using mutipl The maximum is given by differentiating the rati
independent chains, in parallel, but cannot berttiagd ~ quadratic forms with respect to the vector a, tijirggit
using the simulation result coming from any single
chain. They proposed a method using multiple
replications of chains to determine if the statignstate a' Wa =1.
was reached in the second half of each samplenjchai Then:

The method assumes that m chains have been sichulate

in parallel, each from a different starting poiAfter a O\ _ 2Vaa'Wa —2Waa'Va
starting point belonging to the parameter space¢hef da (a"Wa)?
posterior distribution has been obtained, the chaire

to zero, i.e.,g—)‘ =0 and adopting the restriction given by
a

run for 2n iterations, of which the first n areadisded to =0

avoid the period of heating (burn-in) and the iafiue of

initial values. The m chains yield m possible stats. If The homogeneous system of equations has a
those statistics are quite similar, it is an intara that nontrivial solution if and only if, [VXW| =

convergence has been reached or is close. Thasersut The solution can be obtained by taking the

have also suggested comparing these statisticsthie  eigenvalues of WV, but in some cases, it is not

obtained from the union of the chains, i.e., uibthe nm  straightforward to obtain the inverse of W and the
values. The convergence indicator Gelman and Rubireigenvalues of the matrix W, because this new matrix

(1992) is named Potential Scale Reduction Fac®R. is non-symmetric.

For the multivariate case, Brooks and Gelman The convergence indicator Brooks and Gelman
(1998) proposed to replace the scalar estimatopsby  (1998)-named Multivariate Potential Scale Reduction
covariance matrices B and W (between and within Factor (MPSRF)-is based on following quadratic
chains, respectively) of the vector of paramé@tewhose  forms’ maximization Equation 1:
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~p a™Va —Ail)z; = 0; therefore, we achieve the same solution for
R = X TWa the case of maximizing a quadratic form, except ¢éha
. (SHT z must be recovered, because the eigenvectors z
_n-1 (m+1 @ Bt)/n . .
=+ max= 1) are changed by non-singular transformation. The
n mn o eigenvalues are invariant to the non-singular

:L_1+( m+ 1);\ transformation performed.

n mn ) According to Brooks and Gelman (1998), the
maximum eigenvalug, is the K itself, where Ris the

Under equality of the average of the chaigs 0. p-dimensional PSRF, given by (1). Thus, the

. . . ~ transformation gives the system:
Is it the maximum eigenvalue of V8. R” 1 when n g 4

is large enough, where p is the number of parameter
According to Brooks and Gelman (1998) if both W
and B are both singular we cannot calculate the RIRS
This can occur if two or more parameters are catedl or
one parameter is obtained by linear combinationthef

o_ther. If only W is fsmgullar, then this problem che solution of maximizing the ratio of two quadratarins.
circumvented as the iterations go on. Another gnokthat The prerequisite is that W must be positive dedirfr

can arise is the time elapsed to perform the ilversf o congition of existence of the Cholesky factrbe
W, because it could be large in many circumstariths.  gaiisfied.

methods proposed in this study come to solve sstles. Although the Cholesky factor can be used on
1.2.Alternative Computation for Maximizing positive semi—definite matrices, it does not hahd@es
Quadratic Forms of null determmants_. Therefore, two new criteriavé
been proposed, which are presented as followshén t
The maximization of quadratic forms is widely used next section, it can be noted that the trace @iters
for circumstances in which we want to get a vahett efficient to handle null determinant issues.
represents a direction of the greater variabilifytiee
system. In maximizing quadratic forms, a homogeseou
system of equations given by (¥H a = 0 occurs. The original multivariate criterion (Brooks and
Maximizing quadratic forms ratios vyields a Gelman, 1998) is theoretically considered efficiéint
homogeneous system given by (WW) g = 0 and there are high correlations between the parametés.
obtaining the characteristic roots and characterist extreme case is the circumstance of perfect ceioala
vectors of the second case is not a trivial tasler@fore, ~ between the parameters. In that case, the mubieari
this study proposes rotating the axis on the Cames criterion would be equivalent to the univariateteion

(H-RPI)zi=0

From this equation, we can determingdRd avoid
the problems mentioned by Brooks and Gelman (1998),
because there is no need to invert W to obtain the

1.3. Two Proposed Convergence Criteria

system, seeking for new directions of greater Wity, of any of the p parameters, because monitoring the
thereby reducing the system of the ratio of twodgatic ~ correlation of one parameter reflects what hapjetise
forms to a system of one quadratic form. other parameters. In the case of low correlati@ig/éen

Let the ratio of quadratic forms of the Brooks and the parameters, or their subgroups, this critennary fail
Gelman criterion (1) be the one to be maximizecthen 0 monitor the convergence, because it considdystbe
Bayesian literature, it is common to find the direction of greatest variability in p-dimensional
maximization given by obtaining the eigenvalues andhyperspace. In the extreme case of no correlathus,
eigenvectors of WV. This study proposes an criterion will only monitor the parameter of gresite

alternative that is described hereafter. For this,matrix disturbance (variance) for the system.

- T . Such limitations allow further reflection on this
W IS factored (Cholesky factor) as W = SseF'“Q 285 method. This reflection has allowed two new mutti
the linear transformation of the vector a by z'=aSjives

~(SH 5 b . d ith th " alternatives. Both consider the variability indifections of
a = (S7) z, because, in accordance with the properties, o shace which are linear orthogonal transfiemst

of the Cholesky factor, S§= S (S7)" = I. If the (rotations) of the parameters axes.
equation (v -LW)g = 0 is premultiplied by S-1, then The first alternative proposed is based on repipthie
S™W (SHT = I. Setting H = S V (ST, gives (H scalars & V a and &Wa from the original criteria by new
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scalars trace\{ ) and trace (W), respectively, where W is
the covariance matrix within the chain given by éhd

V is the estimated total covariance matrix givenBy (

Let us consider a simple case where each Marko
chain is an i.i.d. sample and each chain has orenme

y. Consider m as fixed and let the number of
iterations n— oo.
Then:
W - | and1 B- 1
n m=1
m 1 m l m T
Ho=— D> W [ —— D) M =E
Eln-gn [n-2En]
Thus:
W L | +[1+ijE
m
And:

trace (AV)
trace (W)

- 1since E= (

The second criterion proposed is the product of no

zero eigenvalues of the matriW‘1\7,|L1|R{’=‘\7‘/\W

where r is the number of non-zero eigenvalues pé&(t
equality holds only when W is invertible. Both the
criteria are univariate measures of variabilitynfrahe
process. Thus, the following criteria can be define

~p _ trace 6/)
trace — .

trace (W)

/R\pe.: : RP = r)\v
det I:Il , D,

\

The first model used was a time series model with
two interventions and correlated errors. The fitted
intervention model was an ARMA(2, 2) (Morettin and
Toloi, 2008).

The intervention model with autoregressive moving
average error of order p and g, denoted by ARMA(p,q
is given by:

1+Qa“fh”+eﬂ*%t:L2“wn
1_(ply[—1_"'_(ppyt—p

Y =X{B+

where at is the residue, considered as white naikih
is a sequence of random variables iM(0, %), where
T is the precision andt™ = o® is the variance,
X{ =[&, & ,..&,,Jis a matrix (nxw) of binary variables

in which each element is a vector and w is the rermolp
interventions andd” = [B1 B, ... Pu] is a vector of
intervention parameters. This model was charaaeriz
by Diaz (1988). The Bayesian analysis with priod an
full conditional posterior distributions for eachrameter
was developed by Milani (2000).

The parametric values used for the simulation were
0, = _03,62 = 05,B1 = -30; Bz = 20,¢)1 = 05,(1)2 =
-0.3 andr = 1.

The second model used was the trivariate normal
distribution. The Gibbs sampler was used to gemerat
Monte Carlo samples for the three variates. Furibes,
the property of the multivariate normal distributictating
that all the subsets of X are also multivariatenraily
distributed, was used. By taking up a partition

X
px1=|: —

(p-Q)xl
the mean vector

—{““_:“1mmz{

}: il} and its corresponding partitions of
2

and covariance matrix, one calrobta

qz 11, qz 12p-q)
(p-q)z 21, (- q)z 225-q)

where, X~N, (u1, 211), Xo~N, (12, 222) for g < p and

pH1

(p—q)ul i u 2

These methods do not necessarily need the Bayesiagy ;14 and (p-q>.22(0-q) @re the covariance matrices of X

set up. They work for MCMC in general.

2. MATERIALSAND METHODS

For assessing the convergence criteria of the MCMC

two models were considered. For this, specific cagere
simulated for the values of the parameters andGibés

sampler was used to generate values for the models,

Samples of the posterior joint distribution and therginal
distributions of the parameters were obtained.
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and X, respectively.
Under such partition, the conditional distributioh
X4|X5 is given by:

Xl | XZ DN p(“c’z(‘)
where the vector of meang, +p, +, 5 (x ,—1 ) and

Covariance matrix is given by =3 -3 575 (Bock,
1985).
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The trivariate normal model was simulated by using convergence criteria is addressed and the estimatio

the distribution given in (2), by considering thregses
of correlation between the variates with distinct
variances (1, 10 and 100). The correlation matripes
and the resulting covariance matrices,adopted were:

100 10 O
py={0 1 Ojand) =/ 0 10 O
001 0 0 10

1 025 05 [ 1 158 52

py=/050 1 048 an} , =| 158 10 15.1¢

052 048 1 | 5.20 15.18 10

1 098 09 [ 1 310 97

p,=|098 1 099 and ,=| 310 10 31

098 099 1 | 9.70 31.31 10

11
wheres, =V2p V2V, =diag(3 ) and i = N, M and H.
This distinction allows cases of high, medium andl n
correlation between the conditionals to be simdlate
coinciding with the extreme case, where the coowliis
are same as the marginals.

The criterion of Brooks and Gelman (1998) was

adopted to assess both the convergence of the sev

parameters in the intervention model with ARMA(2,2)
error and the variates of the trivariate normal deb-
The criterion was performed iteratively along witte
Gibbs sampler. At 20 iterations, the criterion was
calculated for the first time and then every tvarations,

the model parameters (2) will not be mentioned.

The trace criterion presented somewhat smoother
behavior and lower values than the others (m F&)m
Fig. 1, it can be observed that the determinant criterion
agrees with the original Brooks and Gelman, indicat
convergence at R = 1.2 with 396 and 458 iteratibos,
has a small fluctuation around R = 1.05 with 1,26@
1,770 iterations, respectively. The trace criteri@s
reviewed, characterizes the convergence at R witl?
384 iterations. The univariate criterion of Gelmand
Rubin was obtained and the value of convergence was
reached at 380 iterations. It can be noted thatreme
criterion detected the convergence as fast as the
univariate criterion.

The results of 7 chains are presenteBim 2. When
considering more chains, there is greater precisidhe
estimation of the covariance matrix and therebyicaty
the fluctuations.

For 3 chains, convergence at R = 1.2 with 486
iterations for the trace criterion, 526 iteraticios the
determinant criterion and 524 iterations for theioal
criterion of Brooks and Gelman was achieved. When
only 5 chains were used in parallel, the convergemas

dietected with 352, 370 and 364 iterations, respelgti

For 7 chains, the convergence was detected with 422
880 and 850 iterations, respectivelyid. 2). It can be
observed that the trace criterion always charaxtdrthe
convergence before the others. Another interegioigt
is that the iterations that characterized the coyesmce

always considering a burn-in of 50%. For the times did not vary much as the number of chains incre&sed
series model, 3,671 iterations were performed whenthe trace criterion. The results for the determinan

considering m = 2 chains in parallel. For 3, 5 ahd
chains, 5,000 iterations were calculated and pewadrin
parallel. For the trivariate normal model, 5,0Qfdtions
were calculated for 2, 3, 5 and 7 chains in pdralle
Additionally, the two new criteria proposed and
described earlier were implemented.

3.RESULTS

3.1. Intervention Model with Error ARMA (2, 2)

The number of non-zero eigenvalues of the H matrix

is r = min(m-1; p), where m is the number of chaind

criterion were very close to the original Brooksdan
Gelman criterion in all circumstances.

The increase in the number of chains increased the
number of eigenvalues. By evaluating the resulthese
eigenvalues, we can see that there is always an
eigenvalue representing over 70% of the variatibthe
system due to the parameters of the interventiodemo
being very much correlated.

3.2. Trivariate Normal distribution

By using a trivariate normal model and considering
no correlation, there is, as commented earliery onl

non-zero eigenvalues is directly related to the lpemof
chains used. Therefore, the cases with 2, 3, 57and
chains in parallel were studied. In the subsegsection,

only the evaluation of the performance of the
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expected to suffer only the influence of the aditr
initial value. For this situation, there are result
considering 2, 3, 5 and 7 chains in paralldgure 3
presents the criteria for 7 chains.
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Fig. 1. Graphical representations of multivariate critavtzereas 2 chains, emphasizes the scalectdr R
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Fig. 2. Graphical representation of multivariate critdda7 chains in parallel for the intervention
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Fig. 3. Graphical representation of multivariate critdda7 chains in the situation of lack of correlatio

1.5 5
3 —R-Brooks and Gelman
- «eemeem. R-Determinant
e B =T TACE
1.4
1.3
-
EREN
1.1 =
1.0 =
1 b ) b L hd L] bl 1 v )
0 1000 2000 3000 4000 5000
Iterations

Fig. 4. Graphical representation of multivariate criter@ 7 chains in parallel for the trivariate nornmabdel under medium
correlation
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Fig. 5. Graphical representations of multivariate crit@aasidering 2 chains for the case of high

The characterization of convergence used 2 chainswith 40 iterations for the determinant criteriordamith 40

for R = 1.2, when it occurred with 28 iterations fhe

original criterion of Brooks and Gelman, with 26

iterations for the determinant criterion and witlss than
20 iterations to the trace criterion. When 7 chairse

iterations for the trace criterion.

The characterization of convergence when 7 chains
were used showed little difference between theipusv
values, i.e., 40, 32 and less than 20 iterations,

used, the convergence was characterized at vesg clo respectively.

values: 30, 30 and less than 20 iterations, resdetIn

It must be noted that high correlation between the

all cases, the convergence was achieved with fewewariables allows a single variable to explain thibheo

iterations using the trace criterion. It appearat tthe

two, i.e., the sampling process becomes slow dubeo

other two methods overestimated the convergence tim dependence of the full conditional, which exhidiet
because, as already reported, the chains genuinelpame behavior (Gamerman and Lopes, 2006). Theyefore

originated from a Monte Carlo process and wereabegri
uncorrelated. Except for the initial value, the ptanwas
already in equilibrium from the second iteration.
Similar to the time series model, one can notiee t
there are few differences when using a differemhioer
of chains. However, only for the trace criterionicls

it has an eigenvalue that explains virtually 100f4he
variation. FromFig. 5 and 6, one can observe, as
expected, the equality of the criteria even witle th
increase in the number of chains. The charactéizaff
convergence when 2 chains were used for R = 1.2
occurred at 1,544 iterations for the original ¢ide of

possible differences were not apparent, because thiBrooks and Gelman, at 1,544 iterations for the
criterion showed the best results for the lack of adeterminant criterion and at 1,538 iterations far trace

correlation situation. This can also be explaingdthe
fact that the model has only three parameters andeh
there is no gain in increasing the number of chixora 3.
Now, with regard to the intermediate correlatiosjrailar
behavior of the criteria for 7 chains was observasl,

shown in Fig. 4. The characterization of convergence way

criterion.  Furthermore, the characterization of
convergence when 7 chains were used showed thesvalu
of 1, 760, 1, 762 and 1,754 iterations, respedtivel

Itis clear that in the presence of high correlatithe
process mixes slowly, requiring more iterations.eOn
to accelerate the convergence would be

when 2 chains were used for R = 1.2 occurred with 5 reparametrization, but in some circumstances,ishigt

iterations for the original criterion of Brooks a@eIman,
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desired, requiring greater attention.
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Fig. 6. Graphical representations of multivariate criteasidering 7 chains for the case of higinrelation

4. DISCUSSION eigenvalues, not allowing the computation of the
criterion (Brooks and Gelman, 1998). As the trace

Multivariate methods are essential even in Cfiterion did not present any problem of this typie
circumstances with few parameters, taking into anto situation, it is considered more robust. Moreottes, case
the variation and correlation in hyperspace. Tlieron of lack of correlation allowed the conclusion thhis
of Brooks and Gelman (1998) presented resultscriterion provides a more precise time of convecgen
consistent with the convergence of simulated modeis ~ Measured in the number of iterations. Thus, the two
as a generalization of the criterion of Gelman Rothin, ~ COmpeting criteria tend to overestimate the numitfer
it also has the feature of only monitoring of comence iterations needed for convergence to equilibrium.
rather than with the quality of the sample. Theposed

alternative for computing such criterion was easily 5. CONCLUSION
implemented and found to be numerically robust riyri
the simulation. Two alternative criteria were prepd to The alternative for the calculation of the criberiof

cover the whole range of parameters in the chdihe.  Brooks and Gelman (1998) was feasible to be applied
trace criterion was easily implemented and showedyng was found to be numerically robust.

consistent results and in some cases, was moréstants Two new criteria for monitoring the convergence of

than the other competitors. . multiple Monte Carlo chains were successfully psgmb

. In some_mrcumstan_ces_, such as when one is The multivariate criterion, based on the ratio of
interested in linear combinations of the parametdrs , o~ :
¢ traces of covariance matriceg and W, gave rise to

matrix of covariances within chain (W) will presen :
linearly dependent columns. Its determinant is zetd suitable and more accurate results and was fourim to

hence it does not allow the use of the determinant€@Sy to implementand achieve.

criterion. The algorithms built in software such the In further studies, other univariate criteria
SAS and R allow obtaining the Cholesky factor of Heidelberger and Welch (1986); Geweke (1992) and
positive semi-definite matrices. In some cases, tlue Raftery and Lewis (1992), can be generalized tar the
numerical problems, these algorithms result in tiega  multivariate versions.
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