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ABSTRACT

Discrete deterministic age-structured, stage-atredt and difference delay equation population noded
analysed and compared with respect to stability mostationary behaviour. All three models showt tha
species with iteroparous life histories tend toni@ere stable than species with semelparous lifefést
which allow us to conclude that this must be aageneral ecological principle. Considering iteaipy,

the precocious case appears to be more stablghbatelayed case. The nonstationary dynamics shows
great deal of resemblance too, but when the numib@ge classes are even there is a mismatch betiveen
dynamical outcomes of the age- and stage-structteed whenever the survival probabilities are lange
moderate. Regarding semelparous species the analfsihe age-structured and the difference delay
equation model clearly suggest that precocious k@Ermus species are more stable than delayed
semelparous species and, moreover, that the trafisfa stability to instability goes through a Hopf
bifurcation. This is in great contrast to the oumenof the stage-structured model. In this caseimethat

the delayed case is more stable than the precoeiodisn unstable parameter regions there are oobits
period 2, k > 1, which we do not find when the life histdsyprecocious.

Keywords. Stage-Structure, Age-Structure, Semelparity, Itarityy Stability, Bifurcation

1. INTRODUCTION Regarding (A) such models are usually formulated in
) _ _ terms of vectors and matrices. Indeed, at time tpli

In order to reveal the dynamic properties of a &#eC the population xinto n distinct nonoverlapping age
there is a variety of different populatlon models classes, x= (Xl,ts---axn,t)T where the total popu|ati0n X is
available. Such models may be continuous or discret given by x = x +..+ %. The relation between the
deterministic or stochastic. Considering continuous population vector x at two consecutive time stepy ive
models we refer to the seminal paper by Gurtin andexpressed as Equation 1:
MacCamy (1974); Webb (1985); Huang (1990) and
Cushing (1987) and references therein. Models thatx,,, = AX, 1)
incorporate stochasticity may be obtained in Neuber
(1997); Denniset al. (1997) and Myerst al. (2001). where, the transition matrix A (which often is neéal to
Among the discrete deterministic alternatives, ey as a Leslie matrix) is on the form Equation 2:
three model strategies have proved to be poweshis

namely (A) Age-structured population models, see fo fp f, f,
example Leslie (1945); Guckenheimer al. (1977); pp 0 - 0
Levin and Goodyear (1980); Silva and Hallam (1993) 5 -| o p, - 0 @)

and Mjolhuset al. (2005), also cf. the review paper by

Wikan (2012b), (B) Difference delay equation models :

(Clark, 1976; Botsford, 1986; 1992; Higgietsal., 1997) o - P, O

and (C) Stage-structured models (Cushing, 1987;

Neubert and Caswell, 2000; Gourley and Kuang, 2004;where f is the average fecundity of a member of the i
Konet al., 2004). age class at time t; pay be interpreted as the (year to
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year) survival probability of age class i. In maslch ~ maturity than age. For many species body size i'emo
like (1) there is an implicit assumption that sdxua Vvital than age. Indeed, following Caswell (2001ixes
maturity is linked to age or that other propertiean age ~ dependent demography is probably the rule rathem th
are irrelevant. Another possibility is that if suedevant ~ the exception. Examples of species that must reach
properties exist they must be highly correlatechvaiie. ~ Certain size before they are able to reproduce bey
The dynamics of a variety of ecological populatitias ~ found among plants (Werner, 1975; Klinkhaneeal .,
been modelled by (1). Linear age-structured models1987a; 1987b), crabs (Campbell and Eaglis, 1988), f
(constant fecundities and constant survivals) htore (Alm, 1959), see also Caswell (2001) and several
example been applied to trout (Beland, 1974), tabbi references therem._Temperature is also an importan
(Darwin and Williams, 1964), beetles (Lefkovitctd6b) factor that may trigger reproduction, especially in
and great tits (Pennycuick, 1969). In case of mealf Q:I?g\t/vsp(?.%lgg;olzst’his(:fs'tu\(/jva\?vge:thaﬁl %oéﬁ?o? W?:-d
models we refer to Cooke and Leon (1976); Longstaf“fstage model Eduation 4 y

(1977); Levin and Goodyear (1980); Hastings (198%) '

Desharnais and Liu (1987). Other examples may beX = (1= p)x,  + fx

obtained in Cushing (1987) and Caswell (2001). Tetemal R R (4)
studies which focus on nonstationary and chaotiadyjcs X1 = HPXy FHX

may be obtained in Guckenheinetral. (1977); Silva and

Hallam (1993); Wikan and Mjolhus (1995; 1996). Wika Wwhere, p; and p, are the fractions of the immature
(1997); Davydovaet al. (2003) and Mjolhust al. (2005)  Population x and the mature population kespectively
the dynamics of semelparous species is revealegdr which survive from time tto t + 1. x 3% X, is the total

results obtained by Cushing (1988; 1989) and Cid&e4) popu:a?on. l\/rllt_)rﬁover,_p is tthebfraction ?jf Tthe im:_a
provide a basic setting for considering stabilitpd a popuration WRICh Survives 1o becorme aduit and e
bifurcation in matrix models like (1) fecundity. We may also express (4) on matrix forsn a

Equation 5:
Difference delay equation models (B) are models on q
the form xu = g (%, %-1) where x is the size of the , _ 5y (5)
population and T the time from birth to maturity. this ‘

study we will focus on the model Equation 3: where, x = (xx, )" and:

Xir1 = PX% t+ XeT (3) —
. :(ul(l o) f ]

which expresses that the size of the populatidime t + HP U,

1 equals the part of the adult population whichvsuas

from the previous year plus the part which augments Model (4) (or (5)) is identical to the general stag
the adult population from births T years earlienst) ~ Structured model presented by Neubert and Caswell
like (1), (3) has also been applied on several mtec ~ (2000), see also the cod model by Wikan and Eide
species, see for example the Baleen whale model by2004). Another approach may be obtained in insect
Clark (1976). In case of other species we refer toMmodels where the population is divided into thresgss,

. . : larvae, puppae and grown up insects, see the etdebr
Botsford (1986; 1992); Tuljapurkaast al. (1994) and . " .
Higginset al. (1997). In many respects we may classify study by Cushingt al. (1996); Costantinet al. (1997)

: . nd Dennigt al. (1997).
i(r?f)orilir?at?:n agfgrti\geatign;zisésnw(i)t];igl)ag;\:aheéleasiee;a”iesda The purpose of this paper is to compare and discuss

o _ > stability properties and dynamical outcomes of n®de
nt_eglected. The moq_el prerequisites birth pulselités (1), (3) and (4) and in doing so we shall assuna th
triggered at a specific age. N density dependence is included in the recruitmemns

In stage-structured models (C) we do not divide theand not in the survivals. Hence, in (1) we let=fF
population into nonoverlapping age classes, instead exp(-x), i = 1,...,n and; P where the use of capital letters
split the population into stages, for example omeual indicates density independent terms. In the difieeedelay
immature stage and one sexual mature stage. Thequation model (3) we use the same approach atitein
motivation for such models is that there may beepth stage-structured model (4), f = F exp(-x) andu, and p
factors which are more important with respect to are regarded as constants. Thus we consider.
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Age structure Equation 6:

X, = AXwhere
Fexptx) --- Fexpt x
P 0 0
Al o - . )
0 ° o
Difference delay Equation 7:
X, = Px + Fe" T x . (7
Stage structure Equation 8:
X, 1 = ML= P)X, + FE™ X, ®)
Xy = HPX  HHX
1.1. Analysis

We start with the age-structured model

(6).

[h(A)f=

(1-x)
K

(1_ X*))\n—l
K

(11)

ot S22 <1 X < 1

whenever x< 2. Consequently, on the boundarj]h&

1 = |g@)| and from Rouche’s theorem we conclude that
g) + h(\) = 0 has n roots inside the unit circle which
means that (9) is stable.

Regarding the nonstationary dynamics it depends on
the values of both n and P as we now shall dematestr
Keeping P fixed, an increase of F leads to an aszef
the total equilibrium population (cf. (9)) and wher= 2
it follows from (9), (10) and the Jury criteria (May,
2003) that the value of xat instability threshold is
Equation 12:

X =x.=2/(1-P) 0< P< 1/:

12)
X, =(+2P)/P 1/X K :

X =
where, the indices F and H refer to a flip or Hopf
bifurcation at threshold respectively. Note thatPO0

implies X — 2 (see (12)). Hence we may interpret our

Assuming all age classes fertile (species with suchprevious result x= 2 as the stability threshold when the

properties are often referred to as iteroparousispgthe
nontrivial fixed point of (6) may be expressed as
Equation 9:

where, K=Y"""P" and x* = In (Fk).

(x;,x;,...,x*n){lx* L.

X (9)

x

survivals approach zero. For other values of Patx
|nstab|I|ty becomes larger and according to (12)

thax =x (P=1/2)= 4 at threshold.

Assuming 0 < P < 1/2 it was proved in Wikan and
Mjolhus (1996) that the flip bifurcation at thre$tho
Xp (12) is of supercritical nature. Hence, in caseof
Xg, X = Xe| small there are stable orbits of period 2. If we
continue to increase Xor F) we observe periodic orbits

of 2 k = 2,3,... (the flip bifurcation sequence) and

The eigenvalue equation may be cast in the formeventually the dynamics becomes chaotic. The Hopf

Equation 10:

-x)

A" - SPA =0 (10)
K &

and provided that all eigenvalues of (10) are ledat
within the unit circle, (9) is a stable fixed poiMow,
usmg the same method as in Wikan and Mjolhus (1,996
X < 2 is sufficient in order to guarantee a stable
equilibrium (9). Indeed, we may write (10) a&)at h(.)

= 0 where g() = 1" and the first observation is that\J(

= 0 has n roots located inside the unit circle. tDa
boundary Equation 11:
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bifurcation at X = x4 (12) in the 1/2 <p< 1 interval is
also supercritical. Thus, wheneverxxy, |X — x4| small
we find nonperiodic orbits restricted to an invatia
curve. Moreover, these orbits coexist with a stdatge
amplitude 3-cycle which is born through a saddldeno
bifurcation at a critical valuegk x4 so the ultimate fate
of an orbit depends on the initial condition. Fagher
values of x the invariant curve disappears (as it is hit by
the branches of the unstable 3-cycle created atxs)
and only stable periodic orbits of period -32¢ are
detected. Also here the dynamics becomes chaotic
provided x large enough.

In the case n = 3 (all age classes fertile) we finch
the Jury criteria x=2(1 + B) (1- P + By and x, =

JMSS
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P41 + P + 2P) and an easy argument shows thakx where, x, =1 + a(1 + P + P* + P). a is defined as the
xy for all 0 <P< 1. Hence, the flip bifurcation gomer  real solution of the Equation 14:

the nonstationary dynamics for any P, 0<P<1 and the

dynamics is qualitatively similar to the n = 2 c&seP< P(1- P )& P )d-

1/2. Since ¥(P) = 2(1 — B)(1 - P + B)2> 0 we may also , (14)
conclude (in contrast to the n = 2 case) thaisxan P A+ F=P)d+ P@E P)a 4

increasing function of P at bifurcation threshdfdFig. 1

we plot the value of the equilibrium population at and R~ 0.61. Consequently, the n = 4 case is similar to

instability threshold as function of P inthe na2d n = the n = 2 case except for the fact that the flfproation
3 cases respectively. determines the dynamics in a larger P interval.

Due to the complexity of the Jury qriteria the gieil Next, assume n arbitrary and P small. Then (9)
when n = 4 is more delicate. The value oékinstability is  implies x ~ In (F(1 + P)) and the general eigenvalue
Equation 13: equation (10) may be written as Equation 15:

X =x.=2/(1-P) 0< P< P -x -X - x )t pt
TXe=2/(A-P) ; 13)  a2-@7X)y _p=X)_@ X)Zii (15)
X =x, P<P<1 1+P #P B PEA
x values
4 e
3.5
\-.
~_
3
2.5
. - . . — P values
02 04 06 08 1 °

Fig. 1. The values of the equilibrium population x at ifslity threshold in the n = 2 and n = 3 cases. Ti@otonic increasing
curve corresponds ton =3

x values
10 =

P values
0.2 0.4 0.6 0.8

Fig. 2. The values of the equilibrium population x ataduiity threshold when n = 8 and n = 9. The “kinkedrve correspondsto n =8
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Now, the left hand side of (15); €.) is nothing but  small provided P is small. Hence, in this caséPx
the left hand side of (10) (n = 2) and from (12fpitows should be similar when n is large and n is small.
that the only modulus 1 solution of(f) = 0 isA = -1 Consequently, if we truncate a model with a large
(and X — 2 when P— 0). This means that férclose to number of age classes, the effect on stability Wwél
-1 the dominant term on the right hand side of (@) more or less negligible. However, if P is largee th
be of order P smaller than the left hand side whigain contribution of new individuals from the higher age
implies that it will deviate O(P) from the soluticof classes is large too. Therefore, it is naturaldoctude
02(A) = 0. Hence, we conclude that there will be no Hop that truncation will have a great impact on st&piln
bifurcation in case of P small (and also P “modgras this case. That is why the stability curves looKedent,
suggested by our n = 2, 3 and 4 analysis). The flipthus the qualitative effect of truncation aftereavfage
bifurcation threshold is found by lettifg= -1 in (10). classes is that it causes decreasing stability rimkye

Thus Equation 16: certain value of P.
In the analysis presented above we assumed that eac
K i age class was fertile. Alternatively, we may coesid
2y P A
X =x, =S (16) biologically relevant n-age class models where
D (CU'P individuals in the first n-i age classes do notrogjice.

Such cases may be studied through the map Equition

where, k = (n — 1)/2 in case of n odd and k = @)/ in
case of n even.

Considering large P values it follows from (16)ttha ---+Fexpt x)x, ,Px Px ,...,Px,
limp_1Xg = n + 1, n odd, while ligL,1Xg — o, when n is
even. Consequently, if n is even there will be eoiqu where,i=(n+1)/2, #3,nodd andi=n/2 + 1,14, n
doubling bifurcation when P> 1. Moreover, when (n, P) even. The total equilibrium population becomes
= (2,1), X = x4 = 3 (cf. (12)). If (n, P) = (4,1) the Equation 18:
solution of (14) is a= 1 which implies ¥ = 5 and if (n,

P) = (3,1), then from (16)p= 4. Thus P = 1 seems to |
imply that X = n + 1 at instability threshold. A formal X :"‘(
proof may be obtained in Wikan (2012a).

Based upon our findings above as well as lots of ) ) ) _
numerical experiments we conclude that (16) is the@nd the associated eigenvalue equation may beircast
instability threshold for any P, 0<P1, provided n is  the form Equation 19:
odd. Moreover, keeping n fixedy x x- (P) (see (16)) is
a monotonic increasing function of P, hence indreps
the survival probabilities acts stabilizing. Whenis
even, (16) is the threshold whenever O<p<ft in the
interval R<P<1 the transfer from stability to instability .. ot b 1
occurs as (9) undergoes a Hopf bifurcationb@omes ~ and (as before);x=x (1 + P ™+ P7) ™
larger as n is increased. As already shown, if n = 3 and all age classes are

Provided r> 8, X is a monotonic increasing function fertile the (flip) bifurcation threshold was fountb
of P at bifurcation also in the even number of algss  bex,, =21+ F)/(@- P+ P . A similar analysis of (17)
cases. When B1 the size of X at threshold is a \where (n,i) = (3,2) yields
monotonic increasing function of n. Therefore, an X.,=2P(+ P+ B)/( P)@ P P
enlargement of n acts stabilizing. filg. 2 we show the o o
equilibrium population at bifurcation threshold as Xm~Xe=2/(1+P)@- P+ P » Gt is natural to suggest
function of P when n = 8 and n = 9. The differdmyses  that delayed recruitment acts destabilizing. Note
of the stability curves for n = 2 and n large may b however, that both stability thresholds are “flip
interpreted as a truncation effect. Indeed, follmyvi thresholds”, thus the dynamics in unstable paramete
Wikan and Mjolhus (1996); see also Levin and Goadye regions are periodic orbits of periotlia2 both cases.
(1980), suppose that n is large. Then the contohutf If nis even it follows from (19) that = -1 gives
new individuals from females in higher age clasises birth to the threshold Equation 20:

Xy X, — (Fexpt x)x+ (17)

> PkJ (18)

k=i-1

i-1 ., n
A" HX Y P (g - Fer TP = ( (19)

k=1 k=i

and since
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_ TP (ZP)
S SRR () )
where, | = (n — i)/2 when i is even and | = (n — 1.)/2

when i is odd. Sincdim -~ coWwe may exclude

P 1X*F
the flip if P becomes large. When (n,i) = (4,3) may
actually exclude the flip in case of P small aslwel
Indeed, by use of (19) and dividing by+ 1 we arrive at
Equation 21:

3, 1+P ., 2P-PB-1
Z(1+P) Z(1+ P) (21)
A+ PE+P+ P 1)
Z1+ P)

where, Z = 1 - P + P- P (cf. Wikan and Mjolhus
(1996)). Here we notice that whenever P is small th

dominant solution of (21) must be close (el +./5) / 2

which exceeds unity. Consequently, there exists
threshold ¥ < x= (where % is given through (20))
where (21) has complex roots located on the boynaofar
the unit circle.

When n exceeds 4 it is difficult to give a thorough
picture of the dynamics in unstable parameter regio

due to the complexity of the Jury criteria but some

information is still possible to obtain. 4f= -1 and n is
even it follows from (19), (20) that Equation 22ala:

.2
X =——
1-P

i odd (22a)

2P~ F™)

= m) i even

(22b)

%ot the

shows that (22b) is the instability threshold asglas P
< 0.73 clearly suggests that the period doubling
bifurcation governs the nonstationary dynamics otes
P is not too close to unity.

If A = -1 and n odd we arrive at the expressions
Equation 23a and b:

2(1_ lT—i+2 )

N A (232)
X = 13'; (Zn: PHJ i even (23b)

Considering (23a) we find that-B 0 implies X — 2
and P— 1 implies x = n(n — i + 2)/(n — i + 1). Therefore
whenever i > 1 the latter expression is larger thanl.
This means that both in case of P small and P (@8&)
is larger (or equal) than the instability thresheltien
there is no delay in reproduction (i.e., i = 1)isTIs not
in agreement with our previous results (delayecuignent
acts destabilizing) so it is natural to concludat {23a) is
instability threshold for any value of P.
Consequently, there exists a complex modulus ligolof
the eigenvalue equation (19) which gives birth tblapf
bifurcation threshold,x which is smaller than (23a).

Regarding (23b), P> 0 implies x — 0 and P— 1
implies X — n, Moreover, we know from our (n,i) =
(3,2) analysis that (23b) is the bifurcation thiddhfor
any value of P. Therefore, it is tempting to codeluhat
(23b) is the instability threshold and additionalat an
increase of the number of age classes acts siapiliz
especially when P becomes large.

The final age-structured case to discuss is themnasee
fertility is restricted to the last age class on{8pecies
which reproduce at the end of life is often reférte as
semelparous species.) Therefore, consider the map
Equation 24:

Obviously, none of the expressions (22a, b) may be

instability thresholds in case of P> 1. Moreover,
assuming i odd ligLe X = 2. Thus, according to our
findings from the P— 0, (n, i) = (4,3) analysis, (22a)
may not be the instability threshold in case of lkRa
values either. Hence, a natural conjecture to @meps
that whenever n is even and i is odd the dynamics i

“n-l ;
unstable parameter regions is governed by a HOpf)\”+X?ZP')\”+'—1:0
i=0

bifurcation at a threshold lower than (22a).

Xy X,) = (Fexpt x)x ,Px ,PX ,...PX, (24)

At equilibrium X = In(FF™). The eigenvalue equation
becomes Equation 25:

(25)

On the other hand, assuming both n and i even, then

from (22b) lim_o X = 0. This fact together with the
numerical findings from the (n,i) = (4,2) case whic
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and when n is even and= -1 the left hand side of the
equation may be expressed as Equation 26:
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X & e where, F > 1 - P and©P < 1 is necessary in order to
?;;(_1) P (26) ensure a biologically acceptable equilibrium. The
) linearization of (7) may be expressed as Equattbn 2

Now, (26) is clearly negative. Moreover, when-
—oo the left hand side of (25» +w. Hence, (25) has a
root A < —1 from which we conclude that the nontrivial
fixed point of (24) is always unstable. When n @&l at
was proved by Wikan and Mjolhus (1996) that the
nontrivial fixed point is unstable in case of small
equilibrium populations x Whenever Xis large, that is

AT =PAT-(1- P)& x )= C (29)

and X is stable provided all the eigenvalueare located
inside the unit circle.

Independent of the values of T we may use Rouche’s
theorem to show (in a similar way as in the age-
) structured case) thaf x 2 ensures that (28) is a stable
X > 2K(2i”=‘01(—P)' )_1 we may use the same kind of equilibri%rln. Thus, rewriteT(29) asig(+ h()»)*: 0 where
consideration (Mjolhust al., 2005) in order to conclude g@) =4~ and ht) = -Pn' — (1 = P)(1 — ). Further,
that (25) has a rook <-1 too. In case of intermediate observe that g and h are analytic functions oniaside

' the unit circle and that the equatioi)gé O has all its roots

values of x the argument presented above does not WorkI i oo .
. ; ) ; g ocated inside the unit circle. On the boundaryhaee:
but extensively numerical simulations indeed sugtes

the fixed point of (24) is unstable also here. Hasveif . . .
different survival probabilities;Rire assumed in (24), then h(V) :‘_P)‘ - (1= P)E x DS‘ F“L‘ & P)@ X‘
there may exist small parameter windows where the = Pr (b ﬁ)} ;%< £] Q)
nontrivial fixed point is stable. This is documehte
Mijolhuset al. (2005) in case of n = 3. .
Actually, the only dynamics which we find from map @S long as x2. Consequently, 8] + h@) = 0 has the
(24) is SYC (Single Year Class) dynamics, cf. Dawa same numbers of roots |nS|d_e the unit circle a3 g(0,
et al. (2003) and Mjolhust al. (2005), i.e., dynamics "na@mely T + 1 roots and (28) is stable. .
where only one age class is populated at each time_. Let us now f_ocus on the nonstationary dynamics.
When n = 2 and x= In(FP) is small (24) possesses a F|rst*, assume T = 0 (no delay). Thems<st*able as long
stable 2-cycle where the points in the cycle aré Ifp @S X < 2/ (1-P) (note that P~ O = X = 2)or
(FP),0), (0,In(PF)). When'xincreases, stable cycles of alternatively F < (1 = P) exp (2/ (1 - P)) ahe- -1 at
period 4, 8,.. are introduced and beyond the bifurcation thres?xold. Mor_eover, by use .of the tiota
accumulation point for the flip bifurcation sequenee fx) = Px + Fé'x we find at bn‘urcatl_on that. the
observe chaotic dynamics. Note that all cycles elé as nondegeneracy condition becomes Equation 30a:
the dynamics in the chaotic regime are on SYC fdran.

2

arbitrary values of n and % In(FP"™") small we find the g,aiﬁzﬂ —_2e Pz (30a)
stable n-cycle Equation 27: oF ox”  0xoF

and that the stability coefficient a may be exmdsas
[Pn_lx*,o, ,(a Equation 30b:

- * @) 2
0,0,...; ,0,...,0 ;- (0,0,..., 2 8
00k 0 0.0 NETECA TR -
2\ ox 30x 3

and through an enlargement of we find the same
gualitative picture as in the n = 2 case.

Next, we turn to the difference delay equation (7).
The nontrivial equilibrium is given as Equation 28:

Hence, according to Theorem 3.5.1 in Guckenheimer
and Holmes (1990) we conclude that th*e flip bifticoa
is supercritical which means that when fails to be
stable, a stable period 2 orbit is created. If aetinue to
increase F (or ) stable orbits of period“2k = 2,3, ...
. F are established. Eventually, in case of largeatues the
X =In| — (28) ) )
1-P dynamics becomes chauotic.
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Next, consider T = 1 (small delay). The eigenvalue
equation (29) may be written as Equation 31:
M-PA-(1-P)&* x = C (31)
and from the Jury criteria it is straightforward show
that x < (2 — P)/ (1-P) guarantees a stable equilibrium.

At instability threshold x= (2-P)/(1-P) and the modulus
1 solution of (31) may be written as Equation 32:

A=Ds
2

(32)

Hence (in contrast to the T = 0 caseurdergoes a Hopf
bifurcation at instability.

In order to determine the nature of the bifurcation
first observe that Equation 33:

2-P

M\lé*>o (33)

at bifurcation from which we conclude that the
eigenvalues leave the unit circle through an irexeaf
F. Further, by defining y= % and z = xs; we may
rewrite (7) (T = 1) as a first order system Equatd:

y 0 1)y
= 34
MR o
with corresponding fixed point Equation 35:
v (o F F
(y,z )—(In(l_ P) In( = PD (35)

Now, following the procedure outlined in Wikan
(1997) we find after a long and tedious calculatibat
the stability coefficient a in the normal form @&4) may
be expressed as Equation 36:

E L 2P)

a:PZ(PZ— P-3)
8K 160 16

o0 (36)

Clearly, a<0if0 <K 1/2. If 1/2 < P <1 we may
write (36a) as Equation 37:

[(P“ 3Py ¢ 5P+ 8P) K (37)

16b
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The term P-3P® is always negative. The max value
of -5P + 8P is 16/5 and since 16/5 < 4, a < 0 in this
case too.

Consequently, when (35) fails to be stable duento a
increase of F, the dynamics is a quasiperiodic torbi
restricted to an invariant curve which surroundS)(3
This is displayed irFig. 3. If we continue to increase F
the invariant curve becomes kinked which signaks th
we are on the onset to chaos as shovkign4.

Turning to the T = 2 case we find from (29) and the
Jury criteria that the fixed point is stable asdoas
Equation 38:

_2-3P+JP+ 4 (38)
2(1-P)

Instability is introduced by increasing F such tat)

becomes equality and just as in the T = 1 case the

eigenvalues at bifurcation threshold are complex

conjugated and may be expressed as Equation 39:

:%{P+\/4+_t\/16— P s P 2)}'

(39)

Further, the maximum stable population size inTthe
=2, T=1and T = 0 cases clearly satisfies EQuaA:

2
EF

2-3P+VP+4_ 2 P (40)
2(1- P) - P
which suggests that delayed maturity acts destadyli
Now, assuming T arbitrary (T > 0) our findings abov
imply that it is natural to suppose that= exp(b) at
bifurcation threshold. Then from (29) Equation 41:
1=Pe®+ ( P)& x)&™™?® (41)
and by separating into real and imaginary partamwiee
at Equation 42a and b:

1=Pco9+ (+ P)& X )cos(f Q (42a)
0=-Psi- (- P)(t X )sin(F B (42Db)
Squaring and adding now yields Equation 43:
cos o= 1P~ 0= PIE X3 (43)
2P(1- x)
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Arild Wikan /Journal of Mathematics and Statisicét): 446-460, 2012

A
\\
/,

3
2
1
1 2 3 4 5 6 ?

Fig. 3. An invariant curve (together with some initialrisitions) generated by (34). Parameter values)(E,(®4,0.5)
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Fig. 4. The invariant curve has been kinked and has dtéstbreak up. Parameter values (F, P) = (80,0.5)
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Fig. 5. The maximum stable equilibrium population. From to bottom the curves correspondto T = 3, 4 and 5
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Fig. 6. The equilibrium population at bifurcation threshalsl function of p. Upper curve correspondgge 0.9, middle curve, =

0.5 and bottom curvg, = 0.1

Thus, for given values of T and ®= 6(x’) may be
obtained from Equation 44:

9 :1arccos{1+ P~ (- P) x 3} (44)
T 2P(1- X )

and Equation 45:

Psinf=-(1- P)(* x )sin(F B (45)

From (43), (44) we may compute the value ofax
bifurcation threshold. IfFig. 5 we show the maximum
stable equilibrium in the T =
respectively. From top to bottom the curves comesp
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to T = 3, 4 and 5 and the stable region is locaedw
the curves. Clearly, an increase of T acts de&ail
here too, just as we found in the T = 0, 1 and sesa
Also, cf. (37), (39) andFig. 5, that x (T fixed) is an
increasing function of P at instability thresholttnce
increased adult survival acts in a stabilizing fash
Since all instability thresholds (T 1) are Hopf
bifurcation thresholds it means that when F iseéased

to a level where xfails to be stable, quasiperiodic orbits
are established. This does not exclude the posgibil
exact or approximate periodic orbits as we peretrat
deeper into the unstable parameter region. Indesch
orbits may be created through frequency locking se

3, 4 and 5 cases Wikan and Mjolhus (1996). In the model at hand we

have not detected much periodicity. One excepsomhien
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T =1 and P— 1. Then arg. = n/3 (see (32)) and we
observe six periodical dynamics. Through furtherease
of F the dynamics becomes chaotic. A final comnetitat
if T is increased beyond 1 ¥2) it follows from (43) thab

becomes smaller. Thus as T grows, possible periodic

dynamics will have longer and longer periods.

Finally, let us turn to the stage-structured ma@g!
Assuminguip > (1 —pp) [1 — (1 — p)] which ensures
that the origin is an unstable fixed point we fihet the
nontrivial fixed point of (8) may be expressed af (
Neubert and Caswell (2000)) Equation 46:

1‘“2 X Ulp )Z ]
1-p,+pp 1-p,+p.p

(x;,x;>:( (46)

where the total equilibrium population is Equatibfi

. W, pf
=] L 47
g “{(1—u2)[1—u1(1— p)]} 47

Now, denote the Jacobian of (8) as J. Then thevidtig

inequalities (Neubert and Caswell (2000)) () ¥ 3 # [J|
>0, () 1+trJ+|J >0, () 1-|J >0 mis satisfied
in order for (45) to be a stable fixed point. (laynbe
written as Equation 48a:

@-u,)[1-p, @~ p)] X > 0 (48a)

and is always satisfied. (II) may be expressed as

Equation 48b:

* < 2(u1+u2_u1p)(1_u2+u1p)
T@-py) @+ P, —,p) -, (- p))

(48b)

Regarding (lll), whenevar, > pu;p Equation 48c:

2= (1, +H, — )+ [, —Hp)E” %> C (48¢)

which is obviously satisfied. Ifi, < p we may write
condition (lll) as Equation 48d:

oy < [2- (@, + 1, ~up)] A1, +u,p)

X H
1= 1,)(M,p~1,)[ 1- 1, (1~ p)

(48d)

and since:
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T ol Y-

F : (1_U2)|:1_ P-l(l_ p):l

{2(u1+u2-u1p)_ 2- (u1+uz-u1p)}<0
1+, —p,p P H,

we conclude that the stability threshold is fourttew the
inequality sign in (48b) becomes an equality. Thhes
period doubling bifurcation governs the dynamicsnes
penetrate into the unstable parameter region.

In Fig. 6 we show the total equilibrium population x
at bifurcation threshold (48b) as a function of the
fraction p of the immature population which sungvie
become adult for different values of the adult stabvy,.
What Fig. 6 clearly demonstrates is that an enlargement
of w, leads to an increase of at instability threshold.
Hence, increased adult survival which means that
individuals live through several years as adultsctvh
again leads to repeated reproduction (iteroparous
species) possess better stability properties tip@ciess
which reproduces only oncep,(— 0) (semelparous
species). Moreover, in the iteroparous case (large
values) we find that xis an increasing function of p at
instability. Hence, species with precocious iteropa
life histories (p~1, u, — 1) are more stable than species
with delayed iteroparous life histories (0<p<&,— 1).
Regarding semelparous species an opposite tendency
seems to be the case. The delayed case
(0 < p < 1,u, — 0) appears to be more stable than the
precocious case {pl, u, — 0). These findings confirm
the results obtained by Neubert and Caswell (2000).
Turning to the nonstationary dynamics we find in
case of smallu, values (both in the precocious and
delayed cases) orbits of period s well as chaotic
dynamics. There are no qualitative differences betw
the dynamics in precocious and delayed cases.
Considering largeu, values (iteroparity), the delayed
case exhibits the same dynamics as we found in the
semelparous cases. On the other hand, whenJand
w, large (precocious iteroparity) the dynamics is sot
rich. We have observed period 2 orbits but notterbf
period 2, k > 1, nor chaotic dynamics. This reflects the
fact that x at instability threshold is larger here than in
the delayed case, sEa. 6.

Without repeating results from the detailed analysi
of (6), (7) and (8) we find it natural to suggebatt
species who possess iteroparous life histories te
more stable than species with semelparous lifefiest.

In the stage-structured model by Neubert and Céswel
(2000) focus was also on submodels whgreand p
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respectively (see (5)) were density dependent @sgéd case is n = 2. Then 1/2 < P < 1 results in a Hopf
upon the analysis of these submodels as well a@pn bifurcation (see (12)).
they conjectured that it is a fairly general ecatay Next, assume that individuals of a species may live
principle that iteroparous species are more stéid@ through several age classes before maturity and the
species with semelparous life histories. By inahgdihe survive to reproduce for many years, i.e., we are
results of the analysis of (6) and (7) we feel ttias considering species with delayed iteroparous life
conjecture has become significantly more robust. histories. By comparing the analysis of this casee(
Let us now focus on iteroparity in somewhat more (17)) with the analysis of the precocious iteroparoase
detail. Assuming all age classes fertile, our asialyf (6) we conclude that the precocious case seem®to b
the age-structured model (6) shows that thereahithys more stable than the delayed case. As we have shown
be a stable fixed point provided the total equilibr ~ when (n, i) = (3, 3) the stable parameter regiolaiger
population x < 2. Moreover, the nonstationary dynamics than in the case (n, i) = (3, 2). The dynamics belythe
depends on both the number of age classes n aygahe instability thresholds are qualitatively similar.tillS
to year survival probability P. When n is suffidign  considering the delayed case (17), whenevet the
large, X(P) at instability is an increasing function of P. Hopf bifurcation gives birth to the dynamics in tatsde
Small survival probabilities imply that the transfeom ~ Parameter regions in large P intervals. Hencesie of
stability to instability goes through a flip bifation  the stable parameter regions as well as the dysaimic
independent of the number of age classes. The g@me Unstable regions are different in (17) and (6). Now
true when P is large provided n is odd. Howevererwh ~ turning to the stage-structured model (8), delayed
is even the transfer from stability to instabiligpes  [teroparity is characterized hy, — 1 and 0 <p < 1. As

through a Hopf bifurcation. In all cases, an ergangnt Fig. G.demonstrates the value of a(t_instqbility in this
of n acts stabilizing if P is large enough. case is smaller than in the precocious iteropacase

If we shall compare the findings above with the (M2 — 1. p—1). Based upon this, Neubert and Caswell
outcomes of the stage-structured model (8) it nmest (2000 proposed that species with precocious ienmys
with the casei, — 1 (large adult survival) and 1 (a life hlstor_les tend to pe more _stable than spgweb
large fraction of the immature population survives delayed iteroparous life histories. Our analysis(@),
become adults). Since large values combined with (17) and (8) both confirm and strengthen their

large p values acts stabilizingig. 6) the results here are conclusion. It appears to be a general ecological
in excellent agreement with the results of the age-Principle that delayed iteroparous species pogseseer

structured model with respect to stability. Consiiuig stability properties than precocious iteroparouscegs.
the nonstationary dynamics there is a fairly good On the other hand, regarding the nonstationary
agreement between the findings of (8) and the onéso ~ dynamics, the outcomes of (17) and (8) are differen
of (6) when there are an odd number of age classes. Indeed, while the nonstationary dynamics generated
both models the period doubling bifurcation govetirs ~ (8) is periodic orbits of period"2k = 1,2,... or chaotic
dynamics, but the difference is that while the stag dynamics beyond the point of accumulation for the f
structured model exhibits period 2 orbits only heyo bifurcation sequence we observe that the dynamics
threshold (47b) the dynamics of the age-structmnedel ~ generated by (17) is different. In case of n > #erical

is richer in the sense that there are stable oobiperiod ~ Simulations show that the fixed point of (17) (4&8))

2, k > 1 and chaotic dynamics as well. Thereforemfr ~ Undergoes a (supercritical) Hopf bifurcation atabdlity

the discussion above, we find it fair to say thatdels  threshold in large P intervals. This gives birth to
(6) and (8) show much of the same qualitative péctu quasiperiodic orbits restricted to invariant cutves
when they are applied on species with precociousWhenever F is large the dynamics may be chaoti¢heut
iteroparous life histories. However, when there ane  structure of the chaotic attractor is not the samethe
even number of age classes in (6) there is a pertai Structure of the corresponding attractor generaye().
mismatch. The nonstationary dynamics in the age- Finally, considering semelparous species, according
structured case is now determined by a Hopf bitisna  to our analysis of the difference delay equatiorehg?)
which means that beyond instability threshold the there always exists a stable equilibrium if x 2.
dynamics is restricted to an invariant curve which Moreover, cf. (39) andrig. 5, an enlargement of the
surrounds the unstable fixed point. The parametgion delay T acts destabilizing. Consequently, it isureltto
where we have this discrepancy between (6) and (8)onclude the precocious semelparous species hates be
becomes smaller as n (n even) becomes larger. Oret w  stability properties than species with delayed
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