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ABSTRACT

In this study we consider four dimensional N = pemsymmetric gauge Yang-Mills theory whose complex
scalar manifold is Kahler and deforms with respged real parameter. The deformation of the gegnistr
governed by Kahler-Ricci flow equation. This setmplies that some couplings such as shifting qtesti
momentum maps and the scalar potential turn obétevolved with respect to the flow parameter. \lge a
discuss deformation of vacuum structures of therthan the context of Morse theory.
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1. INTRODUCTION to the mathematical context. For example, we have
previous serial papers studying solitonic solutiohfour

The standard model of particle physics based o nondimensional N = 1 local supersymmetry (supergravity
Abelian  gauge theory with gauge group on Kahler manifolds satisying Kahler-Ricci flow
SUB)xSU(2)xU(1) has gained several remarkableequation (Cao, 1985). Our results show that in dhe
success which can be seen from verified experimients both domain walls (Gunara and Zen, 2009a; Gueiaah,
the energy scale below 1000 GeV including the recen 2011) and black holes (Gunara, 2012) in generairdef
discovery of Higgs particle. Despite its succeskedves  with respect to a flow parameter related to KaRaei
many important problems. For example, the first equation. Moreover, this flow could change the reatf
problem is that the standard model neglects theitgra stability of domain walls and geometry of blackédml

which is described by the general relativity. Setpnit We extend the studies in this study to rigid non-
cannot explain the mass hierarchy. Also, it seyerm Abelian supersymmetric theories, namely
guadratic divergences. Thus, the standard modeldhas supersymmetric Yang-Mills theories in four dimemsio
be extended. defined on Kahler-Ricci soliton. This follows thsdme

One of the good candidate for the extensions of thecouplings such as shifting quantities, momentum smap
standard model is supersymmetry. In order to get aand the scalar potential deformed with respecth® t
reasonable supersymmetric extension of the standarflow parameter, see Lemma 1. Moreover, vacuum
model, this extention theory must inherit the dhira structures which can be viewed as solutions ofdfiel
structure of the standard model. Thus, the onlysiptes  equations of motions indeed evolve with respectht®
extention is N = 1 supersymmetry because extendegarameter.
supersymmetries (X 2) cannot accommodate the chiral To see the latter, we simply consider a case wakre
structure, for a review see, for example, (Loeisal., the level of equations of motions all fermions &uais
1998). and the scalars are frozen everywhere such that the

Although N = 1 supersymmetry has some gauge fields are trivial. In this case, the grostades can
phenomenological aspects, our interest is to stlmkely be thought of as supersymmetric critical pointsttod
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scalar potential. Taking the assumption that theugd K(T) :(1_2/\T) K(O) (4)

states to be nondegenerate, we find that Morsexiotle

ground state is affected by Kahler-Ricci flow. Ither _

words, the flow possibly changes the properties ofwith K(t)= K(z,Zit). As we have seen above, for the

supersymmetric vacua, see Theorem 2. This fackgige  simplest example, there exists singularitytat 1/2A

an example of deformed Morse theory. where the flow shrinks to zero. This indicates tta
The application of this study has two major singularity could be occurs in general cases, se@x-

directions. The first case is the dynamics of mahep ample (Topping, 2006; Cao and Zhu, 2006).

or solitonic solutions of N = 1 supersymmetric gaug  Another interesting solution of (1) is when thetii
theories with respect to Kahler-Ricci flow. We woul  geometry satisfies Equation 5:

like to see how the flow changes the stability of

solutions. For example, this aspect has been obdenv

the case of domain walls in chiral N = 1 superdsavi 'ZRi ](0)“2/\9.
(Gunara and Zen, 2009b). The second case is the

evolutions of real and complex vacuum submanifaifls
Kahler manifolds with respect to Kahler-Ricci flofhis
aspect is related to the study of evolutions ofiméi
submanifold under Ricci flow, see for example (isat
2010).

(9+5Y(9+B.Y(9

where, Y(0) is a vector field generating a diffeomor-
phism which can be expressed in terms of a reatifum
P(z2) on M as Equation 6:

Y' =9'0-P(z,2) (6)
2. BRIEF REVIEW: KAHLER-RICCI ’

SOLITON Such a solution is called gradient Kahler-Riccii-sol
The devoted to assemble some facts about Kahlertion (Cao, 1996; 1997). In general, (5) can bet spio
Ricci flow equation which is useful for our analysh three cases as follows. Far> 0 the soliton is shrinking,
this study. This flow equation was firstly introstin ~ Whereas fon\ < 0 the soliton is expanding. In the case of
(Cao, 1985). A = 0 we have a steady gradient Kahler-Ricci soliton

A complex Kahler manifold M endowed with metric
g(1) is said to be Kaehler-Ricci soliton if it satedi 3.4D N =1 SUPERSYMMETRIC YANG-

Equation 1: MILLSTHEORY ON KAHLER-RICCI
SOLITON
agii - We focus on the properties of the deformed N = 1
ot T Rii 1) supersymmetric gauge theory in four dimensions on

Kahler-Ricci soliton. The spectrum of the theorysists

where, i, j = 1,...., dim Mg is a real parameter arRl of vector fieldsA} and spin-1/2 gauginog® with p = 0,

denote the 2-rank Ricci tensor of M. The simpledtis
tion of (1) is when the initial geometry at= O is Eins-

....3,A=1,...,n, coupled to complex scalar fieldsand
spin-1/2 fermions 'xwith i = 1,...,n. The complex sca-

tein, namely Equation 2: lars (zi ,‘zT) span a Kahler geometry M of dimensian n
_ The construction of the N = 1 supersymmetric gauge
Rij(o) =N 9,—(@ (2) theory on Kahler-Ricci soliton follows closely (Gama,

2012; Gunara and Zen, 2009a; 2009c). First, weidens
where,A is a real constant and nonzero. Then, we havethe chiral Lagrangian in (D'Auria and Ferrara, 2)Ghy

Equation 3: £(0) att = 0, where the metric of the scalar manifold is
static. Then, replacing all geometric quantitieshsias
giT(T) =(1- 2n1) 9;( 0 3) the metrlcgij(o) by the sohtongﬁ(r), the bosonic parts
of the on-shell N = 1 chiral Lagrangian can be terit
whose Kabhler potential has the form Equation 4: down as Equation 7:
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£=-g_(1)D'2 D“’ZT

(7)
+R _FANFW 4 FAFW -V(T)
AT pv AT pv

where the function W) is the scalar potential of the

theory which has the form Equation 8:
V(1)=g" (1)0Wa,W + SRR, (1) R (1) ®)

Here, g; =0,0-K(1) is Kahler metric, whereas,Rand

s are respectively the real and imaginer parts of

holomorphic gauge kinetic functions# The covariant

derivative D,z is given byD,z =9,Z + K, A} wherek;

is a holomorphic Killing vector generating isomesriof

M satisfying Equation 9:

[Knoks =100 K 9)
The field strength7, is defined as Equation 10:

Fr=0,Al —0,A}+LAAT (10)

while its dual field i7" = e 7%,

The holomorphic superpotential W W(z) is arbi-
trary. The real momentum ma;f%(T) = E\( Z7z1) has
the form Equation 11:

P (1)=-i Ko K(t) (11)

The

Lagrangian (7) is invariant

Now, we can write down the dynamic equations of
the shifting quantities (13) and the scalar po&ii8).

Lemma 1 Equation 14:

ot 1ot
aNA . —1|/\2L
a.[ (T) I a.[ (T)’ (14)
()= 2R (1)a W8 WL R p (1) 22 (1)
ot ] 4 A ot
Pr oof

One can use (1), (8) and (13) in a straightforward
way.

4. DEFORMATION OF VACUUM
STRUCTURES

We discuss vacuum structures of the theory which
can be viewed as the solution of field equations of
motions derived from the Lagrangian (7). The eaqunti
of motions can be obtained by varying (7) with etgo
Z and A} . The fermions vanish at the level of equations

of motions. Then, we have Equation 15:

D'D,Z =-¢’ (1)(8; RuFpF™ +0, L FpF™)

- (19 (1)

D, (RAZ]-'Z“" + I,\Z]:'Z“”) =-g-(1)K,D'Z - g (1) K D' 2

(15)

Now, let us consider the solution of (14) as fatio When

under the scalars'zoecome fixed, namely' = Z, which follows

supersymmetric transformation (up to four-fermion A} =0. Moreover, (14) becomes simply Equation 16:

terms) Equation 12:

3'=iD Zy'e+ N (1),
H

SA'=F" " yWe+ N'(1)e, 12)
HY

57 =xe,5A= X"y e+ h.c
n 2 u

where the shifting quantities'(f)and N'(t) are given by
Equation 13:

N'(t)=g JTETK(T)

N* (1) =i R™"*P (1)

(13)
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0-V(t)=0 (16)
then we have Equation 17:
dW=0, B(1)=0 17)

From supersymmetric variation (12), the conditidT)
describes N = 1 supersymmetric vacua. In gendralyacuum
geometry N [0 M is real anddeforms with respect to. In
this study we particularly consider,Xb be discrete. In
order to characterize the ground states, we have to
consider the second-order derivative of the scalar

potential (8) with respect t¢z,z) called Hessian matrix
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evaluated at p,(t)=(z(1)%(1)), whose nonzero
component has the form Equation 18:

(18)

where we have used (11). Note that all quantitie@.8)
have been evaluated a§. pn the rest of the study we
simply consider the case of Kahler-Einstein metric
satisfying (3). So, equation (17) becomes Equat@n

9,0.V (py;t) =07 (1)g* ' (0)0,0, Wo-0, W
. (19)
+50 (1) R™ k(P k(X
Where Equation 20:
o(1)=1-2At (20)

and g, ;(0) is a Kahler-Einstein metric. In (19) it is easy
to see that when the flow becomes ill-definedt at

V(1) =V (pgi 1) + X1 (1) ... 4 Xa (1) -
(t

— = % (1)

X )\+1(T) (23)

for > 1/2A\.
Pr oof

First of all, we define the Hessian matrix of Hua-
lar potential (8) of the theory as Equation 24:

j(po)

where, g is an isolated critical point near which the sca-
lar potential (8) can be expanded as Equation 25:

[ Vi Vi
H, =07(1) v v (24)
ji i

2n 2

MOBCIDEDY

pam10xPOX1

——— (P T)Ox"3x1 (25)

where we have defined real coordinatgés x +ix"™
such thatox' =x' - x| .
Since we only consider nondegenerate case, the ma-

1/2A, the theory also turns to be singular. Then (19)trix (24) does not have zero eigenvalues and ission

leads to the following statements.
Theorem 2

Let the scalar potential (8) be Morse function and
#z 1/2A, so that the determinant of (19) is nonzero.
Suppose that oft) = @ is an isolated ground state
(nondegenerate) of Morse ind&xXor T < 1/2A\ with A >
0. Then, there exists real local coordinateg)Xaround
Qo With r = 1,...,2n such that Equation 21:

V(1)=V (pe1) =X (1) —... = X}(1)
+.+ % (1)

+X2.4(1) 1)

Taking the assumption the real and the imaginary

parts of the following quantities Equation 22:

Vs (po(1);1) = o(t)aléjv(po(r);r) (22)
are positive for allt and i, j. Let p,(t)=4, be another
isolated ground state far > 1/2\. Then, Kahler-Ricci
soliton changes the indéxto 2n-A such that nea§, we
have X (1) #X, (1) and Equation 23:
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gular becauser #1/2A . Let us now rewrite (25) as
Equation 26:

0) S, fpsrfocrace

V(T):V(pO;T)+|0(T)| =i (26)

Where Equation 27:

8(0)5{ 1 fort<1/2\ 27)
-1 fort>1/2\

and then, one can define new coordinates Equa8on 2

|

for 1< r < 2n. Thus, we can rewrite (25) in the simplest
bilinear form (21) and (22) with identification Eafion

29:
XI’
X

\7pq (PO;T)

2n
6XP
z Vi (po;T)

p=r+1

Y. (1) =Ve (po:T)I”Z[éx' + (28)

(1) for t<1/2A

(1) for t>1/20 (29)

Y. (1)
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Some comments are in order. The extension oiCao, H.D., 1996. Existence of Gradient Kaehler-Ricc
Theorem 2 for degenerate vacua is in a straightfor- Solitons. In: Elliptic and Parabolic Methods in
ward way. It is worth mentioning that Theorem 2 is Geometry, Chow, B. (Ed.), A K Peters, Wellesley,
the evidence of deformed Morse theory related to de MA, ISBN-10: 1568810644, pp: 1-16.
formation of (vacuum) submanifolds of Kahler geo- Cao, H.D., 1997. Limits of solutions to the KahRicci
metry. Since the flow (1) could change the indexaof flow. J. Differential Geometry, 45: 257-272.
ground state, so in general it could indeed affbet D’Auria, R. and S. Ferrara, 2001. On fermion masses
geometrical nature of the submanifolds. The latter gradient flows and potential in supersymmetric theo
aspects will be considered elsewhere. ries. J. High Energy Phys., 5: 34-34. DOI:

10.1088/1126-6708/2001/05/034
Gunara, B.E. and F.P. Zen, 2009a. Kahler-Ricci flow
5. CONCLUSION Morse theory and vacuum structure deformation of

) ) N = 1 supersymmetry in four dimensions. Adv.
So far, we have constructed four dimensional N = 1 Theoretical Math. Phys., 13: 217-257.

supersymmetric Yang-Mills theory on Kahler-Ricci Gunara, B.E. and F.P. Zen, 2009b. Deformation of

soliton. As we have seen, this setup implies tiomes curved BPS domain walls and supersymmetric flows
couplings, namely the shifting quantities, the matam on 2d Kahler-Ricci soliton. Commun. Math. Phys.,
maps and the scalar potential evolved with resfuetite 287: 849-866. DOI: 10.1007/s00220-009-0744-1
flow parameter, that is equation (13) in Lemma 1. Gunara, B.E. and F.P. Zen, 2009c. Flat Bogomolnyi-
Moreover, we also have showed that the  prasad-Sommerfeld domain walls on two-
nondegenerate vacua of the theory is evolved with  dimensional Kahler-Ricci soliton. J. Math. Phys.,
respect to the flow parameter. It is also posdiide: their 50: 063514-063522. DOI: 10.1063/1.3155786
Morse index changes caused by Kahler-Ricci flove, se Gunara, B.E., 2012. Spherical symmetric dyonic klac
Theorema 2. holes and vacuum geometries in 4 D N=1 supergrav-

ity on Kahler-ricci soliton. Reports Math. Phys9: 6
281-309. DOI: 10.1016/S0034-4877(12)60032-9
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