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Abstract

In this paper, nonlinear boundary value problems are analyzed by using the
over-range collocation method (ORCM). By introducing some collocation points,
which are located at outside of domain of the analyzed body, unsatisfactory issue of
the positivity conditions of boundary points in collocation methods can be avoided.
Quite accurate numerical results of the nonlinear partial differential equations have
been obtained. Because the ORCM does not demand any specific type of partial
differential equations, it shows promise of wide engineering applications of the
ORCM.
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1. Introduction

A lot of meshless methods have been proposed. The early representatives of meshless
methods are the diffuse element method (1), the element free Galerkin method (2), the
reproducing kernel particle method ), the finite point method ,  the hp-clouds method ),
the partition of unity method ©, the meshless local Petrov-Galerkin (MLPG) approach 7,
and the local boundary integral equation method ®. Some meshless methods are based on
weak form, in which background meshes are used in implementation to obtain the
numerical integration. Some meshless methods are truly meshless methods. In most
meshless techniques, however, complicated non-polynomial interpolation functions are used
which render the integration of the weak form rather difficult. Failure to perform the
integration accurately results in loss of accuracy and possibly stability of solution scheme.
The integration of complicated non-polynomial interpolation function also costs much CPU
time.

The collocation method is a truly meshless method, and has no issues of the integration
scheme, the integration accuracy and the integration CPU time. Several collocation methods
based on different types of approximations or interpolations have been proposed in the
literature. Onate et al. ¥ have proposed a finite point method based on weighted least
squares interpolations for the analyses of convective transport and fluid flow problems.
Aluru @ has presented a point collocation method based on reproducing kernel
approximations for numerical solution partial differential equations with appropriate
boundary conditions. Jin, Li and Aluru '” have shown the robustness of collocation
meshless methods can be improved by ensuring that the positivity conditions are satisfied
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test function in the MLPG method, and shown that the MPLG mixed collocation method is
more efficient than the other MLPG implementations, including the MLPG finite volume
method. Li and Atluri '? have demonstrated the suitability and versatility of the MLPG
mixed collocation method by solving the problem of topology-optimization of elastic
structures.

But, the roughness of the collocation methods is an issue especially when scattered and
random points are used. To improve the robustness of the collocation methods, Nayroles,
Touzot and Villon" suggested that the positivity conditions could be important when using
the collocation methods. Jin, Li and Aluru "” have proposed techniques, based on
modification of weighting functions, to ensure satisfaction of positivity conditions when
using a scattered set of points. For boundary points, however, the positivity conditions
cannot be satisfied, obviously. In this paper, nonlinear boundary value problems are
analyzed by using the over-range collocation method (ORCM) ", in which by introducing
some collocation points that are located at outside of domain of the analyzed body,
unsatisfactory issue of the positivity conditions of boundary points in collocation methods
can be avoided.

2. Principle

2.1 Collocation Scheme
Let us assume a scalar problem governed by a partial differential equation:

Dw)=b, in Q (1
with boundary conditions

Tw)=t, onTl; )
u—u.,=0, onTl, 3)

to be satisfied in a domain Q with boundary I' =T, UT,,, where D and T are appropriate
differential operators, u is the problem unknown function, b and ¢ are external forces or
sources acting over () and along T, respectively. u, is the assigned value of u over [},.

Consider taking some collocation points in , at which Eq. (1) is satisfied, and some
collocation points on I}, at which both Eq. (1) and Eq. (2) are satisfied, as well as some
collocation points on [}, at which both Eq. (1) and Eq. (3) are satisfied. Besides the
collocation points over (), let us assume other collocation points located at outside of (0 and
call them over-range points, at which no satisfaction of any governing partial differential
equation or boundary condition is needed. Therefore, no over-constrained condition is
imposed into the boundary value problem. While the over-range points can be used in
interpolating calculation of boundary points, so that the unsatisfactory issue of the positivity
conditions of boundary points in collocation methods can be avoided.

Let us assume that the number of points in domain is K;, the number of boundary
points is K; and the number of over-range points is K,, then the number of unknown
variables is 2(K; + K;, + K,) for a 2-D problem. Because the number of equations of the
ORCM is 2(K; + K;,) + 2K, by taking the same number of the equations with that of the
unknown variables, we obtain that the number of the over-range points K, must be equal
to the number of boundary points Kj,.

2.2 The MLS Approximation with Kronecker-Delta Property

In the classical moving least-square (MLS) approximation, the shape functions have no
Kronecker-delta property, so that the essential node condition cannot be imposed on
boundaries. In this paper, a modified MLS approximation is used, its shape functions have
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Kronecker-delta property. Therefore, the unsatisfactory issue of the essential node condition
can be avoided in the modified MLS approximation.

Consider a small domain Q,, the neighborhood of a point x,;, which is located in Q or
on ['. Over a number of randomly located nodes {x;}, i=1,2,--,n, the MLS
approximation u" of u can be defined by

uh=p"X) a, VxEeEQ, 4)
where p’(x) = [p1(X) p,(X) - pr(X)] is a complete monomial basis of order m

which is a function of the space coordinatesx = [* ¥ Z]”. a is a vector of unknown
polynomial coefficients.

a=[a a - ap]” &)
For example, for a 2-D problem,

PP®=[1 x y x* xy y? (6)
this is a quadratic basis, and m=6.

A weighted least-square solution is obtained for a from the following system of n
equations in m unknown (n is larger than m):

u"=Ha (7)
where
1 L [ VLGRS VLR V1 (®)

is a vector of the nodal MLS approximation of function u, and

[pT (x1)]
[P0 ©)

" lpT(:xn)J

The classical least-square solution of the above over-constrained system does not guarantee
exact satisfaction of any of the equations of Eq. (7). Non-satisfaction of the first equation
would then mean uf # p7(x;)a. Hence, a different approach to weighted least-squares
solution can be adopted: Out of the n equations of Eq. (7), let the first equation

nxm

(corresponding to node 1) be satisfied exactly and the rest in the least-square sense. This is
done by using the first equation to eliminate @, from the rest of equations:

a; = uft — (a0 + azy; + azxf + asx;y; + agyi) (10)

Substituting for a; in Eq. (7), the reduced system of equations can be obtained:

u" = Ha (11)
where
" = [up —uf uf—uf o ul—uf]” (12)
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[ X -y XX %Y, —xy Yi— )’1] [P’ (x2)]
— — X Y1 X5 —xf X3y3—x1y1 Y3 =i |p (Xs)l (13)
l — X1 Ya= V1 Xp—X{ XnYu— %Y1 Vi — ny l T(Xn)J

—[ay as - @ (14)

The coefficient vector @ is determined by minimizing a weighted discrete L, norm,
defined as:

J=2,wx) [p"(x)a —;]* = [Ha —u]" W [Ha — 1] (15)
where w(x) is the weight function, with w(x) > 0 for all nodes in the support of w(x)

(the support is considered to be equal to Q, in this paper), X; denotes the value of x at
node 7, and the matrices W is defined as

w(x,) 0 0
L (16)
0 0 w1
U =14;—t,, i =2,3,~,n (17
u=[l, -0, -0 - @O,—11]" (18)

where #;, i =1,2,-:-,n, are the fictitious nodal values of the function u.
Minimizing J in Eq. (15) with respect to @& yields

a=A"'Bu (19)
B=H"W (20)
A =BH (1)

Substituting Eq. (19) into Eq. (11) gives a relation which may be written as the form of an
interpolation function, as

u" = HA'B (22)
Equation (10) can be rewritten as:

a, =ul —s(x)) @ (23)
sx)) =[x, »n x12 X1V1 y12] (24)

Equation (4) can be written as:

uh =a, +s(x) @ (25)

s =[x y x* xy y° (26)

Substituting Eq. (19) and Eq. (23) into Eq. (25), the following equation can be obtained:

u = ul + q(x)A"'Bu 27)

q(x) = s(x) —s(xq) (28)
Because

q(x;) =0 (29)
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| , ut () = uf (30
U may be defined as
a=[0 i - @l (€2))
then, from Eq. (27), the following equation may be obtained:
u" = Nx)u (32)
i Nx) =|1-
1xn
q(x) At B 1
1x(m—-1) (m-Dx@m-1) (m—-Dxmn-1) (n-1)x1
1 q(x) A? B (33)
' ! 1x(m-1) (m-1)xm—-1) (m-1Dxm-1)
‘ ' In Eq. (33), 1 is vector of dimension (n-1) with all entries being equal to unity.
| } \ 4 Recall form Eq. (29), using this result in Eq. (33), the Kronecker-delta property of N(x)
’ ' may be established:

Nxy)=[1 0 0 - 0] (34)

It means that at node 1, the shape function for node 1 takes a value of unity and all other
shape function take zero values. Therefore, Eq. (33) is the shape functions of the MLS
approximation with Kronecker-delta property.

From Eq. (32) and Eq. (30), the following result can be obtained:

;= uh(x1) = u{l (35)

In this paper, the weight functions w(x) may use a spline function as follows:

w(x)=1—6(§)z+8(§)3—3(§)4, o<d<r (362)
w®) =0, d>r (36b)

where d = |Xx — x| is the distance from point X to the center node x;, and r is the
radius of (., which is taken as a circle for a 2-D problem and its center is the point x;.

2.3 The Local Coordinate System

As anisotropy of the point distribution in €, matrix 4 in Eq. (21) becomes
ill-conditioned and the quality of the approximation deteriorates. In order to prevent such
undesirable effect, a local coordinate system &, 1 is chosen with origin at the node x; for
a 2-D problem,

§=2x (37a)
Ry

n=x= (37b)
Ry

where R, and R, denote maximum distances along x and y measured from the point X,
to exterior nodes in . In Eq. (36a), the spline function has now the following form in
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terms of the local coordinates:

3
§%+1 §24m%\2 £2+7%\°

w@®=1-6 (—)+8(p—2) -3(55) (38)
where —1 <& <1,—-1<7n<1 asusual, p is a constant that may control weight values
of different nodes in ,. p = 6 is used in this paper, so it means that the weight value of
the furthest node from the point X, is approximately 76.2% of the weight value of the
point Xj.

The matrix A4 is not dependent on the dimensions of (), any longer. The approximate
function is also expressed in terms of the local coordinate as

ut(§) = N(u (39)
A™!B in Eq. (33) can be defined as C:

C=A"'B (40)
Then, from Eq. (33), entries of N(x) for the quadratic basis (m=6) can be written as:

N () = 1= [(x = x) X Gy + O = y0) X1 Co + (0 = x]) X1 Cyy

+(xy — x13’1)2 C41 + (y - 3’1)2 CSL] 41)
Nip1(X) = (x —x)Cq; + (y y1)Cyi + (x - x12)C31 + (xy — x1y1)Cy;
+(? = y1)Cs; i=12-,n-1) (42)

where Cj;, (j =1,2,-,5; i=1,2,---,n—1) are entries of C.
At the point x;, because & = 0, n; = 0, then the first-order derivatives of the shape
function with the local coordinates can be obtained from Eqs. (41) and (42):

6Na(§1)_[ TG G Gz Gien] (43)
PR =[2G Cn G2 Cen) (44)

From Egs. (43) and (44), we may see that formulas of the shape function derivatives with
the local coordinates are very simple, and in fact, it is a merit of the ORCM using the local
coordinates.

2.4 The Positivity Conditions

(10)

The positivity conditions " on the approximation function N;(x) of Eq. (33) and its

second-order derivatives are stated as,

Ni(x;) =0 (45)
V2N;(x;) =0, j#i (46)
VzNi(Xi) <0 (47)

where N; (xj) is the approximation function of a point i evaluated at a point ;.

Patankar '

included the positivity conditions in a series of basic rules for the
construction of finite differences and pointed out that the consequence of violating the
positivity conditions give a physically unrealistic solution. It has been shown that the

satisfaction of the positivity conditions ensures the convergence of the finite difference
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method with arbitrary irregular meshes for some class of elliptic problems . It has been
shown that the significance of the positivity conditions in meshless collocation approaches,
and violation of the positivity conditions can significantly result in a large error in the
numerical solution '?.

For a point x; on T, if no over-range point is used in its (), the positivity conditions
on the boundary point cannot be satisfied, obviously. But by introducing some over-range
points of Q in the £, the unsatisfactory issue of the positivity conditions of the boundary

point can be avoided in the ORCM
3. Results of Analyses for the Nonlinear Partial Equation

3.1 Method of Error Estimation

For the purpose of error estimation and convergence studies, the Sobolev norm ||ul|,,
of function u and the norm of the first-order derivative vector of u, ||q||, are calculated.
These norms are defined as

1/2
lhully = (1, u?d0) (48)
/
llallo = (1, a”- qdﬂ)1 ’ (49)
q=[0u/dx 0du/dy]" =[x ay]" (50)

The relative errors for |lull, and ||q|l, are defined as

"unum_uexallo

Ro = ema, (1)
_ Jlqrim—ge¥ajj,
Ry = llgexaliy (52)

3.2 The Nonlinear Partial Equation

Some linear boundary value problems have been analyzed by using the ORCM, and it
has been shown that the ORCM works quite well for those linear boundary value problems
a3

In this paper, a nonlinear partial equation
Viu+ su® = e(x* + y* — x3y — x2y? + xy3)3 + 10(x? + y?) (53)

is analyzed over the 1X1 domain ( see Fig. 1 ) by using the ORCM, and its numerical
solutions are compared with the exact solutions:

u=x*+y*—x3y —x2y? + xy3 (54)

€ is a constant and is taken as 0.1 and 1.0 in this paper.

A Dirichlet problem, for which the essential boundary condition is imposed on all sides,
and two mixed problem, the first mixed problem ( the essential boundary condition is
imposed on left and right sides and the flux boundary condition is prescribed on top and
bottom sides of the domain ) and the second mixed problem ( the essential boundary
condition is imposed on top and bottom sides and the flux boundary condition is prescribed
on left and right sides of the domain ), are solved. Regular nodal models (including the
over-range nodes) of 89 (9 X9+8)( K;=5X5, K,=K,=32) nodes, 129 (11 X 11+8)( K;=7 X7,
K,=K,=40) nodes and 177 (13 X 13+8)( K;=9 X9, K,=K,=48) nodes are used to study the
convergence with nodal model refinement of the ORCM. Over-range points of one layer are
used, and the over-range points are regularly located at outside of the four sides of the
domain.
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Fig. 1 Analyzed domain
1 I For these regular nodal models, the positivity conditions are calculated. In this paper,
' J n=3 X 3=9 is used for all node models. Because the local coordinate system is used, the

L

values of V2N, (§ i) G=1,2,---9) of the three regular nodal models are the same,
respectively ( where subscript symbol 1 means the center node X; in every small domain
Qy of the regular nodes ). The value of shape function N;(&;), (j =1,2,-+,9) and the
values of V2N, (E]-), (G =1,2,---,9) are shown in Table 1. From Table 1, it is seen that the

positivity conditions of these nodes are satisfied.

Table 1 The values of N;(§;) and V2N;(§))

j 1 2 3 4 5 6 7 8 9
NED | 10 [ 00 ] 00 | 00 ] 00 ] 00| 00 00] 00
V2N, (§;) | -2.443 | 0.389 | 0.222 [ 0.389 | 0.222 [ 0.389 | 0.222 | 0.389 | 0.222

The results of relative errors and convergences are shown in Fig. 2 and Fig. 3 for the
first mixed problem of €=0.1 and &=1.0, respectively. These figures show that the ORCM
works quite well.

logy,(n)
1.9 2 2.1 2.2 2.3
U 1 1 1 ]
=—4=—|0g(RO)
-0.5 q
—@—log(Rq) v
p— u u
&g
S 1 - 9y
o
2
-1.5
2

Fig. 2 Relative errors and convergences for the first mixed problem of €=0.1 (n is number of the nodes)
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Fig. 3 Relative errors and convergences for the first mixed problem of e=1.0 (n is number of the nodes)
Figures 4 and 5 show values of u at x=0.0 by regular nodal model of 177 nodes, for
! Dirichlet problem of €=0.1 and &=1.0, respectively.
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Fig. 5 Values of u at x=0.0 by regular nodal model of 177 nodes, for Dirichlet problem for e=1.0
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Figures 6 and 7 show values of du/dy at x=0.0 by regular nodal model of 177 nodes, for

the first mixed problem and the second mixed problem of €=0.1, respectively.

1
0.6 -
4 - exact
——regular
Fig. 6 Values of 0u/0y at x=0.0 by regular nodal model of 177 nodes,
for the first mixed problem of £=0.1

..:-
Bie—— e | QO ———
- - E‘ivt = -
qy
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I

0.6 -

exact

—li—regular

Fig. 7 Values of du/0y at x=0.0 by regular nodal model of 177 nodes,

for the second mixed problem of £=0.1

One irregular nodal model of 177 (K;=81, K,=K,=48) nodes is used, too. Fig. 8 shows
distribution of the nodes in domain and the boundary nodes of the irregular nodal model.
Figs. 9 and 10 show values of u by the irregular nodal model for Dirichlet problem and the
first mixed problem of €=0.1, respectively. It can be seen that some accurate results for the
unknown variable and its derivatives are obtained by using the irregular nodal model, too.

4. Conclusions

The nonlinear boundary value problems are analyzed by using the ORCM. By
introducing some collocation points, which are located at outside of domain of the analyzed
body, unsatisfactory issue of the positivity conditions of boundary points in collocation
methods can be avoided. Quite accurate numerical results of the nonlinear partial
differential equations have been obtained. The convergence studies show that the ORCM
possesses good convergence for both the unknown variables and their derivatives. The
ORCM does not demand any specific kind of partial differential equations, therefore it

123
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shows promise of wide engineering applications of the ORCM.
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Fig. 8 Irregularly distributed nodes in domain and boundary nodes

0.07

exact
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Fig. 9 Values of u at x=0.0 by irregular nodal model of 177 nodes, for Dirichlet problem
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Fig. 10 Values of u at x=0.0 by irregular nodal model of 177 nodes, for the first mixed problem
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