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Abstract 
In this paper, nonlinear boundary value problems are analyzed by using the 
over-range collocation method (ORCM). By introducing some collocation points, 
which are located at outside of domain of the analyzed body, unsatisfactory issue of 
the positivity conditions of boundary points in collocation methods can be avoided. 
Quite accurate numerical results of the nonlinear partial differential equations have 
been obtained. Because the ORCM does not demand any specific type of partial 
differential equations, it shows promise of wide engineering applications of the 
ORCM. 
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1. Introduction 

A lot of meshless methods have been proposed. The early representatives of meshless 
methods are the diffuse element method (1), the element free Galerkin method (2), the 
reproducing kernel particle method (3), the finite point method (4), the hp-clouds method (5), 
the partition of unity method (6), the meshless local Petrov-Galerkin (MLPG) approach (7), 
and the local boundary integral equation method (8). Some meshless methods are based on 
weak form, in which background meshes are used in implementation to obtain the 
numerical integration. Some meshless methods are truly meshless methods. In most 
meshless techniques, however, complicated non-polynomial interpolation functions are used 
which render the integration of the weak form rather difficult. Failure to perform the 
integration accurately results in loss of accuracy and possibly stability of solution scheme. 
The integration of complicated non-polynomial interpolation function also costs much CPU 
time. 

The collocation method is a truly meshless method, and has no issues of the integration 
scheme, the integration accuracy and the integration CPU time. Several collocation methods 
based on different types of approximations or interpolations have been proposed in the 
literature. Onate et al. (4) have proposed a finite point method based on weighted least 
squares interpolations for the analyses of convective transport and fluid flow problems. 
Aluru (9) has presented a point collocation method based on reproducing kernel 
approximations for numerical solution partial differential equations with appropriate 
boundary conditions. Jin, Li and Aluru (10) have shown the robustness of collocation 
meshless methods can be improved by ensuring that the positivity conditions are satisfied 
when constructing approximation functions and their derivatives. Atluri, Liu and Han (11) 
have presented a MLPG mixed collocation method by using the Dirac delta function as the 
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test function in the MLPG method, and shown that the MPLG mixed collocation method is 
more efficient than the other MLPG implementations, including the MLPG finite volume 
method. Li and Atluri (12) have demonstrated the suitability and versatility of the MLPG 
mixed collocation method by solving the problem of topology-optimization of elastic 
structures. 

But, the roughness of the collocation methods is an issue especially when scattered and 
random points are used. To improve the robustness of the collocation methods, Nayroles, 
Touzot and Villon (1) suggested that the positivity conditions could be important when using 
the collocation methods. Jin, Li and Aluru (10) have proposed techniques, based on 
modification of weighting functions, to ensure satisfaction of positivity conditions when 
using a scattered set of points. For boundary points, however, the positivity conditions 
cannot be satisfied, obviously. In this paper, nonlinear boundary value problems are 
analyzed by using the over-range collocation method (ORCM) (13), in which by introducing 
some collocation points that are located at outside of domain of the analyzed body, 
unsatisfactory issue of the positivity conditions of boundary points in collocation methods 
can be avoided. 

2. Principle 

2.1 Collocation Scheme 
Let us assume a scalar problem governed by a partial differential equation: 

ሻݑሺܦ  ൌ ܾ ,  ݅݊   Ω (1) 
 
with boundary conditions 
 ܶሺݑሻ ൌ , ݐ ݑ Γ௧ (2)  ݊݋  െ ௖ݑ ൌ 0 ,  Γ௨ (3)  ݊݋ 
 
to be satisfied in a domain Ω with boundary Γ ൌ Γ௧ ׫ Γ௨, where D and T are appropriate 
differential operators, u is the problem unknown function, b and t are external forces or 
sources acting over Ω and along Γ௧, respectively. ݑ௖  is the assigned value of u over Γ௨. 

Consider taking some collocation points in Ω, at which Eq. (1) is satisfied, and some 
collocation points on Γ௧, at which both Eq. (1) and Eq. (2) are satisfied, as well as some 
collocation points on Γ௨, at which both Eq. (1) and Eq. (3) are satisfied. Besides the 
collocation points over Ω, let us assume other collocation points located at outside of Ω and 
call them over-range points, at which no satisfaction of any governing partial differential 
equation or boundary condition is needed. Therefore, no over-constrained condition is 
imposed into the boundary value problem. While the over-range points can be used in 
interpolating calculation of boundary points, so that the unsatisfactory issue of the positivity 
conditions of boundary points in collocation methods can be avoided. 

Let us assume that the number of points in domain is ܭௗ, the number of boundary 
points is ܭ௕ and the number of over-range points is ܭ௢, then the number of unknown 
variables is 2ሺܭௗ ൅ ௕ܭ ൅  ௢ሻ for a 2-D problem. Because the number of equations of theܭ
ORCM is 2ሺܭௗ ൅ ௕ሻܭ ൅ ௕ܭ2 , by taking the same number of the equations with that of the 
unknown variables, we obtain that the number of the over-range points ܭ௢ must be equal 
to the number of boundary points ܭ௕. 
 
2.2 The MLS Approximation with Kronecker-Delta Property 

In the classical moving least-square (MLS) approximation, the shape functions have no 
Kronecker-delta property, so that the essential node condition cannot be imposed on 
boundaries. In this paper, a modified MLS approximation is used, its shape functions have 
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Kronecker-delta property. Therefore, the unsatisfactory issue of the essential node condition 
can be avoided in the modified MLS approximation. 

Consider a small domain Ω୶, the neighborhood of a point ݔଵ, which is located in Ω or 
on  Γ . Over a number of randomly located nodes ሼݔ௜ሽ , ݅ ൌ 1, 2,···, ݊ , the MLS 
approximation ݑ௛ of u can be defined by 
௛ݑ  ൌ ,ሻ હܠሺ்ܘ ܠ׊  א Ω௫ (4) 
 
where ்ܘሺܠሻ ൌ ሾ݌ଵሺܠሻ ሻܠଶሺ݌ ڮ  ሻሿ is a complete monomial basis of order mܠ௠ሺ݌
which is a function of the space coordinates ܠ ൌ ሾݔ ݕ  ሿ். હ is a vector of unknownݖ
polynomial coefficients. 
 હ ൌ ሾߙଵ ଶߙ ڮ  ௠ሿ் (5)ߙ
 
For example, for a 2-D problem, 
ሻܠሺ்ܘ  ൌ ሾ1 ݔ ݕ ଶݔ ݕݔ  ଶሿ (6)ݕ
 
this is a quadratic basis, and m=6. 

A weighted least-square solution is obtained for હ from the following system of n 
equations in m unknown (n is larger than m): 
௛ܝ  ൌ ۶ હ (7) 
 
where 
௛ܝ  ൌ ሾݑଵ௛ ଶ௛ݑ ڮ  ௡௛ሿ் (8)ݑ
 
is a vector of the nodal MLS approximation of function u, and 
 

۶ ൌ ێێۏ
ۑۑے௡ሻܠሺ்ܘڭଶሻܠሺ்ܘଵሻܠሺ்ܘۍ

ې
  ௡ൈ௠

 (9) 

 
The classical least-square solution of the above over-constrained system does not guarantee 
exact satisfaction of any of the equations of Eq. (7). Non-satisfaction of the first equation 
would then mean  ݑଵ௛ ്  Hence, a different approach to weighted least-squares .ߙଵሻݔሺ்݌
solution can be adopted: Out of the n equations of Eq. (7), let the first equation 
(corresponding to node 1) be satisfied exactly and the rest in the least-square sense. This is 
done by using the first equation to eliminate ߙଵ from the rest of equations: 
ଵߙ  ൌ ଵ௡ݑ െ ሺߙଶݔଵ ൅ ଵݕଷߙ ൅ ଵଶݔଷߙ ൅ ଵݕଵݔହߙ ൅  ଵଶሻ (10)ݕ଺ߙ
 
Substituting for ߙଵ in Eq. (7), the reduced system of equations can be obtained: 
ഥ௛ܝ  ൌ ۶ഥࢻഥ (11) 
 
where 
ഥ௛ܝ  ൌ ሾݑଶ௛ െ ଷ௛ݑ   ଵ௛ݑ െ ଵ௛ݑ ௡௛ݑ   ڮ    െ  ଵ௛ሿ் (12)ݑ
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۶ഥ ൌ ێێۏ
ଶݔۍ െ ଵݔ ଶݕ െ ଵݕ ଶଶݔ െ ଵଶݔ ଶݕଶݔ െ ଵݕଵݔ ଶଶݕ െ ଷݔଵଶݕ െ ଵݔ ଷݕ െ ଵݕ ଷଶݔ െ ଵଶݔ ଷݕଷݔ െ ଵݕଵݔ ଷଶݕ െ ڭଵଶݕ ڭ ڭ ڭ ௡ݔڭ െ ଵݔ ௡ݕ െ ଵݕ ௡ଶݔ െ ଵଶݔ ௡ݕ௡ݔ െ ଵݕଵݔ ௡ଶݕ െ ۑۑےଵଶݕ

ې ൌ ێێۏ
ۑۑے௡ሻܠഥ்ሺܘڭଷሻܠഥ்ሺܘଶሻܠഥ்ሺܘۍ

ې
 (13) 

ഥࢻ ൌ ሾߙଶ ଷߙ ڮ  ௠ሿ் (14)ߙ
 
The coefficient vector ࢻഥ  is determined by minimizing a weighted discrete ܮଶ  norm, 
defined as: 
ܬ  ൌ ∑ തߙ௜ሻܠഥ்ሺܘ௜ሻ  ሾܠሺݓ െ ത௜ሿଶ௡௜ୀଶݑ ൌ ሾ۶ഥࢻഥ െ ഥࢻሾ۶ഥ ܅ ഥሿ்ܝ െ  ഥሿ (15)ܝ
 
where ݓሺܠሻ is the weight function, with ݓሺܠሻ ൐ 0 for all nodes in the support of ݓሺܠሻ 
(the support is considered to be equal to Ω୶ in this paper), ܠ௜ denotes the value of x at 
node i, and the matrices W is defined as 
 

܅ ൌ ൦ݓሺܠଶሻ 0 ڮ 00 ଷሻܠሺݓ ڮ ڮ0 ڮ ڮ 0ڮ 0 ڮ ௡ሻ൪ܠሺݓ
  ሺ௡ିଵሻൈሺ௡ିଵሻ

 (16) 

ത௜ݑ ൌ ො௜ݑ െ ,ොଵݑ ݅ ൌ 2, 3, ڮ , ഥܝ (17) ݊ ൌ ሾݑොଶ െ ොଵݑ ොଷݑ െ ොଵݑ ڮ ො௡ݑ െ  ොଵሿ் (18)ݑ
 
where ݑො௜, ݅ ൌ 1, 2, ڮ , ݊,  are the fictitious nodal values of the function u.  

Minimizing J in Eq. (15) with respect to ࢻഥ yields 
ഥࢻ  ൌ ഥ (19) ۰ܝଵ۰ିۯ ൌ ۶ഥ ۯ (20) ܅ࢀ ൌ ۰۶ഥ  (21) 
 
Substituting Eq. (19) into Eq. (11) gives a relation which may be written as the form of an 
interpolation function, as 
ഥ௛ܝ  ൌ ۶ഥିۯଵ۰ (22) 
 
Equation (10) can be rewritten as: 
ଵߙ  ൌ ଵ௛ݑ െ ଵሻܠሺܛ ത (23)ߙ ଵሻܠሺܛ ൌ ሾݔଵ ଵݕ ଵଶݔ ଵݕଵݔ  ଵଶሿ (24)ݕ
 
Equation (4) can be written as: 
௛ݑ  ൌ ଵߙ ൅ ሻܠሺܛ ത (25)ߙ ሻܠሺܛ ൌ ሾݔ ݕ ଶݔ ݕݔ  ଶሿ (26)ݕ
 
Substituting Eq. (19) and Eq. (23) into Eq. (25), the following equation can be obtained: 
௛ݑ  ൌ ଵ௛ݑ ൅ ሻܠሺܙ ഥ (27)ܝଵ۰ିۯሻܠሺܙ ൌ ሻܠሺܛ െ  ଵሻ (28)ܠሺܛ
 
Because 
ଵሻܠሺܙ  ൌ 0 (29) 
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ଵሻܠ௛ሺݑ ൌ  ଵ௛ (30)ݑ
 ෝ may be defined asܝ 
ෝܝ  ൌ ሾݑොଵ ොଶݑ ڮ ො௡ሿ்ݑ  (31) 
 
then, from Eq. (27), the following equation may be obtained: 
௛ݑ  ൌ ሻ1ܠሺۼ ෝ (32)ܝሻܠሺۼ ൈ ݊ ൌ ൥1 െ 

ቌ ሻ   1ܠሺܙ    ൈ ሺ݉ െ 1ሻ ଵ       ሺ݉ିۯ        െ 1ሻ ൈ ሺ݉ െ 1ሻ           ۰          ሺ݉ െ 1ሻ ൈ ሺ݊ െ 1ሻ       ૚      ሺ݊ െ 1ሻ ൈ 1ቍ 

ڭ         ଵ                 ۰           1ିۯ          ሻܠሺܙ    ൈ ሺ݉ െ 1ሻ ሺ݉ െ 1ሻ ൈ ሺ݉ െ 1ሻ ሺ݉ െ 1ሻ ൈ ሺ݊ െ 1ሻ቏ (33) 

 
In Eq. (33), 1 is vector of dimension (n-1) with all entries being equal to unity. 

Recall form Eq. (29), using this result in Eq. (33), the Kronecker-delta property of ۼሺܠሻ 
may be established: 
ଵሻܠሺۼ  ൌ ሾ1 0 0 ڮ 0ሿ (34) 
 
It means that at node 1, the shape function for node 1 takes a value of unity and all other 
shape function take zero values. Therefore, Eq. (33) is the shape functions of the MLS 
approximation with Kronecker-delta property. 

From Eq. (32) and Eq. (30), the following result can be obtained: 
ොଵݑ  ൌ ଵሻܠ௛ሺݑ ൌ  ଵ௛ (35)ݑ
 
In this paper, the weight functions ݓሺܠሻ may use a spline function as follows: 
ሻܠሺݓ  ൌ 1 െ 6 ቀௗ௥ቁଶ ൅ 8 ቀௗ௥ቁଷ െ 3 ቀௗ௥ቁସ ,  0 ൑ ݀ ൑ ሻܠሺݓ (36a) ݎ ൌ 0,  ݀ ൒  (36b) ݎ
 
where ݀ ൌ ܠ| െ ଵ| is the distance from point xܠ  to the center node ݔଵ, and r is the 
radius of Ω௫, which is taken as a circle for a 2-D problem and its center is the point ݔଵ. 
 
2.3 The Local Coordinate System 

As anisotropy of the point distribution in Ω௫ , matrix A in Eq. (21) becomes 
ill-conditioned and the quality of the approximation deteriorates. In order to prevent such 
undesirable effect, a local coordinate system ߟ ,ߦ is chosen with origin at the node ܠଵ for 
a 2-D problem, 
ߦ  ൌ ௫ି௫భோೣ  (37a) ߟ ൌ ௬ି௬భோ೤  (37b) 

 
where ܴ௫ and ܴ௬  denote maximum distances along x and y measured from the point ܠଵ 
to exterior nodes in Ω௫. In Eq. (36a), the spline function has now the following form in 
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terms of the local coordinates: 
ሻࣈሺݓ  ൌ 1 െ 6 ቀకమାఎమఘమ ቁ ൅ 8 ቀకమାఎమఘమ ቁయమ െ 3 ቀకమାఎమఘమ ቁଶ

 (38) 

 
where െ1 ൑ ߦ ൑ 1, െ1 ൑ ߟ ൑ 1 as usual, ߩ is a constant that may control weight values 
of different nodes in Ω௫. ߩ ൌ 6  is used in this paper, so it means that the weight value of 
the furthest node from the point ܠଵ is approximately 76.2% of the weight value of the 
point ܠଵ. 

The matrix A is not dependent on the dimensions of Ω௫ any longer. The approximate 
function is also expressed in terms of the local coordinate as 
ሻࣈ௛ሺݑ  ൌ  ෝ (39)ܝሻࣈሺۼ
 :ଵ۰ in Eq. (33) can be defined as Cିۯ 
 ۱ ൌ  ଵ۰ (40)ିۯ
 
Then, from Eq. (33), entries of ۼሺܠሻ for the quadratic basis (m=6) can be written as: 
         ଵܰሺܠሻ ൌ 1 െ ሾሺݔ െ ଵሻݔ ∑ ଵ௜௡ିଵ௜ୀଵܥ ൅ ሺݕ െ ଵሻݕ ∑ ଶ௜௡ିଵ௜ୀଵܥ ൅ ሺݔଶ െ ଵଶሻݔ ∑ ଷ௜௡ିଵ௜ୀଵܥ                    ൅ሺݕݔ െ ଵሻݕଵݔ ∑ ସ௜௡ିଵ௜ୀଵܥ ൅ ሺݕଶ െ ଵଶሻݕ ∑ ହ௜௡ିଵ௜ୀଵܥ ሿ (41)  ௜ܰାଵሺܠሻ ൌ ሺݔ െ ଵ௜ܥଵሻݔ ൅ ሺݕ െ ଶ௜ܥଵሻݕ ൅ ሺݔଶ െ ଷ௜ܥଵଶሻݔ ൅ ሺݕݔ െ ଶݕସ௜                     ൅ሺܥଵሻݕଵݔ െ ହ௜           ሺ݅ܥଵଶሻݕ ൌ 1, 2, ڮ , ݊ െ 1ሻ (42) 

 
where ܥ௝௜, ሺ݆ ൌ 1, 2, ڮ , 5 ;   ݅ ൌ 1, 2, ڮ , ݊ െ 1ሻ are entries of C. 

At the point ݔଵ, because ߦଵ ൌ ଵߟ ,0 ൌ 0, then the first-order derivatives of the shape 
function with the local coordinates can be obtained from Eqs. (41) and (42): 
 డۼሺࣈభሻడక ൌ ሾെ∑ ଵ௜௡ିଵ௜ୀଵܥ ଵଵܥ ଵଶܥ ڮ భሻడఎࣈሺۼଵሺ௡ିଵሻሿ (43) డܥ ൌ ሾെ∑ ଶ௜௡ିଵ௜ୀଵܥ ଶଵܥ ଶଶܥ ڮ  ଶሺ௡ିଵሻሿ (44)ܥ

 
From Eqs. (43) and (44), we may see that formulas of the shape function derivatives with 
the local coordinates are very simple, and in fact, it is a merit of the ORCM using the local 
coordinates. 
 
2.4 The Positivity Conditions 

The positivity conditions (10) on the approximation function ௜ܰሺܠሻ of Eq. (33) and its 
second-order derivatives are stated as, 
 ௜ܰ൫ܠ௝൯ ൒ ଶ׏ (45) 0 ௜ܰ൫ܠ௝൯ ൒ 0, ݆ ് ଶ׏ (46) ݅ ௜ܰሺܠ௜ሻ ൏ 0 (47) 
 

where ௜ܰ൫ܠ௝൯ is the approximation function of a point i evaluated at a point j. 

Patankar (14) included the positivity conditions in a series of basic rules for the 
construction of finite differences and pointed out that the consequence of violating the 
positivity conditions give a physically unrealistic solution. It has been shown that the 
satisfaction of the positivity conditions ensures the convergence of the finite difference 
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method with arbitrary irregular meshes for some class of elliptic problems (15). It has been 
shown that the significance of the positivity conditions in meshless collocation approaches, 
and violation of the positivity conditions can significantly result in a large error in the 
numerical solution (10). 

For a point ܠଵ on Γ, if no over-range point is used in its Ω୶, the positivity conditions 
on the boundary point cannot be satisfied, obviously. But by introducing some over-range 
points of Ω in the Ω୶, the unsatisfactory issue of the positivity conditions of the boundary 
point can be avoided in the ORCM 

3. Results of Analyses for the Nonlinear Partial Equation 

3.1 Method of Error Estimation 
For the purpose of error estimation and convergence studies, the Sobolev norm ԡݑԡ଴, 

of function u and the norm of the first-order derivative vector of u, ԡܙԡ଴ are calculated. 
These norms are defined as 
 ԡݑԡ଴ ൌ ቀ׬ ఆߗଶ݀ݑ ቁଵ ଶ⁄

 (48) ԡܙԡ଴ ൌ ቀ׬ ்ܙ · ఆߗ݀ܙ ቁଵ ଶ⁄
ܙ (49)  ൌ ሾ߲ݑ ⁄ݔ߲ ݑ߲ ⁄ݕ߲ ሿ் ൌ ሾݍ௫  ௬ሿ் (50)ݍ

 
The relative errors for ԡݑԡ଴ and ԡܙԡ଴ are defined as 
 ܴ଴ ൌ ԡ௨೙ೠ೘ି௨೐ೣೌԡబԡ௨೐ೣೌԡబ  (51) ܴ௤ ൌ ԡܙ೙ೠ೘ିܙ೐ೣೌԡబԡܙ೐ೣೌԡబ  (52) 

 
3.2 The Nonlinear Partial Equation 

Some linear boundary value problems have been analyzed by using the ORCM, and it 
has been shown that the ORCM works quite well for those linear boundary value problems 

(13). 
In this paper, a nonlinear partial equation 

ଶu׏  ൅ εݑଷ ൌ εሺݔସ ൅ ସݕ െ ݕଷݔ െ ଶݕଶݔ ൅ ଷሻଷݕݔ ൅ 10ሺݔଶ ൅  ଶሻ (53)ݕ
 
is analyzed over the 1×1 domain ( see Fig. 1 ) by using the ORCM, and its numerical 
solutions are compared with the exact solutions: 
 u ൌ ସݔ ൅ ସݕ െ ݕଷݔ െ ଶݕଶݔ ൅  ଷ (54)ݕݔ
 ε is a constant and is taken as 0.1 and 1.0 in this paper. 

A Dirichlet problem, for which the essential boundary condition is imposed on all sides, 
and two mixed problem, the first mixed problem ( the essential boundary condition is 
imposed on left and right sides and the flux boundary condition is prescribed on top and 
bottom sides of the domain ) and the second mixed problem ( the essential boundary 
condition is imposed on top and bottom sides and the flux boundary condition is prescribed 
on left and right sides of the domain ), are solved. Regular nodal models (including the 
over-range nodes) of 89 (9×9+8)( ܭௗ=5×5, ܭ௕=ܭ௢=32) nodes, 129 (11×11+8)( ܭௗ=7×7, ܭ௕=ܭ௢=40) nodes and 177 (13×13+8)( ܭௗ=9×9, ܭ௕=ܭ௢=48) nodes are used to study the 
convergence with nodal model refinement of the ORCM. Over-range points of one layer are 
used, and the over-range points are regularly located at outside of the four sides of the 
domain. 
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Fig. 1  Analyzed domain 

 
For these regular nodal models, the positivity conditions are calculated. In this paper, 

n=3 ൈ 3=9 is used for all node models. Because the local coordinate system is used, the 
values of ׏ଶ ଵܰሺࣈ௝ሻ, ሺ݆ ൌ 1, 2, ڮ ,9ሻ of the three regular nodal models are the same, 
respectively ( where subscript symbol 1 means the center node ܠଵ in every small domain Ω୶ of the regular nodes ). The value of shape function ଵܰሺࣈ௝ሻ, ሺ݆ ൌ 1, 2, ڮ ,9ሻ and the 
values of ׏ଶ ଵܰሺࣈ௝ሻ, ሺ݆ ൌ 1, 2, ڮ ,9ሻ are shown in Table 1. From Table 1, it is seen that the 
positivity conditions of these nodes are satisfied. 

 
Table 1  The values of ଵܰሺࣈ௝ሻ and ׏ଶ ଵܰሺࣈ௝ሻ 

 
j 1 2 3 4 5 6 7 8 9 ଵܰሺࣈ௝ሻ 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ׏ଶ ଵܰሺࣈ௝ሻ -2.443 0.389 0.222 0.389 0.222 0.389 0.222 0.389 0.222

 
The results of relative errors and convergences are shown in Fig. 2 and Fig. 3 for the 

first mixed problem of ε=0.1 and ε=1.0, respectively. These figures show that the ORCM 
works quite well. 

 

 
 

Fig. 2  Relative errors and convergences for the first mixed problem of ε=0.1 (n is number of the nodes) 
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Fig. 3  Relative errors and convergences for the first mixed problem of ε=1.0 (n is number of the nodes) 

 
Figures 4 and 5 show values of u at x=0.0 by regular nodal model of 177 nodes, for 

Dirichlet problem of ε=0.1 and ε=1.0, respectively. 
 

 
 

Fig. 4  Values of u at x=0.0 by regular nodal model of 177 nodes, for Dirichlet problem for ε=0.1 

 

 
 

Fig. 5  Values of u at x=0.0 by regular nodal model of 177 nodes, for Dirichlet problem for ε=1.0 
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Figures 6 and 7 show values of ∂u/∂y at x=0.0 by regular nodal model of 177 nodes, for 
the first mixed problem and the second mixed problem of ε=0.1, respectively. 
 

 
 

Fig. 6  Values of ∂u/∂y at x=0.0 by regular nodal model of 177 nodes, 
for the first mixed problem of ε=0.1 

 

 
 

Fig. 7  Values of ∂u/∂y at x=0.0 by regular nodal model of 177 nodes, 
for the second mixed problem of ε=0.1 

 
One irregular nodal model of 177 (ܭௗ=81, ܭ௕=ܭ௢=48) nodes is used, too. Fig. 8 shows 

distribution of the nodes in domain and the boundary nodes of the irregular nodal model. 
Figs. 9 and 10 show values of u by the irregular nodal model for Dirichlet problem and the 
first mixed problem of ε=0.1, respectively. It can be seen that some accurate results for the 
unknown variable and its derivatives are obtained by using the irregular nodal model, too. 

4. Conclusions 

The nonlinear boundary value problems are analyzed by using the ORCM. By 
introducing some collocation points, which are located at outside of domain of the analyzed 
body, unsatisfactory issue of the positivity conditions of boundary points in collocation 
methods can be avoided. Quite accurate numerical results of the nonlinear partial 
differential equations have been obtained. The convergence studies show that the ORCM 
possesses good convergence for both the unknown variables and their derivatives. The 
ORCM does not demand any specific kind of partial differential equations, therefore it 
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shows promise of wide engineering applications of the ORCM. 
 

 
 

Fig. 8  Irregularly distributed nodes in domain and boundary nodes 

 

 
 

Fig. 9  Values of u at x=0.0 by irregular nodal model of 177 nodes, for Dirichlet problem 

 

 
 

Fig. 10  Values of u at x=0.0 by irregular nodal model of 177 nodes, for the first mixed problem 
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