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Abstract
To analyze large-scale problems by a domain decomposition method (DDM), it is im-
portant to accelerate the subdomain local solver. For utilizing cache memory effec-
tively and for saving main memory usage, we employ the preconditioner of incom-
plete Cholesky factorization with threshold (ICT) optimized for the subdomain local
solver of the DDM. Though the ICT preconditioner was originally proposed for ill-
conditioned problems, we employ it in this study because it can freely control the num-
ber of nonzeros of the preconditioning matrix. By controlling the number of nonzeros,
both the coefficient and the preconditioning matrices can fit on the cache memory. By
using the cache memory effectively, the computation time of the ICT-based subdomain
local solver becomes comparable to that of the direct LDL-based solver. In addition,
when the number of degrees of freedom (DOFs) of an analysis model becomes very
large, the LDL-based DDM solver suffers from overflow of the main memory whereas
the ICT-based solver can complete the analysis. Using this solver, we succeeded in an-
alyzing a structural problem of 64 million DOFs in 8 minutes on a parallel computing
cluster of 8 nodes.

Key words : Finite Element Structural Analysis, Parallel Processing, Domain Decom-
position Method, Subdomain Local Solver, Conjugate Gradient Method,
Preconditioners, Incomplete Cholesky Factorization with Threshold

1. Introduction

In the field of large-scale finite element analysis, parallel computation using a domain
decomposition method (DDM)(1)(2) has been studied. In a DDM, a whole analysis domain is
first decomposed into multiple non-overlapping subdomains and is then solved by repeatedly
analyzing a number of subdomain local problems. Each subdomain is solved on one processor
core, and the subdomain local solver is one of hot-spots in DDM-based software. In recent
scalar computers with deep hierarchical memory systems, since the memory byte per flop
has been smaller and smaller every year, the cache memory utilization becomes essential for
high-performance computing. The aim of this paper is to propose a memory-saving iterative
solution technique to accelerate the subdomain local solver of the DDM. In addition, since
main memory usage becomes a key factor in solving very large-scale problems. In a real
situation, main memory overflow often occurs. Therefore, we save main memory usage and
analyze large-scale problems on a computer which has a limited amount of main memory.

In the cases of a DDM with preconditioners such as balancing domain decomposition
(BDD)(3)(4), the cost of coarse grid correction (CGC) cannot be ignored, whose operation
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count is directly related to the number of subdomains. The total number of subdomains must
be, thus, restricted under a certain number. For example, when the total number of DOFs of a
whole analysis domain is 200 millions and the total number of subdomains is restricted to 100
thousands, the number of DOFs of each subdomain would become approximately 2,000. In
the BDD-based structural solver ADVENTURE Solid(5) which was optimized for the Earth
Simulator by Ogino et al.(6), the DOFs of the subdomains are set as approximately 3,000 for a
problem of 100 million DOFs. Yamada et al.(7) proposed 2,700 DOFs to be the optimum for
a problem of 48 million DOFs. Considering those studies, we set the target of our study to be
1,000–6,000 DOFs for the subdomains of problems of 100 million–1 billion DOFs.

Direct solution methods have been usually employed as the subdomain local solvers of
a DDM. In such cases, the DOFs of each subdomain are typically set as a few hundreds. It-
erative solution methods have seldom been utilized for the subdomain local solver of a DDM
because of their large operation count. In addition, a matrix factorization in the direct solver
is conducted once on each subdomain, and then, only forward and backward substitutions
are conducted for solving linear equations. However, in DDM-based electromagnetic anal-
yses, the incomplete Cholesky conjugate orthogonal conjugate gradient (ICCOCG) method
has been used. Kanayama and Sugimoto(8) used an ICCOCG-based subdomain local solver
and analyzed eddy currents of 5.55 million complex DOFs. Takei et al.(9) analyzed a full-
wave electromagnetic field of 12.8 million complex DOFs. Kawai et al.(10) used conjugate
gradient (CG) solvers with the preconditioners of diagonal scaling and symmetric successive
over-relaxation (SSOR) for structural analyses.

In this study, the target is a three-dimensional solid finite element linear elastic mechanics
problem. Due to the symmetric positive definite coefficient matrix of the problem, we chose
a preconditioned conjugate gradient (PCG) method for the subdomain local solver. Although
memory-saving PCG solvers are usually slower than the skyline-based direct LDL solver, they
are able to become comparable by utilizing the cache memory. To accelerate CG convergence,
we also chose incomplete Cholesky (IC) preconditioners which are usually used in the field of
structural analysis. Various versions of IC and incomplete LU (ILU) which is advantageous
for asymmetric matrices are available. ILU with threshold (ILUT) by Saad(11) ignores small
nonzeros by tolerance parameters. ILUTP(11) uses a pivoting technique to avoid zero diagonal
entries and to stabilize convergence. Robust IC (RIC) by Ajiz and Jennings(12) modifies diag-
onal entries to avoid the failure of IC factorization. Quasi RIC by Kakihara and Fujino(13) uses
a relaxation parameter to modify diagonal entries in order to accelerate convergence. In ad-
dition to the IC preconditioners, approximate inverse (AINV) and stabilized AINV (SAINV)
by Benzi et al.(14), and robust incomplete factorization (RIF) by Benzi and Tuma(15) are being
actively studied.

In this study, since the local solver is activated on one processor core, it is not required
to parallelize preconditioning. Though robust preconditioners and approximate inverse pre-
conditioners are effective for ill-conditioned problems such as a shell or a beam, the condition
number of our coefficient matrices is not very large, because the subdomains after domain
decomposition are bulky-shaped. Therefore, we adopt the relatively simple ILUT (incom-
plete Cholesky factorization with threshold (ICT) for a symmetric system) preconditioner
optimized for the subdomain local solver of a DDM. Although the ILUT preconditioner was
originally proposed for ill-conditioned problems, we adopted the incomplete Cholesky factor-
ization with threshold (ICT) preconditioned CG method in this study for two reasons. First,
the PCG solver is generally more efficient in main memory usage than is the direct solver.
Using the memory-saving solvers, one can analyze large-scale problems on a computer hav-
ing a limited amount of main memory. Second, the number of nonzeros (memory usage) of
the ICT preconditioning matrix can be freely controlled by a tolerance parameter. Though the
tolerance-based nonzero dropping is conducted during the incomplete Cholesky factorization
in the original algorithm, the dropping is conducted after the complete factorization in our
modified algorithm. It is possible to make an ICT preconditioning matrix which fits on the
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cache memory. Cache memory utilization is an important factor to accelerate the iterative
solvers in multi-core/many core environments.

2. Domain Decomposition Method

2.1. Overview
In DDMs, the analysis domain is first decomposed into multiple non-overlapping subdo-

mains. The global simultaneous linear equation for the interface DOFs of the subdomains is
solved by iterative solution methods. The local simultaneous linear equations of the subdo-
mains are solved in every DDM iteration step. Since our target is a linear elastic problem, the
coefficient matrices of the local simultaneous linear equations become symmetric and positive
definite. Therefore, we employ the PCG method for the subdomain local solution. We adopt
the CG method with the preconditioner of ICT for solving the local equations, because it is
possible to save memory by dropping small nonzeros of the preconditioning matrix.

We next explain the basic algorithm of the DDM and state the roles and features of the
subdomain local solver of the DDM.

2.2. DDM Algorithm
The global simultaneous linear equation

Ku = f (1)

is derived from the finite element discretization of a linear elastic body of infinitesimal de-
formation. K is a stiffness matrix (a coefficient matrix), u is a nodal displacement vector (an
unknown vector) and f is a nodal load vector (a right-hand side; RHS). In DDMs, an analysis
domain Ω is decomposed into non-overlapping subdomains Ω1, . . . ,ΩN as shown in Fig. 1.
Then, the coefficient matrix Ki, the unknown vector ui and the RHS vector f i of subdomain i
are partitioned into the internal DOFs (I) of Ωi and the interface DOFs (B) of Γi, as written in
the following:

Ki =

⎡⎢⎢⎢⎢⎣ KIIi KIBi

KT
IBi KBBi

⎤⎥⎥⎥⎥⎦ , (2)

ui =

⎧⎪⎨⎪⎩ uIi

uBi

⎫⎪⎬⎪⎭ , (3)

f i =

⎧⎪⎨⎪⎩ f Ii

f Bi

⎫⎪⎬⎪⎭ . (4)

After eliminating the internal DOFs of Ωi by static condensation, Eq. (2) becomes

SiuBi = gi (5)

with respect to the interface DOFs of Γi. The coefficient matrix Si and the unknown vector gi

are represented by

Si = KBBi − KT
BBiK

−1
IIi KIBi, (6)

gi = f Bi − KT
BBiK

−1
IIi f Ii. (7)

By superposing the equations from i = 1 to i = N, the following global simultaneous linear
equation can be obtained.

SuB = g (8)

where, S and g are represented by

S =
N∑

i=1
RT

BiSiRBi, (9)
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Fig. 1 Decomposed domain and flowchart of the domain decomposition method
(DDM) solver.

g =
N∑

i=1
RT

Bigi. (10)

RBi is a restriction operator matrix which has entries of 0 or 1 and which restricts the DOFs.
S is called the Schur complement matrix and it is symmetric positive definite in linear elastic
problems. In the DDM, the global problem of Eq. (8) is solved by iterative solution methods.

When solving Eq. (8) with PCG methods, it is difficult to generate S directly by Eq.
(8) and to store it in memory. Thus, the matrix-vector multiplication of q = Sp in the PCG
iterations is generally calculated by the following steps. First, qBi is calculated subdomain-
wise by⎧⎪⎨⎪⎩ hIi

hBi

⎫⎪⎬⎪⎭ =
⎡⎢⎢⎢⎢⎣ KIIi KIBi

KT
IBi KBBi

⎤⎥⎥⎥⎥⎦
⎧⎪⎨⎪⎩ 0
−RBi p

⎫⎪⎬⎪⎭ , (11)

⎧⎪⎨⎪⎩ uIi

uBi

⎫⎪⎬⎪⎭ =
⎡⎢⎢⎢⎢⎣ KIIi 0

0 I

⎤⎥⎥⎥⎥⎦
−1 ⎧⎪⎨⎪⎩ hIi

hBi

⎫⎪⎬⎪⎭ , (12)

⎧⎪⎨⎪⎩ qIi

qBi

⎫⎪⎬⎪⎭ =
⎡⎢⎢⎢⎢⎣ KIIi KIBi

KT
IBi KBBi

⎤⎥⎥⎥⎥⎦
⎧⎪⎨⎪⎩ uIi

RBi p

⎫⎪⎬⎪⎭ (13)

in parallel, as in the flowchart of Fig. 1. These three equations represent the processing of
the enforced displacement boundary conditions on the interface Γi, the local finite element
analysis concerning the internal DOFs of Ωi, and the calculation of the nodal reaction force
on the interface Γi. It is one of the hot-spots to solve these equations in the DDM and this
solver is called the subdomain local solver. Finally, q is calculated by superposing qBi as
follows:

q =
N∑

i=1
RT

BiqBi. (14)

The unbalance is calculated by superposing the nodal reaction forces.

2.3. Subdomain Local Solver
In the DDM, an analysis domain is decomposed into subdomains and every subdomain

problem of Eq. (12) has to be solved repeatedly. Subdomain local analyses can be performed
in parallel and each subdomain problem can be solved on one processor core. When the
unbalance of interface converges, the DDM loop stops. It is noticeable that the local coef-
ficient matrices KIIi are constant through the DDM loop. Then, if the direct methods-based
subdomain local solvers are selected, the factorized skyline matrices are stored in the main
memory in general. If iterative methods such as PCG methods are selected, more powerful
but larger-sized preconditioning matrices containing many nonzeros can be stored in the main
memory.
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3. Incomplete Cholesky Factorization with Threshold

3.1. Overview
To accelerate the subdomain local solver of the DDM, it is essential to make both the co-

efficient and the preconditioning matrices fit on the cache memory. In this study, we employ
the CG method with the preconditioner of ICT. In this section, the ICT implementation opti-
mized for the subdomain local solver of the DDM is explained. In the context of the DDM,
we generate an ICT preconditioning matrix that has a higher potential than the original ICT to
accelerate the CG convergence.

3.2. ICT Algorithm Modification
For high performance computing on recent hierarchical memory systems, it is important

to utilize the cache memory effectively. In detail, it is possible to store both the coefficient
matrix and the preconditioning matrix in the last-level cache memory. However, in general,
many preconditioners such as IC (0) do not consider the memory usage of the preconditioning
matrix, thus their memory usage changes depending on the number of DOFs or the number of
nonzeros of the coefficient matrix. In the ICT, small nonzero entries in the matrix are detected
by a tolerance parameter and then dropped to zero. In the original implementation of the ICT,
the nonzero dropping is conducted on each row in the process of factorizing the matrix. In
addition, the original ICT has two tolerance parameters τ and p. In the case of the subdo-
main local solver of the DDM, the coefficient matrices KIIi of simultaneous linear Eq. (12)
are constant through the DDM iterations. Thus, the cost of generating the preconditioning
matrices can be ignored. To make the number of PCG iterations smaller, we employ the strat-
egy of dropping nonzeros after complete Cholesky factorization. The detailed algorithm of
generating the ICT preconditioning matrix is shown in the following.

for i = 0 to n − 1 do
for j = 0 to i − 1 do

li j ←
(
ai j − ∑ j−1

k=0 likl jk

) /
l j j

end for
lii ←

√
aii − ∑i−1

j=0 l2i j

end for
for i = 0 to n − 1 do

for j = 0 to i − 1 do
if |li j| < τ then

li j ← 0
end if

end for
end for

In this algorithm, ai j is an entry of the coefficient matrix, li j is an entry of the lower triangular
preconditioning matrix, and τ is a tolerance of dropping small nonzero entries of the precon-
ditioning matrix. It should be noted that this implementation has only one tolerance parameter
τ.

3.3. Nodal Block ICT
In the previous subsection, nonzero dropping was conducted by point entries, thus the

ICT preconditioner in the previous subsection is called a point ICT. In three-dimensional
solid mechanics problems, the number of DOFs per node is three and the generated coefficient
matrix has a 3 × 3 block structure. A faster well-known register or cache blocking technique
stores the nonzero entries of the matrix in memory with the ordering by nodal blocks. In the
case of the nodal block ICT, it is also effective to use the register blocking approach. Then, a
key factor is how to drop nonzero 3 × 3 blocks. In this study, the following five strategies are
investigated in the next section.
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• Maximum entry (maximum norm): max |ai j|
• Minimum entry: min |ai j|
• 1-norm:

∑
i, j |ai j|

• Square of 2-norm (Frobenius norm):
∑

i, j a2
i j

• Determinant: a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32

4. Numerical Experiments

4.1. Overview
Using a personal computer (PC) with the specification shown in Table 1 and a PC cluster

with the specification shown in Table 2, we evaluate the performances of the implemented sub-
domain local solver. First, benchmarks of the subdomain local solver are measured. Second,
benchmarks of the DDM solver that contains the subdomain local solver are measured.

4.2. Number of PCG Iterations of the Subdomain Local Solver
Figure 2 represents a subdomain model for measuring the numbers of iterations of the

CG solver with the ICT preconditioner. The shape of the model is set to be similar to a cubic
shape and the mesh is generated with natural ordering by quadratic tetrahedral elements.

In general, the boundary condition of the subdomain is constrained with displacement
on four of the six faces. This is because the real structures are generally thin-walled and thus
the boundary condition on two faces often becomes free. However, since the deformation
mode is generally bending, the boundary condition of the subdomain can be modeled by a
constraint on one face and shear loading on the opposite face. The material constants are
Young’s modulus of 210 GPa and Poisson’s ratio of 0.3.

Figure 3 represents the measured number of iterations of the point ICT preconditioned
CG-based subdomain local solver. The diagonal scaling technique is performed before the
PCG loop is called. The tolerance of the relative residual 2-norm in the PCG method is set
as 10−10. In the figure, the horizontal axis is the numbers of nonzeros of the preconditioning
matrix. The vertical axis is the measured number of PCG iterations. The figure obviously
shows that the number of iterations becomes small when the ICT preconditioning matrix con-
tains many nonzero entries. Figure 4 shows the comparison among the ICT, the IC (0) and the
diagonal scaling. The DOFs of the model are 4,719. It is noticeable that the IC (0) and the
diagonal scaling are represented by points whereas the ICT is represented by a curve. This is
because the IC (0) and the diagonal scaling do not consider the memory usage of the precon-
ditioning matrix. As shown in the figure, although the diagonal scaling is a little better than
the ICT in the case of a very small number of nonzeros, the ICT is generally more efficient
than either the IC (0) or the diagonal scaling. Especially, the number of iterations of the ICT
is almost half number of the IC (0) when their numbers of nonzeros are the same.

Figure 5 shows the comparison of the dropping strategies of the nodal block ICT. The
DOFs of the model are 4,719. All the 3 × 3 block dropping strategies require a larger number
of iterations than the point ICT. However, the speedup of the 3× 3 register blocking technique
would be superior in some hardware specifications of the memory hierarchy system. Thus,
we adopt the nodal block ICT instead of the point ICT. The figure shows that the numbers of
iterations of the two norm cases and the one determinant case are approximately the same.
That of the maximum norm case is the smallest in the range of the relatively small number
of nonzeros. When the number of nonzeros becomes large, the numbers of iterations of the
1-norm, the 2-norm and the determinant becomes almost as small as that of the maximum
norm.

4.3. Computation Time of the Subdomain Local Solver
Using the 1-node PC whose specification is shown in Table 1, numerical experiments of

the subdomain local solver are conducted. In the previous subsection, the number of PCG
iterations was discussed for comparing the PCG solvers, but in this subsection, the compu-
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Fig. 2 Subdomain model for measuring the numbers of PCG iterations.

Fig. 3 Number of iterations of the point
ICT preconditioned CG solver for
various DOFs.

Fig. 4 Number of iterations of the point
ICT, the IC (0) and the diagonal-
scaling preconditioned CG solvers.

tation times are presented to compare the PCG and the direct LDL solvers. The measured
computation times are shown in Table 3. The measured parameters of the coefficient matrix
and the memory usage of the solvers are shown in Table 4. LDL is the skyline-based direct
LDL solver, and CG is the preconditioned CG solver. These benchmarks are conducted on
the DDM solver in which the subdomain local solvers are called. It is noticeable that the mea-
sured times include the times of generating preconditioning matrices. The tolerance of the
PCG is set as 10−10. The tolerance of the ICT is set as 0.01, so that the number of nonzeros
of the ICT is almost the same as that of the IC (0). The dropping strategy of the 3 × 3 block
ICT is the maximum entry. The compiler is Intel C/C++ Compiler (icc) version 12.0 and
its compiler option is -O3 -xAVX so that one can use compiler optimization with the single
instruction, multiple data (SIMD) interaction set of the advanced vector extensions (AVX).

For 2,187 DOFs, the LDL solver is 1.39 times faster than the CG solver with the ICT.
For 3,993 DOFs, 1.39 becomes 1.26. This is because the CG solver utilizes the cache memory
effectively whereas the LDL solver (forward and backward substitutions) always meets the
memory wall. However, when the number of DOFs is 6,591, the coefficient matrix and the
preconditioning matrix of the IC (0) and the ICT suffer from overflow of the last-level cache
memory (2 MB/core). As discussed above, the computation time of the ICT preconditioned
CG solver is comparable to that of the LDL solver in that the coefficient matrix and the pre-
conditioning matrix of the ICT fit on the cache memory. In addition, Table 4 shows that the
CG solver with the ICT is much more efficient in memory usage than is the LDL solver. One
can analyze larger-scale problems with limited main memory using the ICT-based subdomain
local solver than using the LDL-based local solver.

We discuss an estimation model for the subdomain local solvers. First, the matrix param-
eters of the DOFs N, the average half bandwidth w, the number of nonzeros of the coefficient
matrix in upper triangular nnzK and that of the preconditioning matrix nnzL̃ in the ICCG
solvers are given. It can be noted that these parameters are not of Ki but of KIIi in Eq. (2).
When the mesh is structured and its elements are quadratic tetrahedrals, as shown in Fig. 2,
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Fig. 5 Number of iterations of the point and the nodal block ICT preconditioned CG
solvers.

the matrix parameters are represented by the following mesh parameters:

N = 3nxnynz, (15)

w � 6nxny, (16)

nnzK = cN, (17)

nnzL̃ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N (CG with diag)
nnzK (CG with IC (0))
variable (CG with ICT)

(18)

where nx, ny and nz are the numbers of nodes on each edge and c is a constant factor of 30–
40. By using N, w, nnzK and nnzL̃, the computation time of the subdomain local solver is
estimated in the following. When the coefficient and preconditioning matrices fit on the cache
memory, a flops-based estimation model is optimal whereas a memory-based model is optimal
in memory-limited solvers such as the LDL solver. The computation time of the CG solvers
with the IC preconditioners is estimated as

tICCG =

(
OSpMV

FSpMV
+

OFBS

FFBS

)
× S =

(
4nnzK

FSpMV
+

4nnzL̃

FFBS

)
× S (19)

and that of the LDL solver is estimated as

tLDL =
M
W
=

2Nw × 8
W

(20)

where OSpMV is the operation count of the sparse matrix-vector multiplication (SpMV), OFBS

is that of the forward and backward substitutions (FBS). FSpMV is the measured performance
(flops) of the SpMV. and FFBS is the measured performance of the FBS. S is the measured
number of ICCG iterations. M is the amount of memory reading and W is the measured mem-
ory bandwidth. Since S is known to be almost O(N1/3), one can also use the estimated S
in the case that the tolerance of the ICT is constant. The measured performances of compo-
nents FSpMV, FFBS and memory bandwidth W are shown in Table 5. These benchmarks are
performed in OpenMP parallel to consider the conflicting effect of the shared L3 (last-level)
cache memory. Using Table 4, Table 5, Eq. (19) and Eq. (20), we can compare the measured
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Table 1 Specification of the 1-node PC.

CPU Intel Core i7-2600 (Sandy Bridge)
108.8 Gflops (27.2 Gflops/core)
3.4 GHz
4 cores

Cache L2: 256 KB/core
L3: 8 MB (2 MB/core)

DRAM DDR3-1333
16 GB (4 GB × 4)
21 GB/s (5.25 GB/s/core)

OS Debian GNU/Linux 6.0 (Squeeze)
Compiler Intel C/C++ Compiler ver. 12

Table 2 Specification of the PC cluster.

Cluster 8 nodes
Network Gigabit Ethernet

CPU Intel Core i7-920 (Nehalem)
42.56 Gflops (10.64 Gflops/core)
2.66 GHz
4 cores

Cache L2: 256 KB/core
L3: 8 MB (2 MB/core)

DRAM DDR3-1600
12 GB/node (2 GB × 6)
96 GB (total)
25.6 GB/s (6.4 GB/s/core)

OS OpenSUSE 11.1
Compiler Intel C/C++ Compiler ver. 12

Table 3 Measured computation time [ms]
of the subdomain local solver.
The numbers in parenthesis are
the average numbers of the PCG
iterations and those in brackets are
the tolerances of the ICT. A hyphen
means the cache memory was
insufficient.

DOFs 2,187 3,993 6,591
Internal DOFs 1,323 2,673 4,719

LDL 1.09 3.92 10.3
CG with diag 4.05 11.3 31.0

(115.) (147.) (183.)
CG with IC (0) 2.39 7.30 -

(26.7) (34.2)
CG with ICT 1.51 4.95 -

(10.8) (12.4)
[0.01] [0.01]

Table 4 Measured parameters of the coefficient
matrix and the memory usage [MB]
of the subdomain local solver. The
numbers in brackets are the tolerances
of the ICT. A hyphen means the cache
memory was insufficient.

DOFs 2,187 3,993 6,591
Internal DOFs 1,323 2,673 4,719

Ave. Half Bandwidth 250 407 604
# of Nonzeros 44,600 98,000 183,000

LDL 3.05 9.44 24.1
CG with diag 0.703 1.33 2.25

CG with IC (0) 1.36 2.57 -
CG with ICT 1.31 2.66 -

[0.01] [0.01]

and the estimated performances of the subdomain local solvers, as shown in Fig. 6. The esti-
mated computation time of the LDL and the CG with the diag well represents the measured
computation time. However, for 6,591 DOFs, the estimation of the CG with the diag is a little
smaller than the measured estimation. This is because, as shown in Table 4, the memory usage
of the CG with the diag is a little larger than the system cache memory (2 MB/core). In the CG
with the IC (0) and the ICT, the estimated time remains a little smaller than the measured time.
This is because the computation time of generating the preconditioning matrix is not small.
However, this estimation model is accurate enough to represent an approximate computation
time.

4.4. Computation Time of the DDM Solver
4.4.1. OpenMP Benchmark on a Single Node On the PC of Table 1, the DDM solver is
executed to evaluate the performance of the DDM with various subdomain local solvers. The
number of OpenMP threads is 4. The parameters of the subdomain local solver are the same
as those in the previous subsection. As parameters of the DDM solver, the preconditioner of
the DDM is the BDD-diag(16) and the tolerance of the relative residual 2-norm in the DDM is
10−6. The shape of the analysis model is a large bending plate shown in Fig. 7 and decomposed
into cubic-shaped subdomains in which four surfaces of the six surfaces are constrained.

The computing result is shown in Table 6. The DOFs of each subdomain are 2,187. For
the total DOFs of 7.1 × 106, the LDL solver is the fastest among the four subdomain local
solvers, and the CG solver with the ICT is the second fastest. The speedup from the LDL
to the CG with the ICT is only 0.732. When the total number of DOFs becomes 16 × 106,
the LDL requires more memory than the system main memory (16 GB). When it becomes
28×106, the CG with the IC (0) also suffers from overflow of the main memory. However, the
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Table 5 Measured performances and memory bandwidth per processor core on the PC
of Table 1.

FSpMV [Gflops/core] FFBS [Gflops/core] W [GB/s/core]
5.26 (19.3 %) 4.06 (14.9 %) 4.50 (85.7 %)

Fig. 6 Measured (left bar of each pair) and estimated (right bar) computation time of
the subdomain local solver.

Fig. 7 Decomposed analysis model for measuring the computation time of the DDM
solver.

Table 6 Measured computation time [s] and memory usage [GB] of the DDM solver
with various subdomain local solvers on the 1-node PC. The numbers in
brackets are the tolerances of the ICT. N/A means the main memory (16 GB)
was insufficient.

Total DOFs 7.1 × 106 16 × 106 28 × 106 44 × 106

Subdomain DOFs 2,187 2,187 2,187 2,187
# of Subdomains 4,096 9,216 16,384 25,600

Measured Computation Time [s]
LDL 180 N/A N/A N/A

CG with diag 573 1,300 2,270 3,530
CG with IC (0) 383 858 N/A N/A

CG with ICT 246 530 969 2,360
[0.01] [0.01] [0.02] [0.2]

Measured Memory Usage [GB]
LDL 11.0 N/A N/A N/A

CG with diag 1.8 4.1 7.4 11.0
CG with IC (0) 5.6 12.0 N/A N/A

CG with ICT 4.1 9.2 14.0 14.0

CG with the diag and the CG with the ICT can be used for such large DOFs. Since the number
of nonzeros of the preconditioning matrix can be freely controlled by a tolerance parameter,
the CG with the ICT remains faster than the CG with the diag. For the DOFs of 44 × 106,
the CG with the ICT remains faster than the CG with the diag even if the tolerance parameter
becomes larger. As shown above, using the ICT preconditioner and waiting a little longer
than using the LDL solver with an infinite amount of memory, one can analyze large-scale
problems on a computer having a limited amount of main memory.
4.4.2. Flat MPI Benchmark on the PC Cluster Table 7 shows the computation time
of the DDM solver conducted on the PC cluster of 8 nodes. The compiler option is -fast,
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Table 7 Measured computation time [s] of the DDM solver with various subdomain
local solvers on the PC cluster. The numbers in brackets are the tolerances of
the ICT. N/A means the main memory (96 GB) was insufficient.

Total DOFs 44 × 106 64 × 106

Subdomain DOFs 2,187 2,187
# of Subdomains 25,600 36,864

Measured Computation Time [s]
LDL 199 N/A

CG with diag 772 1,130
CG with IC (0) 529 755

CG with ICT 341 489
[0.01] [0.01]

Measured Memory Usage [GB]
LDL 83.2 N/A

CG with diag 20.8 29.6
CG with IC (0) 44.0 64.8

CG with ICT 34.4 48.8

so that one can use compiler optimization using the SIMD interaction set of the streaming
SIMD extensions (SSE). Then, as shown in the table, the computation time is similar to the
benchmark of the 1-node PC, the LDL is also faster than the CG with the ICT for 44 × 106

DOFs. In larger-scale problems than 64× 106 DOFs, the LDL solver is undesirable due to the
overflow of memory, and the CG with the ICT becomes the fastest of the three PCG solvers.
We analyzed a problem of 64 million DOFs in 8 minutes using the ICT-based subdomain local
solver.

5. Conclusions and Future Work

In this paper, we proposed an optimized implementation of the CG method with an ICT
factorization preconditioner for solving subdomain local problems in the DDM. In the modi-
fied ICT, threshold is conducted after the complete Cholesky factorization, while the threshold
is originally conducted on each matrix row during the incomplete factorization. The modified
ICT preconditioner has a higher potential to accelerate CG convergence than the original ICT
and also than other IC preconditioners. In our implementation for the subdomain local solver
of the DDM, the number of nonzeros is controlled to make both coefficient and precondi-
tioning matrices fit on the cache memory. By using the cache memory effectively, the local
solver of the DDM can be accelerated on multi-core/many core environments. In another point
of view, using the main memory efficiently, one can analyze very large-scale problems on a
computer with limited main memory.

Through the numerical experiments, the number of PCG iterations of the ICT-based sub-
domain local solver was observed to be the smallest among those of the ICT, the IC (0) and
the diagonal-scaling preconditioned CG solvers. By comparing computation times, the ICT-
based CG solver was comparable to the skyline-based direct LDL solver. However, using the
memory-friendly ICT, we analyzed large-scale problems which cannot be solved by the LDL-
based solver, because the ICT-based solver is more efficient in main memory usage than the
direct LDL solver.

The future work is to solve problems of over 1 billion DOFs. In the problems, the number
of DOFs of each subdomain becomes over 10,000. Such a large number of DOFs requires a
parallel subdomain local solver, that can perform with several threads on a shared memory
environment.
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