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Abstract
In this paper, in-plane equivalent elastic modulus Ey of a hexagonal honeycomb sand-
wich, which includes the effect of face sheet interference, is studied by using numerical
results of FEM. It is shown by comparing with deformation of practical honeycomb
sandwich that there are two error factors to apply the rule of mixture to honeycomb
sandwich. One of error factors is that the deformation of honeycomb core does not
coincide with the face sheet since an inclined cell wall deforms much larger than a ver-
tical cell wall. Another one is that the non-uniformity deformation of core along the
height direction is induced by the interference effect with face sheet. Then, a method
to calculate elastic modulus based on the compatibility condition of core and face sheet
is proposed, and its validity is verified by using numerical results of FEM.

Key words : Honeycomb Sandwich, Equivalent Elastic Modulus, Height Effect, Com-
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1. Introduction

Nowadays, a honeycomb sandwich attracts attention as a composite material which can
meet a high performance need in mechanical design. When evaluating the strength of honey-
comb sandwich, which is used in a practical analysis as a virtually flat plate, the equivalent
elastic modulus of periodic cell structures are necessary for design. There have been many
theoretical studies about the equivalent elastic modulus of cores which constitutes the honey-
comb sandwich, and many theoretical formulas have been presented(1)∼(4). However, there are
few studies about the equivalent elastic modulus, in which the influence of height of honey-
comb sandwich is taken into account. Becker(5),(6), Hohe and Becker(7), Chen and Davalos(8)

presented methods for analyzing the in-plane equivalent elastic modulus of core only. In their
studies, the face sheet is virtually treated as a condition of displacement-constraint, and the
deformation of core is fit to the face sheet, so that the influence of face sheet thickness and the
interaction between the face sheet and core are neglected. In this paper, we study a theoretical

(a) (b)

Fig. 1 Geometry of honeycomb sandwich: (a) regular hexagonal honeycomb core; (b)
analyzed model of honeycomb sandwich
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analysis of the in-plane equivalent elastic modulus of a honeycomb sandwich considering the
interference effect between the core and face sheet, as shown in Fig.1(b). Model of Fig.1(b)
consists of face sheets above and below and a core part, which consists of periodically arrayed
regular hexagonal cells shown in Fig.1(a). First, we calculate the equivalent elastic modulus
of the honeycomb sandwich based on the law of mixture(9) about a composite material, and
show an accuracy problem of the law of mixture for the honeycomb sandwich by comparing
its results with numerical results of FEM. Next, we present a new method of theoretical anal-
ysis of the in-plane equivalent elastic modulus considering the compatibility condition of the
core and face sheet, and show the validity by using numerical results of FEM.

Analyzed models in Fig.1(a) and Fig.1(b) are characterized by the core height h, the
cell wall length l, the cell wall thickness t1 (inclined cell wall), t2 (vertical cell wall) and the
face sheet thickness tp. And, the core and face sheet are assumed as isotropic homogeneous
material with Young’s modulus and Poisson ratio noted by Es, νs and Ep, νp respectively.

2. Analysis method of finite element method

In this study, we use numerical results of FEM by commercial software MSC.Marc(10)

about the equivalent elastic modulus of the honeycomb sandwich to show the validity of the
presented method. In the analysis of FEM, the analyzed model of honeycomb sandwich in
Fig.1(b) has length of x-direction lx = (2l cos θ)×4, and length of y-direction ly = l(1+sin θ)×
4. Every cell walls and face sheets are discretized using 100 and 25000, respectively, bilinear
thick shell elements. In boundary conditions, every nodes of y = 0 (refer to coordinates in
Fig.1(b)) are fixed at y-direction, every nodes of y = ly are given an imposed displacement
uy = ΔUy in y-direction, every nodes of y = 0 and x = 3lcosθ are fixed in x-direction,
every nodes of z = h/2 are fixed in z-direction. In the numerical analysis, as far as there
isn’t a special specification, material properties of the face sheet and cell wall are taken as
Es = Ep = E, νs = νp = 0.3, and geometric properties are taken as t1 = t2 = t, θ = 30◦.

As an example, Fig.2 shows numerical results of distribution of reaction forces Fi on
the node i of face sheet for sandwich with l = 10 mm, t/l = 0.05, h/l = 1.0, tp/t = 0.5,
E = 200 GPa in ΔUy = ly × 0.01. It is seen from Fig.2 that the reaction forces Fi at x = 0
and x = lx are higher than those in central region by about 10% because of the influence of
boundary in both sides. However, the influence is local. For example, the ratio of FAB, FBC

and FCD, which are summations of the reaction force Fi from A to B, from B to C and from
C to D respectively, is FAB : FBC : FCD = 0.99 : 1 : 0.99. So, it seems that the reaction
force of each node from B to C is hardly influenced by the boundary. Also numerical results
of FEM show that the summation of reaction force FBC is almost constant in changing the
number of units in y-direction. For these reasons, in our study, summation of the reaction
force Fi of core and face sheet from B to C at the center, denoted by RBC , is used to calculate
the y-direction Young’s modulus of honeycomb sandwich as follows.

Ey,FEM =
RBC[

2l cos θ
(
2tp + h

)]
× ΔUy

ly

(1)

Also, the equivalent elastic modulus is determined using stress due to a unit strain in a unit
volume, and, as will be shown later, the results are almost the same. Here after, the equivalent
elastic modulus of honeycomb sandwich obtained from Eq.(1) is written as Ey,FEM .

Moreover, the validity of Ey,FEM by Eq.(1) can be shown by comparing it with the known
solution for core only without face sheet. For example, Eq.(1) gives a value of Ey,FEM for the
model used in Fig.2 with the face sheet thickness tp = 10−10 × t corresponding to the known
theoretical solution(3),(4) well by not more than 0.5%.
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Fig. 2 Distribution of reaction forces on the y = ly nodes of face sheet

3. Investigation of equivalent elastic modulus Ey

3.1. Equivalent elastic modulus given by the law of mixture
By considering the honeycomb sandwich as a composite material made of the face sheet

and core, the equivalent elastic modulus Ey is obtained as following equation by the law of
mixture(9)

Ey,com =
2Eptp + Ecoreh

2tp + h
, (2)

where Ecore is the y-direction equivalent elastic modulus of core only, and it is obtained as
follows(3):

Ecore =
(1 + sin θ)

cos3 θ

( t1
l

)3
Es

1[
1 +

{
2(1 + νs) + tan2 θ +

2t1
t2 cos2 θ

} ( t1
l

)2
] . (3)

Here after, the equivalent elastic modulus Ey given by Eq.(2) is written as Ey,com.
Figure 3 and Fig.4 show the ratio of the equivalent elastic modulus Ey,com to numerical

results Ey,FEM obtained from FEM by dash line for the honeycomb sandwich with t/l = 0.05.
In Fig.3, the face sheet thickness tp is changed and h/l is set as h/l = 0.25, 1 and 2. And
in Fig.4, the core height h is changed for three kinds of tp/t = 0.5, 1 and 2. It is seen from
these figures that in the considered dimension range, the thinner the face sheet thickness is
and the higher the core height is, the bigger the error of equivalent elastic modulus of the law
of mixture, compared to the numerical result of FEM, grows, and the utmost error may be
about 20%. Here the range of face sheet thickness is taken to be tp/t = 0.5 ∼ 2 by considering
that the honeycomb sandwich is practically used as tp ≥ t. Actually, however, we investigated
more wide range of tp/t as tp/t = 0 ∼ 2 including the thickness of face sheet becomes 0. The
error of Ey,com compared to Ey,FEM becomes maximum (about 40%) at about tp/t = 0.01, and
it becomes smaller as the face sheet thickness becomes so that the value of tp/t leaves from
0.01. In such honeycomb sandwiches, the ratio of core rigidity Ecoreh to the face sheet rigidity
2Eptp is about 3 at tp/t = 0.01, but the ratio is over 160 at tp/t = 0.5 ∼ 2. Based on this fact,
it seems that the analytical error of the law of mixture becomes the biggest when the order of
core rigidity Ecoreh is almost equal to that of face sheet 2Eptp. So, the smaller the thickness
of face sheet tp is, the bigger the error becomes in the range of Fig.3.

599



Journal of Computational
Science and Technology

Vol.2, No.4, 2008

Fig. 3 Relation of Ey,com/Ey,FEM versus tp/t for honeycomb with h/l = 1 , t/l = 0.05

Fig. 4 Relation of Ey,com/Ey,FEM versus h/l for honeycomb with tp/t = 0.5 , t/l = 0.05

The reason of analytic error due to the law of mixture is that there is a difference of
rigidity about y-direction deformation between the vertical cell wall and inclined cell wall
which constitute the honeycomb. Namely as shown in Fig.5 which shows 1 unit (one vertical
cell wall, two inclined cell walls and two face sheets above and below these cell walls), the
core is made of the vertical cell wall and inclined cell wall, and the equivalent elastic modulus
of vertical cell wall (noted by Ey,v) and inclined cell wall (noted by Ey,i) are expressed as
follows(3).

Ey,v = Es
t2

2l cos θ
(4)

Ey,i = Es
sin θ

cos3 θ

( t1
l

)3 1[
1 +

{
2 (1 + νs) + tan2 θ

} ( t1
l

)2
] (5)

The equivalent elastic modulus of inclined cell wall Ey,i is lower than that of vertical cell wall
Ey,v, because the bending deformation occurs in the inclined cell wall only (for example the

600



Journal of Computational
Science and Technology

Vol.2, No.4, 2008

ratio between both of the inclined and vertical cell walls is about Ey,i : Ey,v = 1 : 77 for
a case of tp/t = 1.0, h/l = 1.0 in Fig.4). As a result, in the case of core only, the ratio of
the deformation of inclined cell wall to the total deformation is very high, but in the case
of honeycomb sandwich, its deformation is restrained by the interference with face sheet.
Figure6 shows the deformed configuration around connection between the inclined cell wall
and vertical cell wall when the honeycomb sandwich with tp/t = 0.5, h/l = 1.0 is deformed
homogeneously in y-direction. It is seen from Fig.6 that the deformation of core changes along
with the distance from the face sheet, because of the interference with the face sheet. For this
reason, the equivalent elastic modulus of core, obtained as two-dimensional deformation like
Eq.(3), can’t apply rigorously to problems of such core where three-dimensional deformation
occurs as shown in Fig.6.

Fig. 5 Representative unit of honeycomb sandwich

Fig. 6 Deformed cross-section of honeycomb with tp/t = 0.5, h/l = 1and t/l = 0.05
subjected to in-plane loading

3.2. Equation based on the compatibility condition
From the investigation of the previous section, it is understood that the law of mixture

can’t apply to evaluating the equivalent elastic modulus of the honeycomb sandwich consisting
of cores and face sheets, due to the low accuracy of analysis, because of the large difference
between rigidities of inclined cell wall and vertical cell wall of core. So, we present a new
method of theoretical analysis for evaluating equivalent elastic modulus of composite shown
in Fig.7 which is made of 3 materials of different elastic property (core is material 1, 2 and
face sheets are material 3, and each material’s Young’s modulus is denoted by E1, E2 and E3

respectively). h, b, h3, l1 and l2 in Fig.7 are initial dimensions of model before deformation.
To consider the interference effect between the core and face sheet, we divide the defor-

mation of sandwich model of Fig.7, caused by a displacement δ homogeneously applied at
one edge, into two phases shown in Fig.8(a) and (b) respectively. At phase 1, by assuming
that there is no combination between the core and face sheet, both core and face sheet can
deform freely respectively. In this phase, the point M, which is intersection of the face sheet
and the boundary of material 1 and 2, will go to a point Mc at the core and go to a point Mp

at the face sheet after deforming. δc and δp in Fig.8(a) are distance of each point, and they are
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different from each other as followings.

δc = δ
l2/E2

l2/E2 + l1/E1
, δp = δ

l2
l2 + l1

(6)

Fig. 7 Sandwich model consisted by 3 kinds of homogeneous materials

(a) (b)

Fig. 8 Deformation process of sandwich model: (a) Deformation of each materials
under non-constrained condition; (b) Deformation under interference effect

Figure 8(a) shows that δc is smaller than δp if E1 < E2. That is to say, because material
1 deforms larger than material 2 for small Young’s modulus, inconsistency of deformation
occurs between the face sheet which deform homogeneously and the core which consist of
material 1 and 2, then the point M which is the unique point of junction divides into Mc and
Mp after deformation. However the points Mc and Mp have to be the same point by restraint
of junction, and actual deformation of the core in y-direction becomes inhomogeneous along
the height as shown in Fig.6. So, in phase 2 shown in Fig.8(b), in order to meet compatibility
condition between the core and face sheet, two forces F, simulating the constraint between the
face sheet and core, are respectively applied to the core’s point Mc and the face sheet’s point
Mp, obtained in phase1 under an assumption of both face sheet and core freely deformating,
so that the points Mp and Mc move together to an identical point. Here the forces F are
distributed homogeneously along x-direction of width, and F is defined as a density per unit
width. The force F is determined to meet the following equation, where uyp and uyc are
deformation values of the point Mp of face sheet and the point Mc of core respectively due to
the force F.

δc + uyc = δp − uyp (7)

The face sheet is so thin that the deformation uyp of point Mp due to the force F can
be obtained from a deformation problem of one-dimension’s bar fixed at both ends shown in
Fig.9. As a result, uyp is

uyp =
Fl1l2

E3h3 (l1 + l2)
. (8)
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Fig. 9 Force acting on material 3

Fig. 10 Forces acting on materials 1 and 2

In order to obtain the deformation uyc of point Mc due to the force F, consider a problem
of the force F acting at the point Mc in the composite material of material 1 and 2 under
condition that both ends are fixed in Fig.10. As an approximation analysis, suppose that the
deformation field in material 1 and 2 due to the force F can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
uy1 =

[
1 − y − l2

l1

]
A2l2 cosh

(
2λ
h

z

)
for region 1

uy2 = A2y cosh

(
2λ
h

z

)
for region 2

, (9)

where A2 and λ are unknown. These unknowns are obtained by minimizing the total potential
energy of system Π, namely from the following equations:

∂Π

∂A2
= 0 ,

∂Π

∂λ
= 0. (10)

The total potential energy of system Π is given by

Π = U1 + U2 − 2FbA2l2 cosh (λ) , (11)

where U1 and U2 are strain energy of material 1 and 2 respectively, and they are calculated
from the supposed deformation field Eq.(9) as follows

U1 =
E1bl22A2

2

2l21

(
h

2λ

)
[cosh (λ) sinh (λ) + λ] l1

+
G1bl22A2

2

2l21

(
2λ
h

)
[cosh (λ) sinh (λ) − λ] l31

3

(12)

U2 =
E2bA2

2

2

(
h

2λ

)
[cosh (λ) sinh (λ) + λ] l2

+
G2bA2

2

2

(
2λ
h

)
[cosh (λ) sinh (λ) − λ] l32

3
,

(13)

where G1 and G2 are shear modulus of material 1 and 2 respectively. Substituting Eq.(12)
and Eq.(13) into Eq.(11), an equation for deciding the unknown λ is obtained from Eq.(10) as
follows.

f1 (λ) sinh (λ) − f2 (λ) cosh (λ) = 0 (14)

f1(λ) =

⎧⎪⎪⎨⎪⎪⎩
E1l1

2

(
l2
l1

)2

+
E2l2

2

⎫⎪⎪⎬⎪⎪⎭
(

h
2λ

)
g1(λ)

+

⎧⎪⎪⎨⎪⎪⎩
G1l31

6

(
l2
l1

)2

+
G2l32

6

⎫⎪⎪⎬⎪⎪⎭
[(

2λ
h

)
g2(λ)

] (15)
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f2 (λ) =

⎧⎪⎪⎨⎪⎪⎩
E1l1

4

(
l2
l1

)2

+
E2l2

4

⎫⎪⎪⎬⎪⎪⎭
[
− h

2λ2
g1(λ) +

(
h

2λ

) {
2 cosh2 (λ)

}]

+

⎧⎪⎪⎨⎪⎪⎩
G1l31
12

(
l2
l1

)2

+
G2l32
12

⎫⎪⎪⎬⎪⎪⎭
[
2
h
g2(λ) +

2λ
h

{
2 sinh2 (λ)

}]
.

(16)

And ⎧⎪⎨⎪⎩ g1(λ) = cosh(λ) sinh(λ) + λ
g2(λ) = cosh(λ) sinh(λ) − λ . (17)

By deciding λ from Eq.(14), A2 is given by

A2 =
Fl2 cosh (λ)

f1 (λ)
. (18)

So, from Eq.(9) the deformation uyc of point Mc due to force F is

uyc = A2l2 cosh (λ) = F
l22 cosh2 (λ)

f1 (λ)
. (19)

And the force F is decided by substituting Eq.(19) and Eq.(8) into Eq.(7).

F =
δp − δc

l22 cosh2 (λ)

f1 (λ)
+

l1l2
E3h3 (l1 + l2)

(20)

From the description of above, unknowns F, A2 and λ can be determined. And, the
final deformation field in each material is obtained by adding the deformation field before the
action of the force F to the deformation field due to the force F. They are shown as follows.
The deformation field in material 1 is

uy1 = δc +
δ − δc

l1
(y − l2) + A2l2

[
1 − y − l2

l1

]
cosh

(
2λ
h

z

)
, (21)

the deformation field in material 2 is

uy2 =
δc
l2
y + A2y cosh

(
2λ
h

z

)
(22)

and the deformation field in material 3 is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
uy3 =

δp + uyp
l2

y for 0 ≤ y ≤ l2

uy3 = (δp + uyp) +
δ − (δp + uyp)

l1
(y − l2) for l2 ≤ y ≤ l1 + l2

. (23)

Also the corresponding strain energy of total system Ū can be obtained from these defor-
mation fields. So, the equivalent elastic modulus Ey of the sandwich structure shown in Fig.7
is given by

Ey =
2Ū

V

(
δ

l1 + l2

)2
, (24)

where V is the unit volume of sandwich material and is calculated by using following equation:

V = b(l1 + l2)(2h3 + h). (25)

Here after, the equivalent elastic modulus Ey given by Eq.(24) is written as Ey,dis.
In order to confirm the validity of this theoretical analysis at first, the equivalent elastic

modulus for the sandwich model shown in Fig.7, in which h3/h = 0.05, l1/l2 = 0.5 and E3 is
fixed, E1, E2 are varied, were analyzed by FEM, Eq.(2) and Eq.(24), whose results are denoted
by Ey,FEM, Ey,com and Ey,dis respectively. Table1 shows comparisons for various ratio of E1 to
E3 and E3 to E2. In addition, numeric values in [ ] are the relative error of Ey,com and Ey,dis

to Ey,FEM. It is seen from the table that analysis accuracy changes with condition of material,
but the error of the analysis method presented in our study is smaller than that of the law of
mixture in any cases.
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Table 1 Young’s modulus Ey for sandwich model of 3 kinds of homogeneous materials

3.3. Analysis of elastic modulus of haneycomb sandwich based on compatibility condi-
tion
In order to apply the new analysis method presented in the foregoing section to the anal-

ysis of equivalent elastic modulus of the honeycomb sandwich, the properties of material 3
are set as E3 = Ep and h3 = tp relating to the face sheet. In a similar way, material 1 and
2 are corresponding to the inclined cell wall and vertical cell wall respectively as following
equation,

⎧⎪⎨⎪⎩ E1 = Ey,i of Eq.(4)
E2 = Ey,v of Eq.(5)

(26)

and geometric properties are l1 = lsinθ, l2 = l, and b = 2lcosθ. In addition, the antiplane
modulus of rigidity Gyz,i of inclined cell wall and the antiplane modulus of rigidity Gyz,v of
vertical cell wall, which are equal to the modulus of rigidity G1 and G2 of material 1 and 2,
are obtained as follows by the study of Gibson and Ashby(3).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G1 = Gyz,i = Gs

sin θ
cos θ

( t1
l

)

G2 = Gyz,v = Gs
t2

2l cos θ

(27)

In this way, the elastic modulus Ey,dis of the honeycomb sandwich is calculated by replacing
the materials of the composite shown in Fig.7 by the inclined cell wall, vertical cell wall and
face sheet respectively.

Figure 3 and Fig.4 also show the ratio of result Ey,dis of the theoretical analysis presented
in our study to numerical results by FEM Ey,FEM (solid line in fig). In addition, table 2∼4 show
Ey,FEM, Ey,com and Ey,dis, obtained from FEM, Eq.(2) and Eq.(24) respectively, for various
systematically changed geometric properties and material property systematically. Common
geometric properties used in 3 tables are: the cell wall thickness t/l = 0.01, 0.05, 0.10 and the
cell wall height h/l = 0.5, 1.0, 2.0. Table 2 shows the case of regular hexagonal honeycomb
sandwich of tp = t1 = t2 = t. Table 3 shows the case of tp = t1 = t, t1/t2 = 1/2, and table
4 shows the case that Young’s modulus of the face sheet Ep is twice as much as that of core
material(Ep/Es = 2). In these tables relative errors of Eq.(24) and Eq.(2) compared to Ey,FEM

are shown by numeric value in [ ] .
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It is seen from these figures and tables that analysis accuracy of the equivalent elastic
modulus Ey,dis of honeycomb sandwich presented in our study is superior to that of the law of
mixture, and its error is less than 5% except for the case of very thin face sheet(tp/t = 0.5).
The main reason of low accuracy for thin face sheet seems to be caused by antiplane warpage
occurring at the thin face sheet by the interference with core.

Table 2 Young’s modulus Ey/Es for regular hexagonal honeycomb with tp = t1 = t2 =
t

Table 3 Young’s modulus Ey/Es for regular hexagonal honeycomb with tp = t1 =
t, t2/t1 = 2

We investigate this reason in detail with an example case of tp/t = 0.5, h/l = 1 used in
Fig.3 whose error becomes maximum. The error shown in Fig.3 is

Ey,dis − Ey,FEM

∣∣∣
honeycomb

Ey,FEM

∣∣∣
honeycomb

= 6.24%,

where subscript |honeycomb means the FEM analysis result of honeycomb sandwich to distin-
guish it from the FEM result of sandwich structure in Fig.7. The equivalent elastic modulus of
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Table 4 Young’s modulus Ey/Es for regular hexagonal honeycomb with Ep/Es = 2
and tp = t1 = t2 = t

sandwich structure of Fig.7 Ey,FEM

∣∣∣
sandwich o f Fig.(7)

is calculated by FEM by taking the elastic
modulus of each material as E1/E3 = Ey,i/Ep, E2/E3 = Ey,v/Ep, in which Ey,i, Ey,v and Ep

are the equivalent elastic modulus of the inclined cell wall, the vertical cell wall and the face
sheet respectively for the honeycomb. The error of Eq.(24) to Ey,FEM

∣∣∣
sandwich o f Fig.(7)

is

Ey,dis − Ey,FEM

∣∣∣
sandwich o f Fig.(7)

Ey,FEM

∣∣∣
sandwich o f Fig.(7)

= 2.51%.

So, 2.51% is an error coming from the presented method of Eq.(24), and the rest comes from
an antiplane warpage of face sheet and so on. The warpage can be seen from Fig.11. Figure
11 shows antiplane displacement uz of face sheet from B to C for the example model used in
Fig.2. Though the antiplane displacement is very small, existence of it can be confirmed from
the figure. So, an error will yield in the strain energy of face sheet obtained from Eq.(23) which
doesn’t consider the antiplane warpage. In addition, a similar deformation can also be seen in
the cell wall of core. The deformation of inclined cell wall needs a bending rotation around
a direction other than z-direction due to the core deformation, which is given by Eq.(21), and
is inhomogeneous along the height, and then an error occurs because of new strain energy
accompanying with this deformation.

Fig. 11 Antiplane displacement of face sheet
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4. Conclusions

In this paper, an analysis of in-plane equivalent elastic modulus Ey of honeycomb sand-
wich was studied by considering interference effect of the core with the face sheet and the
following conclusions are obtained.

( 1 ) Errors in assessing the equivalent elastic modulus Ey,com of a honeycomb sandwich
by the law of mixture can become more than 20% depending on material and geometry size.
The reason of the error is because the rigidity to deformation of y-direction is different greatly
between the vertical cell wall of core and inclined cell wall of core.

( 2 ) A new analysis method of equivalent elastic modulus Ey is presented, in which the
interference effect between the core and face sheet is taken into account by considering the
honeycomb as a mixture consisting of three parts with different elastic properties: part of in-
clined cell wall, part of vertical cell wall and part of face sheet. The validity of presented
method for determining the equivalent elastic modulus Ey is verified by comparing their re-
sults with numerical results of FEM.

( 3 ) The accuracy of the presented method is better than that of the law of mixture. How-
ever, the analysis accuracy may become lower. Especially, the error becomes more than 5%,
when the face sheet is so thin that tp/t ≤ 0.5. The reason why the accuracy deteriorates is
because of the antiplane warpage of face sheet. So, the warpage of face sheet must be con-
sidered to improve the analysis accuracy of equivalent elastic modulus Ey for a honeycomb
sandwich with thin face sheet.

References

( 1 ) I.G. Masters and K.E. Evans, Models for the elastic deformation of honeycombs, Com-
pos. Struct., 35, (1996), 403-422.

( 2 ) W. E. Warren and A. M. Kraynik, The linear elastic response of two-dimensional spa-
tially periodic cellular materials, Mechanics of Materials, 6(1), (1987), 27-37.

( 3 ) L. J. Gibson and M. F. Ashby, Cellular Solids: Structures & Properties, Pergamon Press,
Oxford, (1988), 89-93.

( 4 ) D.H. Chen, H. Horii and S. Ozaki, Analysis of In-plane Elastic Modulus for a Hexag-
onal Honeycomb Core (1st, Effect of Core Height and Proposal of Analytical Method),
JSME, A48, (2007), 18-25.

( 5 ) W. Becker, The in-plane stiffnesses of a honeycomb core including the thickness effect,
Archives of Applied Mechanics, 68, (1998), 334-341.

( 6 ) W. Becker, Closed-form analysis of the thickness effect of regular honeycomb core ma-
terial, Compos. Struct., 48, (2000), 67-70.

( 7 ) J. Hohe and W. Becker, A refined analysis of the effective elasticity tensor for general
cellular sandwich cores, Int. J. Solids Struct., 38, (2001), 3689-3717.

( 8 ) A. Chen and J. F. Davalos, A solution including skin effect for stiffness and stress field
of sandwich honeycomb core, Int. J. Solids Struct., 42, (2005), 2711-2739.

( 9 ) D.Hull, Composite Materials, Cambridge University Press, England, (1982),Chapter 5.
(10) MSC. Marc, User’s Manual, (2003).

608


