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Abstract 
The existing one-dimensional constitutive model for shape memory alloys is 
extended to take account of the porosity and the strain rate effect by using the 
internal state variables representing the porosity and the martensite volume 
fraction.  The proposed constitutive equation is applied to the simulations for the 
quasi-static and the dynamic behaviors of dense and porous shape memory alloys at 
various temperatures and strain rates.  The calculated results are compared with 
the uniaxial test results for dense and porous NiTi alloys to illustrate the validity of 
the present constitutive modeling.  It is expected that the finite element program 
implementing the proposed constitutive equation will be a powerful tool to predict 
the mechanical behaviors of various porous shape memory alloy devices. 
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1. Introduction 

Intelligent materials are promising in the research and development of new materials of the 21st 
century as they are soft, reliable and resource/energy-saving.  Shape memory alloys (abbreviated 
as SMAs) have been applied to various practical devices as the materials with actuating and sensing 
functions.  The SMAs are applicable to the aeronautical and the medical engineering field because of 
their light weight and biocompatibility(1). The shape memory effect and the superelasticity of the 
SMAs are widely utilized in these applications, while the high energy absorbing capability of the 
SMAs has little been studied. 

The porous shape memory alloys (abbreviated as PSMAs), which have a high specific damping 
capability under dynamic loading, can be formed into porosity-graded materials(2).  The 
computational prediction of the mechanical behaviors of the PSMAs is required for the efficient and 
optimal design and development of the PSMA devices.  The formulations by the 
micromechanics-based approach given by Nemat-Nasser et al.(3) and Entchev et al.(4) are known as the 
constitutive equations for the PSMAs. 

The present study is based on the macroscopic, phenomenological one-dimensional constitutive 
equation for the SMAs given by the authors(5), which is extended to the constitutive model 
considering the porosity and the strain-rate effect.  The calculated results are compared with the 
experimental results given by Zhao et al.(1) and Nemat-Nasser(3),(6) to illustrate the validity of the 
present constitutive equation model. 

The section 2 describes the formulation of the constitutive equation for the PSMAs.  The 
calculated results for the quasi-static and the dynamic behaviors of the dense SMAs and the PSMAs 
are compared with the experimental results in the section 3.  The section 4 contains the concluding 
remarks. 
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2. Constitutive Equation for Porous Shape Memory Alloys 

2.1 Quasi-Static Constitutive Equation 
The mechanical characteristic of the SMAs to be discussed in the present study is schematically 

shown in Fig. 1.  Figure 1(a) shows the superelastic behavior (bold line arrows) and the shape 
memory effect (dotted line arrows), while Fig. 1(b) shows the relation between the critical 
transformation stresses and the temperature.  In Fig. 1, the following notations are used: σ ; the 
stress, ε ; the strain, T ; the temperature, cr

fσ  and cr
sσ ; the critical stress for finishing and 

starting martensite transformation, MC  and AC ;  the gradient of the critical transformation 
stresses with respect to the temperature, fM  and sM ; the critical temperature for finishing and 
starting martensite transformation, sA  and fA ; the critical temperature for starting and finishing 
austenite transformation.  The stress loading and unloading at the temperature higher than fA  as 
indicated in Fig. 1(b) causes the superelastic behavior as shown in Fig. 1(a). 

The one-dimensional stress-strain relation for the SMAs is generally expressed by the following 
equation: 

TE s ⋅+⋅Ω+⋅= θξεσ                                              (1) 

where Sξ , E , Ω  and θ  are the stress-induced martensite volume fraction, Young’s 
modulus, the transformation coefficient and the thermal elastic constant, respectively.  The 
subscript ‘0’ indicates the initial value. 

Using the maximum residual strain Lε , the transformation constant Ω  is expressed 
as follows: 

ELε−=Ω                                                          (2) 

Young’s modulus E  is expressed in terms of the martensite volume fraction ξ  as 
follows: 

)( ama EEEE −+= ξ                                                (3) 

where mE  and aE  are Young’s modulus of the martensite phase and the austenite phase, 
respectively.  Using the temperature induced martensite volume fraction Tξ , the total 
martensite volume fraction is expressed as 

TS ξξξ +=                                                         (4) 

ξ , Sξ  and Tξ  are the functions of the temperature T  and the stress σ . 
Drucker-Prager equivalent stress is expressed as 

 pe
DP βσσ 3+=                                                    (5) 

 

   
(a) Superelastic behavior and shape memory     (b) Critical stresses for transformations vs. 

effect                                       temperature 
Fig. 1  Mechanical properties of shape memory alloys 
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where eσ  and β  are von Mises equivalent stress and a material constant, respectively.  
p  is the hydrostatic pressure given by the following equation: 

 ( )zyxp σσσ ++=
3
1

                                               (6) 

β =0.15 given by Auricchio and Taylor(7) is assumed in the present calculations. The 
present study discusses only the uniaxial stress state.  Assuming that the superelastic 
behavior of the PSMAs is governed only by the uniaxial normal stress zσ , the equivalent 
stress is defined by the following equation: 

zz
DP σβσσ 3+=                                                  (7) 

The porosity f  as follows is used according to Zhao et al.(1) in order to take account 
of the effect of porosity: 

 10 ≤≤ f                                                            (8) 

Considering the porosity, Young’s modulus, the transformation constant and 
Drucker-Prager equivalent stress are expressed as follows: 

 ( )fEE Eη−= 1                                                     (9) 

( )fEE ELL ηεε −−=−=Ω 1                                        (10) 

ff
zz

DP
DP

−
+

=
−

=
1

3
1

σβσσσ                                        (11) 

where Eη  is a material constant.  The upper bar (￣) indicates the variables considering 
the porosity.  In the present calculations, Eη =3 is used referring to Toi and Kiyosue(8).  
Equation (1) can be rewritten as follows: 

TE s ⋅+⋅Ω+⋅= θξεσ                                             (12) 

Introducing Eq. (11) into the evolution equations(5) of ξ , Sξ  and Tξ  for the SMAs, 
the following evolution equations for the transformation processes to the martensite and the 
austenite phase can be obtained: 
(i) Transformation process to the martensite phase 
・In the case when sMT >  and 
  ( ) ( )( ) ( ) ( )( )sM
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・In the case when sMT <  and ( ) ( )βσσβσ +<<+ 11 cr
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where, if sf MTM <<  and 0TT <  
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=Δ cos1
2

1 0ξ
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else 

 0=Δ ξT                                                            (18) 

(ii) Transformation process to the austenite phase 
・In the case when sAT >  and ( )( ) ( )( )sA

DP
fA ATCATC −+<<−+ βσβ 11  
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( )ξξ
ξ
ξξξ −−= 0

0

0
0

S
SS

                                              (20) 

  ( )ξξ
ξ
ξξξ −−= 0

0

0
0

T
TT

                                          (21) 

where Ma  and Aa  are defined by the following equations: 

fs
M MM

a
−

=
π , 

sf
A AA

a
−

=
π                                       (22) 

2.2 Constitutive Equation Considering the Strain Rate Effect 
The present subsection discusses the constitutive equation for the PSMAs considering the strain 

rate effect.  The strain rate is defined as 

tΔ
Δ

=
εε&                                                     (23) 

The following sign function is used: 

⎪
⎩

⎪
⎨

⎧

<−
=
>+

=
01
00
01

)(
xif
xif
xif

xsign                                       (24) 

The time differentiation of the general stress-strain relation (12) for the PSMAs leads to 
the following expression: 

TEE ss
&&&&&& ⋅+⋅Ω+⋅Ω+⋅+⋅= θξξεεσ                              (25) 

Differentiating Young’s modulus (9) and the transformation coefficient (10) considering 
the porosity with respect to the time, the following equations can be obtained: 

( ) ( )( )fEEfEE EamE ηξη −−=−= 11 &&&                               (26) 

  ( )( )fEEE EamLL ηξεε −−−=−=Ω 1&&&                               (27) 

Applying Euler’s formula for the numerical time integration to Eq. (25), it can be 
rewritten as 

 ( ) ( ) ( ){ }nnnSnnSnnnnn

nnnn

TsignsignsignEt

E
&&&& Θ+Ω+Ω+Δ+

Δ=−+

σξσξσε

εσσ 1
       (28) 

The evolution equations (13)-(22) for the transformation processes to the martensite 
and the austenite phase are extended as follows to take account of the strain rate effect.  
This extension formally follows the constitutive equation for brittle microcracking solids(9) 
considering the strain rate effect.  The evolution equation for the time rate of the 
martensite volume fraction is mathematically similar to the viscoplastic flow rule(10). 
(i) Transformation process to the martensite phase 
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・In the case of sMT >  
① ( ) ( )( )sM
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where η  and γ  are the viscous coefficient and a material constant, respectively.  
( )ξσ 1MS  and ( )SMS ξσ 1  are defined by the following equations: 
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where ( )ξσ 2MS  and ( )SMS ξσ 2  are defined by the following equations: 
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0=ξ&                                                              (36) 

(ii) Transformation process to the austenite phase 
・In the case of sAT >  

① ( )( )sA
DP ATC −+≥ βσ 1 : 

1=ξ                                                              (29) 

0=ξ&                                                              (30) 
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where ( )ξσ AS  and ( )SAS ξσ  are defined by the following equations: 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−+= − 12cos11

0

1

ξ
ξβξσ

A
SAAS a

ATC                        (43) 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−+= − 12cos11

0

1

S

S

A
SASAS a

ATC
ξ
ξ

βξσ                        (44) 

③ 0≤ξ : 

0=ξ                                                              (35) 

0=ξ&                                                              (36) 

The strain rate dependence of the SMAs at a high speed deformation is related to the 
increase of the critical stress for the martensite transformation caused by the temperature 
increase due to the latent heat and the heat generation accompanied by the deformation 
during the martensite transformation.  The strain rate dependent constitutive equation 
derived in the present subsection is a phenomenological formulation, in which the material 
behavior at a high speed deformation including the increasing effect of the critical 
transformation stress is represented in the qualitatively similar mathematical form to the 
macroscopic theory of viscoplasticity.  The increase in the number of the material 
constants is suppressed to the minimum.  It is noted that the above-stated temperature 
increase is not considered in the temperature T  in the formulation. 

3. Computational Results 

3.1 Static Behavior of the PSMAs 
The calculated results for the static behaviors of the dense SMA(50.9Ni-49.1Ti(at.%)) and the 

13% PSMA (50.9Ni-49.1Ti(at.%)) are compared with the experimental results given by Zhao et al.(1) 
in the present subsection.  The temperature for the compressive calculations is 58℃ which is higher 
than the temperature for finishing austenite transformation ( fA ). 

Table 1 shows the material constants used in the calculations.  The critical stresses for the 
martensite and the austenite transformation are shown in Table 2.  The specimens have been 
deformed up to the strain of 0.0458.  The minus sign in the table indicates a compressive stress.  
The calculated results for the two specimens are shown in Fig. 2 and Fig. 3, which are the stress-strain 
relation for the dense SMA and the 13% PSMA, respectively. 
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Table 1  Material constants of NiTi dense SMAs (50.9Ni-49.1Ti (at.%)) 

Modulus 

Ea (MPa) 75000 
Em (MPa) 53000 
θ (MPa/℃) 0.55 

β 0.15 

Transformation 
temperatures 

As (℃) 23.88 
Af (℃) 43.12 
Ms (℃) 36.05 
Mf (℃) 23.09 

Maximum residual strain εL 0.023 
 

Table 2  Critical transformation stresses 
 Dense SMAs Porous SMAs 

σMs(MPa) -252 -187 
σMf(MPa) -1212 -1161 
σAs(MPa) -684 -465 
σAf(MPa) -95 -87 

 

     
Fig. 2  Compressive stress-strain curves        Fig. 3  Compressive stress-strain curves 

           of dense SMAs at 58℃                       of 13% porosity SMAs at 58℃ 
 

The complete superelastic behavior takes place as the martensite transformation is 
induced by the stress and the inverse transformation is finished during the unloading 
process.  The rigidity for the martensite phase immediately after the unloading is smaller 
than the rigidity for the austenite phase during the initial loading.  The rigidity for the 
PSMA is smaller than that for the dense SMA. 

It is seen that the present constitutive modeling for the PSMAs is valid as the static 
superelastic behaviors for the dense SMA and the 13% PSMA are totally well indentified by 
the present modeling. 
3.2 Quasi-static and Dynamic Behaviors of the SMAs 

The calculated results for the quasi-static and the dynamic behaviors of the dense SMA 
(50.4Ni-49.6Ti(at.%)) are compared with the experimental results given by Nemat-Nasser et al.(6) in 
the present subsection.  The temperature is 23℃ which coincides with the temperature for finishing 
the austenite transformation ( fA ). 

The material constants used in the quasi-static calculations are shown in Table 3.  Figure 4 
shows the calculated results for the stress-strain relations of the dense SMAs at four relatively low 
strain rates (1/s, 10-1/s, 10-2/s, 10-4/s), which are compared with the experimental results.  It is 
observed in the experimental results that the strain hardening rate during the martensite transformation 
and the residual strain after the unloading depend on the strain rate.  Although such phenomena are 
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qualitatively well simulated by the present constitutive equation model, there is a room for 
improvement for the shape of the stress-strain curves. 

The material constants used in the dynamic calculations are shown in Table 4.  Figure 5 shows 
the calculated results for the stress-strain relations of the dense SMAs at four relatively high strain 
rates (1080/s, 610/s, 570/s, 330/s), which are compared with the experimental results.  Although the 
calculated results totally correspond well with the experimental results, the material constants 
identified for the high speed deformation (Table 4) slightly differ from those for the low speed 
deformation (Table 3).  It is suggested that the material constants in the present constitutive equation 
model are still strain rate dependent. 

 
Table 3  Material constants of NiTi dense SMAs for low strain rates (50.4Ni-49.6Ti (at.%)) 

Modulus 

Ea (MPa) 35000 
Em (MPa) 43000 
θ (MPa/℃) 0.55 

β 0.15 
η (sec) 0.15 
γ 4.0 

Critical 
transformation 
stresses 

σMs(MPa) -200 
σMf(MPa) -315 
σAs(MPa) 9 
σAf(MPa) 32 

Maximum 
residual strain 

εL 0.052 

 

 
Fig. 4  Quasi-static stress-strain curves of dense SMAs at a constant temperature of 23℃ and the 

indicated strain rates 
 

Table 4  Material constants of NiTi dense SMAs for high strain rates (50.4Ni-49.6Ti (at.%)) 

Modulus 

Ea(MPa) 40000 
Em(MPa) 50000 
θ(MPa/℃) 0.55 

β 0.15 
η (sec) 1.8×10-5 
γ 1 

Critical transformation 
stresses 

σMs(MPa) -240 
σMf(MPa) -677 
σAs(MPa) -445 
σAf(MPa) 10 

Maximum residual strain εL 0.05 



 

 

Journal of  Computational 
Science and Technology  

Vol. 2, No. 4, 2008 

519 

3.3 Quasi-static and Dynamic Behaviors of the PSMAs 
The calculated results for the quasi-static and the dynamic compressive behaviors of the 12% 

PSMAs (49.1Ni-50.9Ti (at.%)) are compared with the experimental results given by Nemat-Nasser et 
al.(3) in the present subsection.  Table 5 shows the material constants used in the calculations.  The 
material constants are the same for the quasi-static and the dynamic calculations. 

The strain rate in the quasi-static calculations is 0.001/s.  The calculated and the experimental 
stress-strain curves are shown in Figs. 6-8.  Figure 6 shows the stress-strain relations when the 
temperature is 23℃  which almost coincides with the temperature for finishing austenite 
transformation ( fA ).  In this case, the complete recovery to the austenite phase takes place with no 
residual strains, exhibiting the perfect superelasticity. 

Figure 7 shows the stress-strain relation at 0℃ lower than the temperature for starting austenite 
transformation ( sA ), which is accompanied by a large residual strain after the unloading.  There 
seems to be a mixture of the martensite phase and the austenite phase after the unloading in the 
experimental results, which is probably due to the experimental error caused by the scattering of the 
mechanical characteristics of the specimens. 

Figure 8 shows the stress-strain relation at -20℃ almost the same as the temperature for starting 
martensite transformation.  In this case, the transformation to the martensite phase starts immediately 
after the loading, remaining a large residual strain after the unloading.  The quasi-static stress-strain 
curves shown in Figs. 6-8 have totally corresponded well with the experimental results. 

 

 
Fig. 5  Dynamic stress-strain curves of dense SMAs at a constant temperature of 23℃ and the 

indicated strain rates 
 

Table 5  Material constants of 12% porosity SMAs (49.1Ni-50.9Ti (at.%))  

Modulus 

Ea(MPa) 70000 
Em(MPa) 30000 
Θ(MPa/℃) 0.55 
CM(MPa/℃) 4.0 
CA(MPa/℃) 4.0 

β 0.15 
η (sec) 1.8×10-5 
γ 3.0 

Critical stresses 
σs

 cr
 (MPa) 0.0 

σf
 cr

 (MPa) 500.0 

Transformation 
temperatures 

As(℃) 1.3 
Af(℃) 23.8 
Ms(℃) -20.0 
Mf(℃) -46.0 

Maximum residual strain εL 0.09 
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The temperature in the dynamic calculations is 23℃ as in the experiments.  The 
calculated stress-strain curves at high strain rates (1040/s, 1300/s) are compared with the 
experimental results in Fig. 9 and Fig. 10.  The superelastic behavior with almost full 
recovery to the austenite phase and no residual strains can be observed as the temperature is 
23℃ almost the same as the temperature for finishing austenite transformation ( fA ).  
Although there is a slight difference between the calculations and the experiments probably 
due to the difficulty in the high speed deformation tests at exactly constant strain rates, they 
are totally in good agreement with each other. 
 

 
Fig. 6  Quasi-static stress-strain curves of 12% porosity SMAs at a constant temperature of 23℃ and 

 a strain rate of 0.001/s 
 

     
Fig. 7  Quasi-static stress-strain curves of 12%   Fig. 8  Quasi-static stress-strain curves of 12% 

porosity SMAs at a constant temperature         porosity SMAs at a constant temperature 
of  0℃ and a strain rate of 0.001/s              of -20℃ and a strain rate of 0.001/s 

 
 

 
Fig. 9  Dynamic stress-strain curves of 12% porosity SMAs at a constant temperature of 23℃ and a 

 strain rate of 1040/s 
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Fig. 10  Dynamic stress-strain curves of 12% porosity SMAs at a constant temperature of 23℃ and a 

strain rate of 1300/s 
 

3.4 Discussions 
The SMAs, which are materially identified in the subsections 3.1, 3.2 and 3.3, are 

manufactured in a different way with different components, possessing different mechanical 
characteristics.  As a result, they have different material constants as shown in Tables 1-5.  
Among these material constants, the transformation temperatures in Table 1, Table 5 and the 
texts as well as the elastic constants in Table 1 and Table 5 are cited from the 
references(1),(3),(6).  The other material constants have been determined so as to fit the 
constitutive equation proposed in the subsection 2.2 to the experimental results in the 
literatures. 

The present constitutive equation model takes account of the effects of the porosity, the 
temperature and the strain rate.  A good agreement between the present constitutive 
modeling and the material test results have been confirmed with respect to the porosity in 
the subsection 3.1, the strain rate in 3.2, and the porosity, the temperature and the strain rate 
in 3.3.  Consequently the validity and the generality of the present constitutive modeling 
have been illustrated.  Furthermore the constitutive models identified in the present study 
are directly applicable to the finite element analysis of the machine parts and the structures 
composed of the SMAs or the PSMAs possessing similar mechanical properties. 

4. Conclusion 

In the present study, the constitutive equation expressed in terms of internal state variables for the 
quasi-static and dynamic behaviors of the PSMAs have been formulated to predict the mechanical 
behaviors of the PSMAs considering the strain rate effect.  The one-dimensional constitutive 
equations for the SMAs by the authors(5) have been extended to take account of the porosity and the 
strain rate effect. 

The present constitutive modeling has been applied to the simulations of the quasi-static and 
dynamic, uniaxial compressive behaviors of the PSMAs under the conditions of various strain rates 
and temperatures.  The validity of the proposed constitutive modeling has been illustrated by 
comparing the calculated results with the experimental results.  

The present constitutive equation model is useful as a practical computational model for the 
prediction of the quasi-static and dynamic behaviors of the PSMAs.  The accuracy improvement by 
the comparison with the experimental results and the applications to the finite element analysis of 
machine parts and structures are future works. 
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