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Cochliobolus heterostrophus Tub1 described here is the first f-tubulin gene characterized from a
naturally occurring benomyl-resistant ascomycete plant pathogen. The gene encodes a protein of
447 amino acids. The coding region of Tub1 is interrupted by three introns, of 116, 55, and 56 nt, sit-
uated after codons 4, 12, and 53, respectively. As a result of the preference for pyrimidines in the
third position of the codons when a choice exists between purines and pyrimidines, codon usage
in the Tub1 gene is biased. Tub7 shows high homology with B-tubulin genes of other ascomycete
species. However, Tub1 is exceptional in having Tyr'®”, compared with Phe'®”, possessed by B-tubu-
lin genes of other ascomycetes sequenced thus far. The Tyr'®” residue has been associated with
benomyl resistance in other organisms. In contrast, all other benomyl-implicated residues of Tub1
correspond to sensitivity. Based on these results, we suggest that benomyl resistance in the fun-

gus probably is attributed to Tyr'®’.
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Benzimidazole compounds were among the early
systemic fungicides developed and used for control-
ling several important plant diseases. Even though
they were initially proved very effective, their life was
often cut short by the appearance and spread of benz-
imidazole resistant strains (Davidse, 1986). The activ-
ity of benzimidazoles as microtubule inhibitors was
first indicated in fungi (Clemons and Sisler, 1971;
Davidse, 1973; Hammerschlag and Sisler, 1973). The
characterization of mutant strains in several fungal
species established that resistance to benzimidazoles
resulted from mutations in the B-tubulin gene that alter
the deduced amino acid (aa) sequence and subse-
quently destabilize the B-tubulin protein (Li et al.,
1996) or reduce its affinity to these fungicides (Cooley
et al., 1991; Davidse and Flach, 1977). These investi-
gations have developed to the point where resistance
has been related to certain amino acid substitutions at
one or more specific regions within the B-tubulin mole-
cule (Cooley and Caten, 1993; Fujimura et al., 19923,
b, 1994; Jung and Oakley, 1990; Jung et al., 1992;
Koenraadt and Jones, 1993; Koenraadt et al., 1992;
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Orbach et al., 1986; Thomas et al., 1985; Yarden and
Katan, 1993). Since the microtubule protein B-tubulin
had been identified as the benomyl target in fungi, it
would be of primary importance to investigate the j-
tubulin gene in a naturally occurring benomyl-resistant
fungus. The objective of this study was to elucidate
the B-tubulin gene in Cochliobolus heterostrophus
(Drechsler) Drechsler [anamorph: Bipolaris maydis
(Nisikado & Miyake) Shoemaker], a major pathogen of
maize, and the relationship between benzimidazole in-
sensitivity and the predicted aa sequence of this fun-
gus. This fungus is inherently insensitive to benzimi-
dazole, including benomyl and thiabendazole (Green-
away, 1973; Tanaka et al., unpublished observation),
despite the sensitivity of most fungi belonging to the
ascomycetes (Bollen and Fuchs, 1970). We report in
this paper the molecular characterization of the C. het-
erostrophus B-tubulin gene, including a determination
of its sequence and its possible role in conferring re-
sistance to benzimidazole. This is the first investiga-
tion of a naturally occurring benzimidazole-resistant
ascomycete.
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CTAGTACGTAGATGCGACTACTGTTTGGTACCTGTCGGGCGCTGTGAGTTTTTTCTTTTCTTTTTTTTCGGCGTGCGCAAGGAGGCCAAT -299
GTATAGATGCAGGCATACGTGTAGATGCACACGAGGCAGCGCAAGACATGGCCTTTGCTTATGCCCTTTGTTGTGCGTGGACATATCGGT -209
AGCAGCACCAGATTATGTCCAAAGCTGGTGCCTGTTGTGCTTAGCGCCGACGCGAGGGGGCCTGGCCTGTGCAGACCCGCACAGTTTGTT -119
TAACTGCTCCCCTTCACACCGCCTCTCCACATCACCAACACCCATCCACCCGCCCCAAACACAGCTCCTCACACTCTCACCTCTCTACTT -29
CCCATATCCCACACCCCAAACCGCCATCATGCGTGAGATTgtacgtatccgaccctecctcgagtccagegegtggegecaaccttgecce 61
M R E I 4
gcgatctgcattcagggacaacacgagattgcaaacaagacagctgacagccattctctgetacagGTTCACCTTCAGACCGGTCAATGC 151
vV H L Q T G Q C 12
gtatgttttcgctcecctgcaaaageccgtcgacgecggecttctaacacactctgcagGGTAACCAGATTGGTGCCGCCTTCTGGCAGACCAT 241
G N Q I G A A F W Q T I 24
CTCCGGCGAGCATGGTCTCGATGGCTCTGGTGTCTACAACGGCACCTCTGACCTCCAGCTCGAGCGCATGAACGTCTACTTCAACGAAQL 331
S G EH GGLD G S GV Y NGTSDUL QL ERMNV Y F N E 53
acgtcgccccctaaaggtccgacggaaaaaaagaccaatactgatctgcagcagGCCTCCAACAACAAGTTCGTGCCCCGTGCCGTCCTC 421
A S N N K F V P R A V L 65
GTTGATCTCGAGCCCGGTACCATGGACGCCGTCCGCGCTGGTCCCTTTGGTCAGCTCTTCCGCCCCGACAACTTCGTCTTTGGCCAGTCT 511
v DbDULEUPGTMDA AV RAGU®PVF G QL F RPDNTF V F G Q S 95
GGTGCTGGTAACAACTGGGCAAAGGGTCACTACACCGAGGGTGCTGAGCTTGTCGACCAGGTCCTCGATGTCGTCCGTCGCGAGGCCGAG 601
G A G NNWAI KGHYTEGA AUZETLV D Q VL D V V R R E A E 125
GGCTGCGACTGCCTCCAGGGTTTCCAGATCACCCACTCTCTCGGTGGTGGTACCGGTGCCGGTATGGGAACGCTCCTCATTTCCAAGATC 691
G ¢ Db CUL QG F Q I THSL GGGTGAGMGTUL L I S K I 155
CGTGAGGAGTTCCCCGACCGCATGATGGCCACATACTCCGTTGTGCCCTCGCCCAAGGTCTCCGACACCGTTGTCGAGCCCTACAACGCC 781

R EEFPDRMMAT VY S VVPSPZ KV SDTVJVETPJYNA 185
ACACTCTCCATCCACCAGCTGGTTGAGAACTCCGACGAGACCTTCTGCATTGACAACGAGGCTCTCTACGACATéTGCATGAGGACCCTC 871
T L $ I H Q L V E N S D E T F C I DNEW AUL Y D I C MU RT L 215
AAGCTGAACAACCCCTCCTACGGCGACCTGAACCACCTCGTCTCCGCCGTCATGTCGGGTGTCACCACCTGTCTGCGTTTCCCTGGTCAG 961
K L N NP SY GDLNUHI LV S AV M S GV T T CULIRTF P G Q 245
CTCAACTCTGACCTGAGGAAGCTGGCCGTCAACATGGTTCCCTTCCCTCGTCTCCACTTCTTCATGGTTGGTTTCGCTCCTCTCACCAGC 1051
L NS DL RKUL AV NMUVPFPIRULHT F FMV G F AP L T S 275
CGTGGCGCCCACTCCTTCCGCGCCGTCACCGTTCCCGAGCTCACCCAGCAAATGTTCGACCCCAAGAACATGATGGCTGCTTCCGACTTC 1141
R G A HS F RAV TV 9P EULTOQOQMTZ FUDUP K NMMMAA A S D F 305
CGCAACGGTCGCTACCTGACCTGCTCCGCCTACTTCCGCGGTAAGGTCTCGATGAAGGAGGTTGAGGACCAGATGCGCAACGTCCAGAAC 1231

R NG R Y L T C S A Y F R G KV S M K EV EUD QMU RNV QN 335
AAGAACTCTTCCTACTTCGTTGAGTGGATCCCCAACAATGTGCAGACCGCCCTCTGCTCCATTCCTCCTCGCGGCCTCAAGATGTCCTCC 1321
K N S S Y F V EW I P NNV QT AULTCS I PP R G L KM S S 365

ACCTTCGTCGGTAACTCGACCTCGATCCAGGAGCTGTTCAAGCGTGTCGGTGACCAGTTCACTGCCATGTTCAGGCGCAAGGCTTTCTTG 1411
T F VvV G N 8 T S I Q E L F K R V G D Q F T A M F R R K A F L 395
CATTGGTACACTGGTGAGGGTATGGACGAGATGGAGTTCACTGAGGCTGAGTCCAACATGAACGACTTGGTCTCCGAGTACCAGCAATAC 1501

H WY TGEGMUDEMET FTEA AUESNMNUDTULV S E Y Q Q Y 425
CAGGAGGCTTCCGTCTCCGAGGGTGAGGAGGAGTACGACGAGGAGGCTCCTCTTGAGGCTGAGGAGTAGAGTGGTCAAGACTAAATATTC 1591
Q E A SV S E G EEE Y D EEAUP L E A E E Smp 447

CTGCTGGGCTTGGCTGTTTGATCATTGCGAATGCAGGTCAACAACCATGTTATCAATTCGATTCGTAC TGCGAGCAATCGGGTCGTTCTT 1681
CTATGGGATGCAATGGTGCGGGAATGGTAGTCTTGATTCCCGCGACAAAGCATCGTCACGGGCAACGACACCATTCTCCTTGAAACTTCT 1771
TGTTAGCGAAAAGATGCTGTAATCAATTATCATATGTGGAATATGTCTTGTGCTGCAGAGTGTTGTGAATGGAGTGATGAGTGAATTTGA 1861
TGTTACTAACTTAGTTATTCCCTTCTTGCAGAAGTACAAAGCTGTGCATATTGTATTTCGATTCCATAGTCTTCACCCTGTCATGGTGGT 1951
AATTTATAAGTTAGAGAGATTGTCTCAGATTTGGTAGCAATGTAGATCGTTTCGTTGGCACCATTAAAGCCTGGTTTAACTCTATGTCCT 2041
AGCACTATATAGAGACCGAAGACATTGCATAACATCTCGGGGTTTTACAAGAAAGATCAATAGTTACAATCTCCTACTATTTAACTATAA 2131
CTACTACAGATGACATTCTGGTCAATCCTTATCTGACTCAGTCTCAACAAGGATACTATTA 2192
Fig. 1. Nucleotide and predicted amino acid (aa) sequences of the Cochliobolus heterostrophus Tub1 gene.
The amino acid sequence was deduced from the DNA sequence and is indicated by the single letter aa code below the nu-
cleotides. Numbers to the right side of nucleotide and aa sequences refer to the number of nucleotides and aa, respectively,
starting at the ATG initiation codon. The three introns are indicated by lowercase letters, and their 5’ and 3’ sites and internal

consensus sequences are underlined. The Tyr'®” residue (Y) is marked by an asterisk. These sequence data appear in the
DDBJ, EMBL, and GenBank Nucleotide Sequence Data Libraries under the accession number AB009971.
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Materials and Methods

Strain and plasmid. Escherichia coli strain DH10B
(Life Technologies Inc., Rockville, MD, USA) was used
for plasmid propagation. This strain was also used as
the host for maintaining the genomic library of C. het-
erostrophus constructed in cosmid vector sCOS1
(Evans et al., 1989). Plasmid pSV50 (Volimer and
Yanofsky, 1986) was used as a probe to screen for the
B-tubulin gene from a genomic DNA library of C. het-
erostrophus strain HITO7711 (Tanaka et al., 1991).

Genomic library screening. Construction of the
genomic DNA library of C. heterostrophus was de-
scribed previously (Shimizu et al., 1997). DH10B cells
carrying the cosmids were plated on LB agar medium
containing 50 ppm (w/v) kanamycin and screened by
colony hybridization (Sambrook et al., 1989). Colonies
were blotted onto Hybond-N* membrane (Amersham
International plc., Amersham, UK) according to the
manufacturer’s recommendations. To screen for the
C. heterostrophus B-tubulin gene, a 2.6 kbp Sal | frag-
ment from pSV50 encoding the Neurospora crassa
Bml B-tubulin gene was radiolabeled with [o-*?P]dCTP
by using a Random Primed DNA Labeling Kit
(Boehringer Mannheim GmbH, Mannheim, BRD) as
the manufacturer directed. Hybridization and washing
were conducted at 58°C, but other conditions followed
the manufacturer’s protocol (Boehringer Mannheim
GmbH). To elucidate the existence of the B-tubulin
gene of C. heterostrophus in the cosmid identified by
colony hybridization, Southern hybridization was per-
formed. Cosmid DNA was digested with appropriate
restriction endonucleases, electrophoresed in a 0.7%
agarose gel, and transferred onto a Hybond-N* mem-
brane. The same DNA fragment from pSV50 was
used as a probe, but it was labeled with DIG-dUTP
and detected by ELISA with a DIG-DNA Labeling and
Detection Kit (Boehringer Mannheim GmbH). Hy-
bridization and washing were as described for colony
hybridization.

B-Tubulin gene of Cochliobolus heterostrophus
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DNA sequencing and gene analysis. DNA se-
quencing of the B-tubulin gene was performed by the
dideoxy chain termination method (Sanger et al.,
1977) with the ALFred DNA Sequencer (Pharmacia
Biotech, Uppsala, Sweden), using Thermo Seque-
nase™ (Amersham International pic), as the manufac-
turer recommended. Sequencing primers included the
fluorescent-dye (Cy5)-labeled M13 forward, M13 re-
verse (Pharmacia Biotech), and 2 synthetic oligonu-
cleotide primers derived from established sequences.
The locations of exons and introns were deduced from
interruptions in aa sequence homology with the [
tubulin gene of Septoria nodorum (Cooley and Caten,
1993) and confirmed by sequencing PCR products
amplified from cDNA. Template cDNA was synthe-
sized previously (Shimizu et al., 1997). Two primers,
5'-ACACCCCAAACCGCCATCATGC-3' and 5'-TG-
GAAACCCTGGAGGCAGTCGC-3', were used in the
PCR ampilification for mapping introns. PCR products
were cloned into pT7Blue T vector (Novagen Inc.,
Madison, WI, USA). DNA and aa sequences were
edited with DNASIS for Mac software (Hitachi Soft-
ware Co., Ltd., Yokohama, Japan) and compared with
previously characterized B-tubulin genes of other fungi
obtained from the GenBank database using the
CLUSTAL W multiple alignment program (Thompson
et al., 1994).

Results and Discussion

Cloning and sequencing of the C. heterostrophus B-
tubulin gene

Following Southern hybridization, one out of about
5,000 cosmid clones showed a positive reaction to the
N. crassa Bml B-tubulin gene probe. The cosmid of
this clone (designated pCOS/TB18) was recovered
and subjected to restriction enzyme analysis. The pre-
liminary Southern blot analysis of total C. heterostro-
phus DNA using the Bml gene as a probe implied that
the B-tubulin gene was a single gene in the genome

Table 1. Some characteristics of and degree of homology between the Cochliobolus heterostrophus Tub1
gene and B-tubulins of several fungi.
Source GC content  Number of Nucleic acid Amino acid Reference
(%)? codons used homology (%)*? homology (%)

Aspergillus nidulans benA 56.8 40 86.1 93.0 May et al., 1987
Aspergillus nidulans tubC 53.4 58 69.5 80.9 May et al., 1987
Colletotrichum graminicola TUB 1 57.3 56 65.3 72.8 Panaccione and Hanau, 1990
Colletotrichum graminicola TUB 2 57.6 41 72.0 93.0 Panaccione and Hanau, 1990
Erysiphe graminis tub-2 46.0 60 76.3 96.4 Sherwood and Somerville, 1990
Neurospora crassa Bml 59.0 42 89.3 94.4 Orbach et al., 1986
Septoria nodorum tubA 59.1 48 92.3 98.2 Cooley and Caten, 1993
Cochliobolus heterostrophus Tub1 58.7 46 — — Present study

2 Only the coding regions were used.
b Sequences are aligned for best fit.
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and located in a ca. 6.4 kbp Eco Rl fragment. The re-
striction map and results of the Southern hybridization
experiment also suggested that the homologous re-
gion to the probe is in the ca. 6.4 kbp Eco Rl fragment
of pCOS/TB18 (data not shown). Further analyses in-
dicated that the B-tubulin gene was included in a ca.
2.6kbp Spe | fragment. This fragment was cloned
into the Xba | site of pBluescriptlISK (Stratagene Co.,
Ltd., La Jolla, CA, USA) to produce pTUB16spe26,
then sequenced. The complete nucleotide sequence
of the C. heterostrophus B-tubulin gene, designated as
Tub1, is presented in Fig. 1. The Tub1 gene contained
an expected product of 1,570bp and, by deduction,
encoded a protein of 447 aa.

Comparison with B-tubulin of some other fungal
species

The Tub1 gene displayed extensive homology with
other B-tubulin genes (Table 1) at the nucleotide and
polypeptide levels. The highest degree (98.2%), how-
ever, was detected with the S. nodorum -tubulin pro-
tein. We deduced the coding region of Tub1 by com-
paring the predicted amino acid sequence with pub-
lished sequences of other B-tubulin genes and by se-
quencing PCR products amplified from cDNA. The GC
content of the coding region (excluding introns) was
58.7% (Table 1). The high GC content of the coding
region was due to the predominance of codons with G
or C at the third position (78.1%), an indication that
codon usage in Tub1 is biased (Table 2). This bias in
codon usage was also evidenced by the absence in
Tub1 of 15 of the possible 61 aa codons. This figure
was similar to those reported for B-tubulin genes of S.
nodorum and some other fungal species, except
Erysiphe graminis (Table 1).

Position, structure, and analysis of introns

The coding sequence of Tub1 was interrupted by 3
introns, of 116, 55, and 56 nucleotides, occurring after
amino acid numbers 4, 12, and 53, respectively. All
the introns contained the filamentous fungal consen-
sus GTANGT and YAG at 5’ and 3’ splice junctions,
respectively (Gurr et al., 1987). Sequences similar to
the internal lariat signal YGCTAACN characteristic of
the 3’ end of introns in filamentous fungi (Gurr et al.,
1987) were also found (Fig. 1). A comparison of intron
positions between Tub1 and tubA of S. nodorum re-
vealed extensive positional conservation (Table 3) and
was correlated with the relative sequence homologies
(Table 1).

The number of introns in the fungal B-tubulin gene
sequenced thus far ranged from 0 in Saccharomyces
cerevisiae (Neff et al., 1983) to 8 in Aspergillus nidu-
lans (May et al., 1987). Although the number of in-
trons in Tub1 was not the same as those of most as-

Table 2.
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Codon usage in the Cochliobolus
heterostrophus Tub1 gene.

Amino acid

Codon

Number of occurrences

Phenylalanine

Leucine

Isoleucine

Methionine
Valine

Serine

Proline

Threonine

Alanine

Tyrosine
Histidine
Glutamine
Asparagine
Lysine
Aspartic acid
Glutamic acid
Cysteine

Tryptophan
Arginine

Serine
Arginine

Glycine

uuu
uuc
UUA
uuG
Cuu
cuc
CUA
CuG
AUU
AUC
AUA
AUG
GUuU
GUC
GUA
GUG
ucu
uccC
UCA
UcG
CCuU
CCC
CCA
CCG
ACU
ACC
ACA
ACG
GCU
GCC
GCA
GCG
UAU
UAC
CAU
CAC
CAA
CAG
AAU
AAC
AAA
AAG
GAU
GAC
GAA
GAG
UGU
UGC
UGG
CGU
CGC
CGA
CGG
AGU
AGC
AGA
AGG
GGU
GGC
GGA
GGG
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comycetes, their positions were characteristic of the
taxonomic class. Orbach et al. (1986) suggested that
taxa may be characterized in part by the pattern of in-
tron position in present-day tubulin genes, which, ac-
cording to Liaud et al. (1992), reflects the organization
of their common ancestor. Byrd et al. (1990) noted
that introns within codons 21 and 35 were characteris-
tic of diverse fungi. Given that C. heterostrophus is
phylogenically closer to S. nodorum than to other fun-
gal species whose B-tubulin genes have been se-
quenced (Table 3), these results suggest that the loss
of introns 21 and 35 may have occurred indepen-
dently within the fungi, since taxa that lack these in-
trons such as Pleosporales (Cochliobolus and Septo-
ria) and Hypocreales (Epichloé) are not closely related
(Berbee, 1996).

B-Tubulin gene of Cochliobolus heterostrophus
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Correlation between the C. heterostrophus [B-tubulin
gene and benomyl insensitive

Because most benzimidazole resistance in various
fungi has been mapped to B-tubulin loci, characteriza-
tions of their genes have been made, revealing sev-
eral mutations at codon for aa 6, 50, 134, 165, 167,
198, 200, 237, 241, 250, and 257 (Table 4). By com-
paring the deduced aa sequence of the C. heterostro-
phus Tub1 gene with that of S. nodorum, which is
benomyl sensitive, it was found that aa residues, 56,
124, 167, 356, 365, 381, and 430 were different be-
tween these two fungi. The differences of aa residue
at positions, 56, 124, 356, 365, 381, and 430 were not
unique to C. heterostrophus; these aa were found in
other fungi known to lack resistance to benomyl. How-
ever, the aa residue at position 167 is unusual. In
Tubt, it was tyrosine, whereas this aa is phenylala-
nine in all of the B-tubulin amino acid sequences of

Table 3. Number and position of introns in several fungal B-tubulin genes.
Position of intron?
Number of
Source introns Reference
4/5 12/13 21 35 53/54 205/206 317 437/438
Aspergillus nidulans benA 8 + + + + + + + + May et al., 1987
Aspergillus nidulans tubC 5 + + + + — - + — May et al., 1987
Colletotrichum graminicola TUB 1 6 + + +  + + - + - Panaccione and Hanau, 1990
Colletotrichum graminicola TUB 2 6 + + + + + - + - Panaccione and Hanau, 1990
Epichloé typhina tub2 4 + + - = + - + - Byrd et al., 1990
Erysiphe graminis tub-2 6 + + + + + - + - Sherwood and Somerville, 1990
Neurospora crassa Bml 6 + + + + + - + - Orbach et al., 1986
Septoria nodorum tubA 3 + + - - + — — - Cooley and Caten, 1993
Cochliobolus heterostrophus Tub1 3 + + - - + - - - Present study

2 +, intron is present; —, intron is absent.

Table 4. Deduced amino acid substitution in the B-tubulins of some selected fungi with resistance to benzimidazole.
Amino acid . Predicted amino
Organism Reference acid in Tub1
Position Substitution
6 His to Tyr Trichoderma viride Goldman et al., 1993 His
50 Tyr to Asn Aspergillus nidulans Koenraadt et al., 1992 Tyr
Tyr to Ser Aspergillus nidulans Koenraadt et al., 1992
134 Gin to Lys Aspergillus nidulans Koenraadt et al., 1992 Gin
165 Ala to Val Aspergillus nidulans Jung and Oakley, 1990 Ala
167 Phe to Tyr Neurospora crassa Orbach et al., 1986 Tyr
198 Glu to Ala Botrytis cinerea Yarden and Katan, 1993 Glu
Glu to Asp Aspergillus nidulans Jung et al., 1992
Glu to GIn Aspergillus nidulans Jung et al.,, 1992
Glu to Gly Neurospora crassa Fujimura et al., 1992a
Glu to Lys Venturia inaequalis Koenraadt et al., 1992
Glu to Val Penicillium expansum Koenraadt et al., 1992
200 Phe to Tyr Botrytis cinerea Yarden and Katan, 1993 Phe
237 Thr to Ala Neurospora crassa Fujimura et al., 1994 Thr
241 Arg to His Saccharomyces cerevisiae Thomas et al., 1985 Arg
250 Leu to Phe Neurospora crassa Fujimura et al., 1994 Leu
257 Met to Leu Aspergillus nidulans B. R. Oakley? Met

2 Personal communication cited in Koenraadt et al., 1992.
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species known to be sensitive to benomyl. The Tyr'®’

has been demonstrated by Orbach et al. (1986) to be
responsible for benomyl resistance in N. crassa. The
other benzimidazole-implicated residues in Tub1, His®,
TyrSO, Gln134, Ala165, G|U198, PheZOO, Thr237, Ar9241,
Leu®®®, and Met®’ coincided with those of other fungi
known to be sensitive to benzimidazole fungicide
(Table 4). These results suggest that benomyl insensi-
tive in C. heterostrophus may be associated with
residue Tyr'®” of Tub?1. The only other organism re-
ported to contain Tyr'®” in its B-tubulin is the protozoan
Trichomonas vaginalis (Katiyar and Edlind, 1994; Kati-
yar et al., 1994), which is not affected by the benzimi-
dazole derivatives.

The Phe—Tyr change at aa position 167 is known
to be a mutation that confers moderate resistant phe-
notype in N. crassa. The minimal inhibitory concentra-
tion (MIC) of Tyr'®” mutant of N. crassa on carben-
dazim is 100 pug/ml, and one of a wild type is 0.1 ug/ml,
(Fujimura et al., 1992b). However, the MIC of C. het-
erostrophus on benomyl is >400 ug/ml, and the me-
dian effective concentration (ECs,) on colonial growth
is 30 ug/ml (data not shown). In the absence of the
strain that is sensitive to benzimidazole in C. het-
erostrophus, the level of resistance caused by Tyr'®’
residue remains unclear. Contrasting argument that
the Tyr'®” residue is not the only requirement for high
resistance to benomyl may be made. Additional mech-
anism, e. g., an active transport system reported in
Candida albicans (Ben-Yaacov et al., 1994), might
also be involved in the nature of insensitivity to benz-
imidazole in C. heterostrophus. Construction of the
transformant whose Tub1 gene is replaced by the mu-
tated one with Phe'®” will promote a better insight into
the mechanism of insensitivity to benzimidazole in C.
heterostrophus.
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