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ABSTRACT: Coralline algal (maerl) beds are widespread, slow-growing, structurally complex
perennial habitats that support high biodiversity, yet are significantly understudied compared to
seagrass beds or kelp forests. We present the first eddy covariance (EC) study on a live maerl bed,
assessing the community benthic gross primary productivity (GPP), respiration (R), and net ecosys-
tem metabolism (NEM) derived from diel EC time series collected during 5 seasonal measurement
campaigns in temperate Loch Sween, Scotland. Measurements were also carried out at an adja-
cent (~20 m distant) permeable sandy habitat. The O, exchange rate was highly dynamic, driven
by light availability and the ambient tidally-driven flow velocity. Linear relationships between the
EC O, fluxes and available light indicate that the benthic phototrophic communities were light-
limited. Compensation irradiance (E.) varied seasonally and was typically ~1.8-fold lower at the
maerl bed compared to the sand. Substantial GPP was evident at both sites; however, the maerl
bed and the sand habitat were net heterotrophic during each sampling campaign. Additional
inputs of ~4 and ~7 mol m~2 yr~! of carbon at the maerl bed and sand site, respectively, were
required to sustain the benthic O, demand. Thus, the 2 benthic habitats efficiently entrap organic
carbon and are sinks of organic material in the coastal zone. Parallel deployment of 0.1 m? benthic
chambers during nighttime revealed O, uptake rates that varied by up to ~8-fold between repli-
cate chambers (from —0.4 to —3.0 mmol O, m~2 h™}; n = 4). However, despite extensive O, flux vari-
ability on meter horizontal scales, mean rates of O, uptake as resolved in parallel by chambers and
EC were typically within 20 % of one another.

KEY WORDS: Benthic oxygen exchange - Benthic primary production - Coastal carbon cycling -
Coralline algae - Permeable sediment - Eddy covariance - Benthic chambers

INTRODUCTION

Maerl beds are composed of dense aggregations of
free-living red coralline algae (Rhodophyta, Corrali-
nales) that accumulate on seabed surfaces with low
sediment deposition rates and sufficient light avail-
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ability (Martin et al. 2014). Maerl beds are slow-
growing, structurally and functionally complex
perennial habitats that support a rich diversity of
micro- and macroalgae as well as benthic macro-
fauna (Barbera et al. 2003, Grall et al. 2006), and are
important nursery areas for juvenile invertebrates
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and fish (Kamenos et al. 2004a,b). Maerl beds occur
worldwide and are among the most widespread
benthic phototrophic ecosystems in terms of areal
coverage (Foster 2001). While their importance
for regional biodiversity is increasingly recognized,
maerl beds remain significantly understudied com-
pared to other conspicuous benthic ecosystems such
as seagrass beds, kelp forests, or shallow-water coral
reefs. Coralline algal community productivity and its
role in coastal carbon (C) cycling in particular have
received little attention. This is surprising consider-
ing that the few existing studies on the topic indicate
that maerl beds are among the most productive ben-
thic ecosystems, with areal rates comparable to those
of seagrass beds (Martin et al. 2005, 2007). Given
their role in ecosystem service provision, a better
understanding of maerl beds and their role in coastal
C cycling is required.

The most widely used method for estimating ben-
thic primary productivity and C turnover at the sea-
bed is the benthic O, exchange rate (Glud 2008).
Community rates of benthic gross primary productiv-
ity (GPP), respiration (R), and net ecosystem metabo-
lism (NEM) have traditionally been estimated using
benthic chamber incubations that quantify areal O,
exchange rates. Typically, chamber incubations en-
close a sediment area of 0.1 m? or less and incuba-
tions last only for a few hours. Community based diel
assessments of activity therefore assume that the
integrated spatial and temporal scales of the cham-
ber incubations are representative of the whole ben-
thic community. Application of benthic chambers in
maerl beds is further complicated by the presence of
the maerl structure and other large benthic macro-
algae and fauna, and the enclosure process excludes
the natural variations in hydrodynamics that the
organisms otherwise experience. More recently, the
aquatic O, eddy covariance (EC) method (Berg et al.
2003) was introduced, which allows benthic O,
exchange rates to be estimated non-invasively over
large (~10 to 100 m?) areas of the seabed. The EC
method combines high-frequency measurements of
vertical flow velocity and O, concentration taken at a
single point (typically 10 to 30 cm above the seabed
surface) to estimate the vertical turbulent exchange
of O, within the benthic boundary layer. Under ideal
conditions this exchange rate can be considered
equal to the depth-integrated areal average sedi-
ment O, dynamics. Since EC measurements are
carried out away from the seabed surface, this
method is not confined to soft sediments. Importantly,
EC measurements provide continuous time series of
O, exchange rates covering one or more days, to

help elucidate the dynamics of benthic O, ex-
change under changing environmental conditions.
This method has been applied to complex coastal
benthic habitats such as high-latitude rocky benthic
surfaces (Glud et al. 2010), seagrass beds (Hume et
al. 2011), and coral reefs (Long et al. 2013, Rovelli et
al. 2015), and therefore provides a new valuable tool
for estimating the benthic O, exchange rate of maerl
bed communities.

The main objective of this study was to investigate
the biogeochemical functioning of a live maerl bed
community and an adjacent sandy habitat, and their
importance for coastal C cycling. This comparison
was conducted by quantifying rates of benthic pri-
mary productivity and C degradation at both sites
using the state-of-the-art EC O, flux method during 5
measurement campaigns across all 4 seasons. In
addition, benthic chambers were deployed in paral-
lel with the EC to resolve the benthic O, exchange
rate using 2 independent methods.

MATERIALS AND METHODS
Study site

The study site was located in the tidal narrows of
Caol Scotnish, a sheltered ~0.5 km? side-loch within
the Loch Sween Marine Protected Area on the
west coast of Scotland (56°01.99'N, 05°36.13'W;
Fig. 1A).The shoreline rapidly descended to a depth
of ~5 m at mean low water, and this depth remained
consistent across the narrows. Closest to the shore-
line, the seabed was characterised by bare sediments
composed primarily of a mixture of sands, gravels,
and relict shell fragments (Fig. 1B). The dominant
macrofauna comprised the deposit-feeding black
brittle star Ophiocomina nigra, occurring in densities
of ~100 ind. m™2. The permeability of the top ~10 cm
of sediments measured on intact cores described by
Klute & Dirksen (1986) was 1.7 x 107! + 0.2 m™
(mean + SD, n = 4). Further out, in the middle of
the narrows, the seabed was dominated by a live
maerl bed of ~500 m length and ~40 m in width,
characterised by a dense population of live maerl
thalli, Lithothamnion glaciale, and high densities
(~1000 ind. m~2) of the suspension-feeding common
brittle star Ophiothrix fragilis and lower densities of
the deposit-feeder O. nigra (Fig. 1C). The top 5 to
10 cm of the maerl bed consisted of a branched struc-
ture of live maerl thalli. This layer was underlain by a
mixture of relict maerl skeletons and fine sediments
that accumulated due to entrapment of finer particles
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by the maerl structures. The combined permeability within the range of 5 to 10 cm s~!. However, short
of the maerl thalli and underlying ~10 cm of sedi- (~2 h) periods of intensified flow reaching 15 to 20 cm
ments measured on intact cores as described by s7! coincide with the incoming (flood) tide. The 2
Klute & Dirksen (1986) was 2.2 x 1072 + 0.3 m™ measurement sites were located within ~20 m of one
(mean + SD, n = 4). The flow regime in Loch Sween is another. Surface waves were negligible (<10 cm)
tidally-driven, with velocity magnitudes most often during the measurement campaigns.
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Fig. 1. (A) General location of the 2 study sites investigated in Loch Sween (red arrow) on the west coast of Scotland (map
edited from Google Earth). (B) The sand/gravel site with high densities (~100 ind. m~?) of the deposit-feeding brittle star
Ophiocomina nigra, and (C) the live maerl bed with soft brown macroalgae and high densities of the suspension-feeding brit-
tle star Ophiothrix fragilis (~1000 ind. m~2). Maerl bed image courtesy of Rob Cook (Heriot-Watt University). (D) The 5 meas-
urement campaigns were carried out in different seasons representing contrasting light regimes (black arrows) in Loch Sween
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In situ instrumentation
Eddy covariance measurements

For each of the 5 measurement campaigns at Loch
Sween, we aimed to obtain EC time series of at least
one complete 24 h period at each of the 2 sites. Dur-
ing the September 2010 and April 2012 campaigns, 2
EC systems were available. This allowed for simulta-
neous measurements of EC O, exchange rates at the
2 sites. During the other campaigns (November 2011,
February 2012, August 2012) a single EC system was
alternated between the 2 sites. In all cases, EC
deployment was conducted by divers who used lift
bags to carefully position the EC systems on the
seabed. In total, 14 successful EC deployments were
made at Loch Sween during the 5 measurement cam-
paigns that altogether integrated >300 h of measur-
ing time divided between the 2 sampling sites.

The configuration of the applied EC systems was
similar to the original design described by Berg &
Huettel (2008). The main components of the EC sys-
tems consisted of an acoustic Doppler velocimeter
(ADV; Vector, Nortek) and a Clark-type O, microsen-
sor with a 10 to 20 pm tip diameter (Revsbech 1989).
Each microsensor was individually tested for its qual-
ity prior to deployment to ensure that it had a 90 %
response time of <0.5 s and a stirring sensitivity of
<0.5% (Gundersen et al. 1998). The O, microsensor
signal was relayed to the ADV via a submersible
amplifier (McGinnis et al. 2011). The ADV recorded
the longitudinal (u), traverse (v), and vertical (w)
velocity components as well as the O, microsensor
output in continuous mode at frequencies of 32 or 64
Hz, and in addition collected ancillary information
such as instrument pitch and roll, flow direction, and
signal strength. The equipment was mounted onto a
stainless-steel tripod frame measuring 130 x 90 cm,
designed to minimize hydrodynamic interference.
The ADV sampling volume was located ~15 cm
above the seabed surface. Visual inspection by divers
ensured that the O, sensor tips and the ADV meas-
urement volume stood well clear of bottom features
such as stones, maerl branches, and benthic macro-
fauna. The O, microsensor tip was carefully posi-
tioned just at the edge of the ADV sampling volume
(0.5 cm separation) to extract the O, data close to the
ADYV measurement point without compromising the
velocity measurements. Prior to deployment, the EC
O, microsensors were left to polarize for ~12 h to
minimize sensor drift during deployments. Following
polarization, the signal range and response time of
each O, microsensor used was evaluated using water

samples of known O, concentration. A sodium
dithionite solution was used for the zero O, satura-
tion value, and collected bottom water samples were
used for the in situ O, concentration. The O, concen-
trations were determined in the laboratory by Win-
kler titration.

Benthic chamber measurements

The square-shaped benthic chambers were con-
structed from semi-transparent Perspex and poly-
vinyl chloride, and enclosed an area of 961 cm?
(0.1 m?). Each chamber had a removable lid that
was fitted with a central rotating cross-shaped stir-
rer on the underside (Glud et al. 1996). The stirrer
was powered by a small, self-contained battery-
powered motor and was set to rotate at a constant
frequency of 12 rpm. This rotation frequency was
selected based on prior work by Glud et al. (1996)
that characterised the pressure gradients within this
type of chamber under controlled conditions. Sev-
eral chambers were deployed by divers during the
night, approximately 1 m apart from one another
during periods that coincided with the EC deploy-
ments. A total of 4 chambers were deployed at each
site in September, February and April; 3 were
deployed in November, and 5 in August. The cham-
bers were gently pushed ~15 cm into the sediment
and the chamber lid was sealed to prevent
exchange with the ambient bottom water. A sam-
pling port on the side of the chamber wall allowed
water samples from inside the chambers to be
retrieved during incubation. A 100 ml water sample
was retrieved by the divers at the start and at the
end of each of the 3 to 6 h long incubations using a
gas-tight syringe. Once extracted, water samples
were transported to shore where they were fixed,
stored in the dark and later analyzed in triplicate for
O, concentration by Winkler titration. The decline
in O, saturation between the start and the end of
the incubation was <25%. The benthic chamber
walls substantially attenuated the ambient light lev-
els and were therefore not applied during daytime.

A substantial biomass of macroalgae had accumu-
lated on the seabed surface in April. During this cam-
paign, the divers were required to clear small areas
of the seabed surface of the largest bits of algae prior
to installing the benthic chambers in order to ensure
a good seal between the chamber walls and the sed-
iment. The results from this campaign are presented
but are not discussed in detail since the flux meas-
urements were likely compromised by this process.
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In situ background environmental parameters

A conductivity temperature depth (CTD) sensor
(XR-420, RBR) equipped with an O, optode (3830,
Aanderaa) and a scalar photosynthetically active
radiation (PAR) sensor (QSP-2200, Biospherical
Instruments) was mounted onto a separate small
stainless-steel frame that held the sensors 15 to 20
cm above the seabed. The system was deployed
by divers at the interface between the maerl and
sand sites, approximately equidistant between the
2 measurement sites. The CTD was programmed
to record the environmental parameters covering
the benthic chamber and EC deployments at 30 s
intervals.

Eddy covariance fluxes

The EC O, fluxes were first extracted from the raw
EC dataset and then evaluated for their '‘quality’
based on a set of defined criteria as detailed in Attard
et al. (2014). Flux extraction was carried out using the
open source software package Sulfide Oxygen Heat
Flux Eddy Analysis (SOHFEA) version 2.0 (www.
dfmcginnis.com/SOHFEA). Additional data treat-
ments that are detailed below, but not available in
SOHFEA, were carried out in MATLAB® (Math-
Works). The datasets were processed for flux extrac-
tion in the following order: (1) weak signals in the
raw 32 or 64 Hz ADV velocity data were identified by
a low beam correlation and/or low signal strength.
Individual data points with beam correlations below
50 % and signal-to-noise ratios below 12 dB were dis-
carded. (2) The 32 or 64 Hz raw EC data was aver-
aged down to 8 Hz. This reduced the noise level, and
the smaller file size allowed for easier data handling.
(3) A spectral analysis was carried out on the 8 Hz
vertical velocity (i.e. w) and the O, microsensor data
(C). The spectra showed the presence of an inertial
subrange, identified as the region on the pressure
spectral density plot for w and C where the slope of
energy cascade from large scales to the smaller
scales followed the predicted -5/3 fit, suggesting
well-developed turbulence. The spectra were fur-
thermore used to infer that the data reduction
through adjacent averaging from 64 or 32 Hz to 8 Hz
did not result in a loss of signal at high frequency,
since most of the turbulent contributions typically
occurred at a frequency of 1 Hz or lower (Fig. 2). (4)
The O, microsensor output was calibrated to the CTD
O, optode data using a linear regression. (5) Spike
noise in the w and C data were removed using the
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Fig. 2. Variance-preserving Power Spectra (VPS) of the ver-
tical flow velocity for (A) the maerl bed and (B) the sand site.
The data used in this example cover a 3 h dark period when
2 eddy covariance (EC) instruments were measuring in par-
allel at both sites. The mean (+SE) flow velocity magnitude
(U) during this period was 6.9 + 0.5 cm s™! at the maerl bed
and 8.5 + 0.5 cm s7! at the sand site. The average cumulative
co-spectra (ogives) of the EC O, flux for the same period are
presented in (C) and (D). The ogives indicate a dominance of
flux-contributing eddies within the frequency range of 10° to
1072 Hz, or 1 to 100s. The flux is seen to converge at lower
frequencies

‘3D phase space' method, and the excluded data
points were interpolated using a cubic polynomial
function (Mori et al. 2007). (6) Coordinate rotation
was applied to the global 8Hz ADV velocity dataset
using the ‘planar fit' method to transform measured
velocities into streamline coordinates (Lorke et al.
2013). () The O, fluxes (in mmol m~2 h7!) were
extracted from the ADV w and C data as the covari-
ance (w'C'"), where w' and C' are deviations from a
least-squares linear trend fitted to the measured ver-
tical velocity and O, concentration respectively, and
the angle bracket denotes time averaging. Following
Reynolds decomposition theory, the vertical velocity
vector may therefore be expressed as w = (w) + w'
and the scalar quantity C = (C) + C' (Berg et al.
2003). The selected time averaging interval is a
tradeoff between including as many of the flux-
contributing turbulent eddies as possible while ex-
cluding low-frequency non-turbulent contributions
such as advective flows (McGinnis et al. 2008, Lorke
et al. 2013). To determine the optimal time interval,
an analysis was carried out to investigate the effects
of averaging time on the mean covariance and subse-
quent flux estimates for the friction velocity (u.) and
the O, fluxes. The u« is directly related to the turbu-
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lence regime within the benthic boundary layer
(BBL). Estimates for u. were computed from complex
Reynolds stress measurements derived from the ADV
velocity time series (McPhee 2008). The u, v, and w
velocity components were decomposed into a mean
and deviatory velocity as u=(u) + u', v=(v) + v' and
w = (w) + w'. The u. was then calculated as u. =
(u'w")? + (vw')?)¥4 The mean u. and O, flux were
computed as a function of the ensemble average. A
time window of 10 min was consistently identified as
the optimal interval for flux calculation at the 2 sites
(Fig. 2). (8) A time-shift correction was applied to the
data. Time shifting was performed for each ensemble
interval by shifting the O, data in time relative to the
velocity data to a maximum of 2 s to achieve the max-
imum numerical covariance (defined in terms of the
maximum numerical flux) for (w'C"). This correction
is necessary when the physical separation between
the O, sensor and the ADV measurement volume,
and/or the sensor response time, result in a slight
misalignment in the data (McGinnis et al. 2008,
Donis et al. 2015). (9) By assuming law-of-the-wall
velocity profiles, the mean sediment surface rough-
ness (zp) was estimated as

e
Zy = Z-exp |—-K-
Ux

where z is the measurement height above the ben-
thic surface (0.15 m), x is the von Karman constant
(0.41), and U is the mean flow velocity magnitude
(Berg et al. 2007).

The extracted 10 min EC fluxes were then care-
fully evaluated for their quality based on 3 criteria,
namely by excluding periods with (1) large spikes or
jumps in the O, microsensor data, (2) rapid changes
in flow direction and/or flow velocity magnitude,
and (3) suppressed exchange rates of O, due to in-
sufficient turbulent mixing, which typically occurred
when U dropped below ~2 cm s, Altogether, the
screening process based on these 3 criteria typically
resulted in the exclusion of <15% of the measured
10 min EC O, fluxes.

Dark benthic chamber O, fluxes

Areal rates of benthic O, uptake (mmol m™2 h™?)
were derived from the rate of change of O, in the
well-mixed incubated water phase over time as
(v/a) x (0C/dt), where v is the volume of the water
phase in the chamber (m®), a is the area of
enclosed sediment (m?), C is the O, concentration
(mmol m~), and t is the incubation time (h) (Glud
2008).

Rates of benthic productivity

The rates of benthic productivity were calculated
from each time series of the EC O, exchange rates.
Night-time periods were identified as the periods
when PAR was <1 pmol quanta m~2 s~!, Daytime
periods comprised the remaining intervals. The O,
exchange during light (termed ‘net daytime pro-
duction’, NDP) and R were then computed from the
EC time series in mmol O, m™ h™! as a bulk aver-
age of the O, fluxes during light and dark, respec-
tively. Assuming a light-independent respiration
rate, we also derived estimates for the benthic GPP
(mmol O, m~? h7!) as GPP = NDP + IRl. Acknowl-
edging that the rate of R during daytime typically is
higher than that at night, we regard the GPP esti-
mates presented herein as minimum values (Glud
et al. 2009).

The autotrophic-heterotrophic balance of the
benthic ecosystem (termed ‘net ecosystem meta-
bolism', NEM; mmol m™2 d™!) was derived directly
from the EC time series as the 24 h integration of
the O, flux. When more than 24 h of data was
available (as was most often the case), the NEM
was computed as a weighted average of the NDP
and R fluxes accounting for the number of day ver-
sus night hours. The NEM indicated whether sedi-
ment O, production through photosynthesis bal-
anced the various heterotrophic processes that
directly or indirectly consume O,. Positive NEM
values indicated a net O, release by the benthic
ecosystem (autotrophy) while negative NEM values
indicated a net O, uptake (heterotrophy) over a
24 h period.

Benthic community light response

The light dependency of the EC O, fluxes was eval-
uated using the photosynthesis versus irradiance
(P-E)relationship. The screened 10 min EC O, fluxes
covering at least one 24 h period were binned to 2 h
intervals and plotted against the PAR data. This time
interval was selected as a compromise between
maintaining a high enough temporal resolution while
minimizing the flow-induced effects and other non-
steady state dynamics within the BBL that con-
founded the EC O, fluxes on shorter time scales
(Holtappels et al. 2013). The relationship between
EC O, fluxes and PAR was investigated using various
fitting functions, and from regression analyses it was
established that the P-E relationships were best ex-
plained by linear fits to the data. The compensation
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irradiance (E,, pmol quanta m~2 s7!), that is, the PAR
level at which GPP balances R, was subsequently de-
rived from each linear fit as the x-intercept.

RESULTS
Environmental conditions

Bottom water temperature ranged from 16.6 +
0.4°C in summer to 6.3 + 0.2°C in winter. Bottom
water salinity remained relatively constant during
deployments but varied between 30.8 and 33.6 dur-
ing the year. Bottom water O, saturation was lowest
in November (86 + 2 %) and highest in August (109 =
4 %) (Table 1). Variations in the bottom water O, con-
centrations of up to 40 pmol 1! (~15% saturation)
during deployments coincided with the tidal advec-
tion of O,-enriched waters from outer Loch Sween
into Caol Scotnish. The daily integrated in situ PAR
was lowest in February (0.7 mol quanta m~2 d~') and
highest in April (5.5 mol quanta m™2 d).

Eddy covariance measurements

The narrow (<100 m) width of the side loch in Loch
Sween and the tidally-driven flow resulted in well-
constrained hydrodynamics that allowed the divers
to accurately align the EC instrument’s longitudinal
velocity component and the O, microsensors within
the main flow direction. Therefore rotation of the tra-
verse velocity component during data processing
was minimal and typically amounted to less than
+20°. Care was taken to deploy the EC instruments
level with the seabed such that the ADV tilt as meas-
ured by the instrument's internal compass was less
than +3°. Under unidirectional flow conditions, the
time lag correction required to identify a maximum
numerical flux was typically 0.2 to 0.8 s, which is in
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Fig. 3. Friction velocity (u«) as a function of flow velocity

magnitude (U) from parallel eddy covariance (EC) deploy-

ments over a 24 h period in April. Despite very similar flow

magnitudes at both sites, u« was consistently higher at the

maerl bed, indicating more vigorous turbulent mixing due to
higher benthic surface roughness

good agreement with the 90% response time of the
O, microsensor. Linear relationships between the
mean flow velocity magnitude (i.e. U) and u« indi-
cate that a well-developed turbulent BBL was pres-
ent during ~90 % of the sampling time at the 2 sites
(Fig. 3). At low flow velocities (<5 cm s7!) the rela-
tionship between the flow velocity and u. deviated
from linearity due to diminishing turbulent transport.
When the flow velocity decreased below ~2 cm s!
the O, fluxes were highly reduced due to insufficient
turbulent mixing (Brand et al. 2008, Attard et al.
2014). Fluxes that fell within these periods amounted
to <10% of the total time series, and were excluded
from further analyses.

We evaluated the sensitivity of the EC O, fluxes to
coordinate transformation by comparing the flux esti-
mates derived following coordinate rotation by the
‘double’ and ‘planar’ rotation methods, which gave
the same results. Furthermore, we followed the pro-
cedure described by Holtappels et al. (2015) to esti-
mate the artificial flux caused by the stirring-sensi-

Table 1. Data from the CTD deployments for the 5 measurement campaigns. Values for depth, temperature, salinity, and O,
are presented as a bulk average (+SD) of the entire deployment. Daytime hours are defined as periods when seabed photo-

synthetically active radiation (PAR) >1 pmol m~2 s7!, sat. = saturation
Measurement Depth Temperature Salinity O, O, PAR Hours of
campaign (m) (°C) (umol 171 (% sat.) (molm2d?') day/night
Sep 47+0.3 14.6 £ 0.2 32.3+0.3 245 + 20 96 + 8 0.95 12.8/11.2
Nov 50+04 10.1 £ 0.3 30.8 £ 0.5 244 + 7 86 + 2 1.17 11.2/12.8
Feb 47+04 6.3 +0.2 31.6 +0.2 310 £ 6 101 £ 2 0.70 8.5/15.5
Apr 4.6 +0.3 9.6+0.4 33.6 £0.2 302+ 11 107 £ 6 5.48 14.3/9.7
Aug 4.7 +0.3 16.6 £ 0.4 31.8+£0.7 270+ 9 109 + 4 3.29 14.5/9.5
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Fig. 4. A 24 h time series of eddy covariance (EC) O, fluxes
measured in parallel at (B) the maerl bed and (C) the adja-
cent (~20 m apart) sand site in April. Positive fluxes indicate
a net release of O, from the seabed and negative fluxes indi-
cate net O, consumption. (A) The photosynthetically active
radiation (PAR) availability was the main driver of O, pro-
duction, with O, fluxes typically being positive during peak
irradiance. (D) The 24 h integration of the O, fluxes repre-
sents the net ecosystem metabolism (NEM). (E) The mean
flow velocity was the second main control on the EC fluxes.
(F) Flow velocity and O, concentration show very good
agreement between the 2 sites

tive O, microsensors. To determine the theoretical
upper limit of the flux bias due to stirring sensitivity,
we selected periods of nighttime EC data that ful-
filled the conditions required to induce a maximum
flux bias, thatis (1) the O, microsensor being aligned
with the main flow direction at an inclination of ~60°,
(2) high bottom-water O, concentrations, and (3) vig-
orous turbulent mixing due to high flow velocity
and/or high z, (Holtappels et al. 2015). Using
MODEL 2 and a sensor stirring sensitivity of 0.5%,
we estimated the theoretical maximum flux bias to be

on the order of 10 to 15% of the measured EC O,
fluxes, which is well within the error margin of our
flux estimates.

The well-developed turbulent BBL in Loch Sween
maintained a steady benthic flux signal and allowed
for detailed inferences to be made about the dynam-
ics of the benthic O, exchange rate in response to
changing environmental conditions. Parallel deploy-
ment of 2 EC systems located ~20 m apart from one
another documented similar O, flux dynamics, but
substantial differences in the absolute exchange
rates between the 2 sites that were exposed to very
similar PAR, flow velocity magnitude, and bottom
water O, concentrations (Fig. 4). Typically, the EC O,
fluxes showed a distinct diel response to the avail-
ability of PAR. During peak irradiance the EC O,
fluxes were positive, indicating net autotrophy. Dur-
ing the night, fluxes were negative. The diel signal in
the data was overlain by extensive short-term vari-
ability, as seen in the 10 min fluxes in Fig. 4. This
variability decreased substantially when averaged
over 1 h or more. However, even on hourly time
scales, the flow velocity magnitude was a major con-
trol on the EC fluxes. This was particularly evident in
the nighttime data, where rates of EC O, uptake
were enhanced by up to ~10-fold at the sand site and
by ~4-fold at the maerl bed (Fig. 5). A seasonal trend
in the slope of the regression between the nighttime
O, uptake rate and the mean flow velocity was
noticeable, especially at the sand site. The magni-
tude of the slope increased from months with low to
high benthic activity (Fig. 5). This result could reflect
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Fig. 5. Eddy covariance (EC) O, exchange rates in darkness
(2 h bins) as a function of the mean flow velocity at (A) the
maerl bed and (B) the sand site. Error bars are SE (n = 12)
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the reduced state of the sediment, where reduced
products from anaerobic decay processes accumu-
late in the surface sediments under low flow velocity,
and are subsequently oxidized when the surface
sediments are flushed with O, under high flow
velocities.

The 2 h EC O, fluxes showed a good correlation
with the in situ PAR during all seasons (Fig. 6,
Table 2). There was no evidence of light saturation or
photoinhibition in any of the 14 datasets (Fig. 6). Lit-
tle light (~15 pmol quanta m~2 s7!) was required to
drive a net autotrophic community response in win-
ter. In the other campaigns the E, was much higher,
with peak values in September indicating a substan-
tial heterotrophic component (Table 2). With the
exception of February, the E_. at the sand site was
consistently ~2-fold higher than that at the maerl
bed, suggesting that less light was required to drive a
net community autotrophic response at the maerl
bed.

Rates of EC O, exchange

We derived the first estimates of NDP, R, NEM, and
GPP for a live maerl bed community using the non-
invasive EC method as evidence for an active and
productive benthic habitat. The maerl bed was a net
source of O, to the surrounding waters during day-
time in February, April, and August, up to 0.6 mmol
0O, m 2 h™!. There was a net community consumption
of O, during daytime in September and November
(Table 3). Mean EC O, exchange rates in the dark
ranged from -0.6 mmol O, m™2 h™! in February to
—-2.2 mmol O, m~2 h™! in September. By contrast, the
sand site was on average heterotrophic or at meta-
bolic balance during the daytime (range from 0.04 to
-1.0 mmol O, m~2 h7!). The mean EC O, exchange
during the night at the sand site ranged from
-0.5 mmol O, m~2 h™! in February to —3.7 mmol O,
m~2h™!in April. When integrated over 24 h, both the
maerl bed and the sand site were heterotrophic year-
round, indicating that the benthic communities
required additional inputs of organic matter originat-
ing from external sources. The maerl bed NEM
ranged from -3.1 to —33.1 mmol O, m~2 d~! and at the
sand site it was from —3.1 to —41.9 mmol O, m~2 d*.

The benthic phototrophic communities in Loch
Sween were active during all measurement cam-
paigns. The highest mean rates of GPP were meas-
ured in April (up to 3.3 mmol O, m~2 h™') when the
integrated daily PAR was at its highest (5.5 mol
quanta m™2 d™'). However, even in winter when the

duration of the daytime period was ~1.7 times shorter
and daily PAR was ~8-fold lower, the benthic pho-
totrophs were still active. The highest mean rate of
GPP for this period was measured at the maerl bed at
1.2 mmol O, m~2 h™', which is just ~1.5-fold lower
than the April GPP estimate for the same site
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Fig. 6. Photosynthesis—irradiance (P-E) relationships for

both sites over the year. Linear regressions were fitted to 2 h

binned eddy covariance (EC) O, exchange rates (n = 12).

With the exclusion of the February datasets, the compensa-

tion irradiance at the maerl site was consistently ~2-fold
lower than that at the sand site



108

Mar Ecol Prog Ser 535: 99-115, 2015

1A
~ 07—
EN -2
o )
g
E —61 Maerl Sand
=z |
-8
T +]B -
g 6
ON 4
s 4
é 4
g 2
0} Oi /
T T T
APLCAN
|E _477
o' _g
IS |
£ 12
I\ i
_16 T T T T T T T
Nov  Jan Mar  May Jul Sep Nov  Jan
Month

Fig. 7. Annual estimates of net (A) ecosystem metabolism

(NEM), (B) gross primary productivity (GPP), and (C) respi-

ration (R) for the 2 sites as derived from seasonal eddy

covariance (EC) measurements. The difference between the

curves reflects the difference in the response of the benthic
community between sites

(Table 3). Interestingly, despite the low light levels,
the highest mean rate of net O, release during day-
time was measured at the maerl bed in February
(NDP of 0.6 mmol O, m~2 h™1),

The seasonally measured EC rates of NEM, GPP,
and R (Table 3) were used to derive cumulative esti-
mates of these parameters over the year (Fig. 7). This
analysis assumes that the rates measured during the
individual measurement campaigns are representa-
tive of each season. Annual estimates of GPP were

Table 2. The fitting statistics of the linear photosynthesis versus irradiance
(P-E) relationships as fitted to 2 h averages of the eddy covariance (EC) O,
exchange rates. The slope is in mmol O, m™2 h™! (pmol quanta m~2 s7)7!, the
intercept is in mmol O, m~2 h™!, and the compensation irradiance (E,) is in
pmol quanta m~2 s7'. No P-E relationship is available for the sand site in
August 2012 due to sensor damage incurred after ~6 h of deployment

~6 mol O, m~2 yr! for both sites. However, the sand
site was overall more net heterotrophic, with a NEM
of =7 mol O, m~2 yr ! and a R rate of =13 mol O, m™2
yr 1. At the maerl bed NEM was —4 mol O, m~2 yr!
and R was —11 mol O, m~2 yr~%.

Hydrodynamics and EC footprint characteristics

The z, and u. estimates computed from the ADV
velocity time series were variable between sites and
between seasons. However, the measurements con-
sistently indicated more intensified turbulent mixing
at the maerl bed compared to the sand site (Fig. 3).
Mean (+SD) z, for the 5 campaigns at the sand site
was 0.3 + 0.6 cm (n = 5), whereas at the maerl site it
was 1.2 + 1.2 cm (n = 5). The characteristics of the EC
flux footprint for the maerl bed calculated according
to the parameterisation by Berg et al. (2007) suggest
that the footprint was typically ~15 m long with a
width of ~1 m and a region of maximum flux located
~0.5 m upstream from the instrument. For the sand
site, the flux footprint had an average length of 30 m
with a width of 1 m and the region of maximum flux
was 1.3 m upstream from the instrument. Due to the
tidal reversal and therefore the reversal of the
upstream location of the EC footprint, the EC O,
exchange estimates for GPP, R, and NEM actually
integrate an area of about twice the size of the foot-
print dimensions estimated above. Analyses of the O,
flux as a function of the flow direction suggested no
substantial direction-dependent variations under the
same light and flow conditions. The spatial extent of
the maerl bed and the sand site was on the order of
100s of m upstream of the EC instrument in either
direction of flow, and therefore we can be confident
that the flux estimates presented here integrate the
activities of each respective benthic ecosystem.

Shallow-water benthic habitats are
frequently characterised by spatial
heterogeneity in the distribution of
benthic organisms such as fauna and
algae that may cause an uneven dis-
tribution of the flux signal within the
EC footprint area. For flux measure-

Measurement Maerl site Sand site ments to be representative of the total
campaign Slope Intercept E. R? Slope Intercept E. R? benthic community activities, the spa-

tial scales integrated by the EC meas-
Sep 0.02 -1.5 61 026 0.01 -1.0 103 0.37 urements must be larger than the
Nov 0.05 -24 43 083 0.02 -17 89 040 spatial scales of variation at the
i‘;k; 8:82 :(1):2 ;g 8:2‘21 8:8;1 :gg 112 8:‘21; seabed. The former can be estimated
Aug 0.03 15 48 068 _ _ _ _ with knowledge of the measurement

height at which the EC measure-




Attard et al.: O, exchange in maerl and sand 109

Table 3. Eddy covariance (EC) O, exchange rates (mean + SE). The values for light fluxes (i.e. net daytime production, NDP),
dark fluxes (i.e. respiration, R), gross primary productivity (GPP), and the dark chambers are in mmol m~2 h™! whereas net
ecosystem metabolism (NEM) values are in mmol m~2 d~!. MC = measurement campaign

MC ———— EC maerl bed Maerl EC sand site Sand
Dataset NDP R GPP NEM chambers Dataset NDP R GPP NEM chambers
length (h) (R) length (h) R)

Sep 44 -0.69+04 -2.16+04 149 -33.1 -2.36+0.19 39 0.04+03 -1.09+0.5 1.13 -11.7 -1.03+0.05
Nov 24 -030+x03 -095+0.2 0.65 -155 -1.05+0.13 26 -0.98+0.2 -1.42+0.5 044 -29.2 -1.07=+0.28
Feb 26 0.58+0.3 -058+0.1 1.16 -4.1 -1.05+0.38 24 -0.03+0.1 -0.48+0.2 045 -7.8 -0.56+0.18
Apr 51 0.15+03 -1.63+0.3 1.78 -13.7 -1.06 +0.19% 43 -042+1.5 -3.69+1.3 327 -41.9 -1.07 +0.64°
Aug 24 047+02 -1.04+0.2 1.51 -3.1 -1.11+0.17 6 -0.08+0.6 - 037" -3.1 -0.45+0.13

“Compromised measurements; excluded from yearly average
PEstimated using the R-value from the chamber incubations

ments were performed (i.e. 0.15 m) and the average
7, derived from the ADV measurements (Rheuban &
Berg 2013). The heterogeneity of the seabed surface
can be approximated from high-resolution images of
the seabed. In short, a low measurement height and
a high z, would result in a rapid transfer of the ben-
thic flux signal from the seabed to the EC sensors,
and would thus integrate small spatial scales. Follow-
ing the procedure described by Rheuban & Berg
(2013), we deduced that the spatial scales that our EC
measurements integrated (‘patch sizes' of ~30 cm at
the maerl bed and ~50 cm at the sand site) were large
relative to the spatial scales of variation within the
EC footprint area. Therefore, errors induced due to
spatial variability were small (<5%), and our EC
setup was optimal for deriving O, exchange rates
that are representative of the total benthic communi-
ties at both sites.

Benthic chamber measurements

The benthic O, exchange rates from the chamber
deployments during the night revealed O, uptake
rates at the maerl bed ranging from a mean (+SE) of
-1.0+ 0.1 mmolm2h™! (n = 3) in November to -2.4 +
0.2 mmol m~2 h™! (n = 4) in September (Table 3). At
the sand site, the range was from -0.5 + 0.4 mmol O,
m2h™! (n = 4) in February to —1.1 + 0.2 mmol O, m™2
h™! (n = 4) in April. Variations in the resolved O,
exchange rate between the replicate 0.1 m? cham-
bers were less than ~2-fold at both sites in September
and November. However in February, April, and
August the replicate chambers resolved highly vari-
able O, exchange rates that varied by up to ~6-fold at
the maerl bed in February (from —-0.3 to —1.9 mmol
m~2h™') and by a factor of ~8 at the sand site in April
(from —0.4 to —3.0 mmol m™2 h™Y).

DISCUSSION
Metabolism of a live maerl bed

Detailed studies on the metabolism of isolated red
coralline algae indicate low rates of photosynthesis
and respiration in line with their slow growth rate of
<1 mm yr! (Roberts et al. 2002, Blake & Maggs 2003,
Martin et al. 2013). Growth rates of Lithothamnion
glaciale in Loch Sween have been estimated at
around 0.2 mm yr~' (Burdett et al. 2011). However,
live maerl beds increase the substratum heterogene-
ity and provide structurally complex habitats that are
colonized by a large diversity of both autotrophic
and heterotrophic organisms (Barbera et al. 2003,
Teichert 2014). Therefore, it is likely that the respira-
tion and primary production of the maerl themselves
only represent a small fraction of the total benthic
community C turnover rates. The highly porous
maerl framework is ventilated by the turbulent water
flow, and particles, nutrients, and plankton can easily
flow through the complex cavities and sustain com-
munity metabolism. The ventilation process, the
complex structure of the maerl bed, and the spa-
tiotemporal variability in O, production and con-
sumption introduce various assumptions when quan-
tifying the GPP, R, and NEM using benthic chambers
that could potentially compromise the estimates. In
contrast to this, the EC method is non-invasive and
the measurements integrate a large footprint area.
This study is the first of its kind to apply this method
to document community O, dynamics and quantify
benthic primary productivity and C turnover in such
environments.

The non-invasive EC measurements revealed sub-
stantial benthic primary production in the maerl bed
year-round. To our knowledge, there exists just one
other seasonal study on benthic O, exchange in a
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maerl bed community, conducted in the temperate
Bay of Brest, France, using in situ benthic chambers
(Martin et al. 2007). The reported GPP values for
that site range from ~4 to 134 mmol O, m™2 d!
between winter and summer, with an annual rate of
24.5 mol O, m~2 yr~!, This rate is ~4-fold higher than
the yearly GPP estimate for the maerl bed commu-
nity in Loch Sween of ~6 mol O, m~2 yr'. However,
the PAR available for benthic photosynthesis at our
study site was up to ~8-fold lower than that reported
by Martin et al. (2007) for the Bay of Brest. This
difference could explain much of the variations in
the GPP between the 2 temperate sites. In contrast
with phytoplankton productivity, benthic primary
productivity is typically limited by PAR rather than
nutrient availability (Barranguet et al. 1998, Gattuso
et al. 2006). This inference is supported by our in
situ EC measurements, which document a linear
increase of the EC O, fluxes in response to increas-
ing light levels at the seabed. Therefore, a maxi-
mum rate of benthic O, production was not ob-
served, even when seabed PAR reached ~300 pmol
quanta m~2 s7! in summer (Fig. 6, Table 2).

Despite substantial benthic primary production,
the benthic O, consumption exceeded O, production
in the maerl bed over a diel period, and the maerl bed
community was net heterotrophic during each sam-
pling campaign. Even though the biomass of live
maerl thalli can be substantial, its contribution to the
food web is thought to be low due to the very low
organic content of its tissues (<6 %; N. A. Kamenos
pers. obs.) and the limited number of grazers that are
able to feed directly on live maerl fragments (Gra-
ham 1988, Grall et al. 2006, Martin et al. 2007). Most
of the C required by the benthic communities was
therefore likely synthesized by epiphytic macroalgae
and microphytobenthos, but the communities re-
quired an additional input of C from the surrounding
environment amounting to ~4 mol C m=2 yr~! (assum-
ing a respiration quotient of 1.0). These inferences
are consistent with the seasonal study in the Bay
of Brest, where despite a substantial annual benthic
GPP, the maerl community was net heterotrophic and
required an additional C input of 14 mol m=2 yr™
(167 g C m~2 yr'!) (Martin et al. 2007).

The annual C deficit in Loch Sween was likely a
result of sedimentation and entrapment of phyto-
plankton, and to a lesser extent, terrestrially derived
material from the catchment area. The potential
importance of external inputs of organic matter to the
maerl bed is substantiated by the high densities of
the suspension-feeding brittle stars Ophiothrix frag-
ilis associated with the live maerl in Loch Sween

(Fig. 1C). The heterogeneous substrate of live maerl
thalli in combination with the hydrodynamics at the
seabed and the high concentration of particles in the
water column make this habitat ideal for suspension-
feeding brittle stars (Davoult & Gounin 1995). This
may explain the high densities of O. fragilis at the
maerl bed compared to the adjacent sandy habitat
that was instead dominated by the deposit feeding
brittle star Ophiocomina nigra (Fig. 1).

Carbon turnover in maerl versus sandy sediments

To date, studies comparing maerl beds with adja-
cent bare sediments have focused on the importance
of the maerl structure for local benthic biodiversity
(Barbera et al. 2003, Kamenos et al. 2003, Teichert
2014). No previous studies have compared the bio-
geochemical functioning of the maerl bed to adjacent
bare sediments. The 2 habitats we investigated were
located at the same depth and within ~20 m of one
another, and therefore experienced the same envi-
ronmental conditions of PAR, flow velocity, O, con-
centrations, and temperature. This provided an ideal
opportunity for detailed comparisons of community
based C turnover and their controls at these 2 con-
trasting sites.

The EC measurements revealed very similar
annual GPP for both sites: ~6 mol O, m~2 yr~! (Fig. 7).
These rates are comparable to the annual depth-
integrated phytoplankton productivity in the <35 m
deep photic zone measured at 3 nearby locations
using !C-labelled bicarbonate incubations (range
from 10 to 17 mol C m™2 yr}; Rees et al. 1995).
Despite a net light under-saturation of the benthic
communities, the seabed is an important component
for primary production in the shallow water ecosys-
tems of the Loch Sween Marine Protected Area.

The benthic GPP rates presented above must be
regarded as minimum estimates, since computing
the GPP from O, exchange measurements invokes
the assumption that O, consumption is equal during
day and night (Glud et al. 2009). During daytime, the
rate of O, consumption is typically 1.4 to 1.8-fold
higher as a result of (1) deeper O, penetration and
hence a larger volume of sediment that can support
O, consumption, and (2) elevated turnover of leach-
ing labile photosynthesates (Epping & Jergensen
1996, Fenchel & Glud 2000). Evidence of this process
within EC O, exchange time series is often inferred
from high rates of O, consumption at dusk, when
photosynthetic activity ceases and the leftover labile
pool of photosynthesates is efficiently turned over
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within the first hours of the night (Glud et al. 2010,
Long et al. 2013, Rheuban et al. 2014). This feature
was also evident in the EC datasets from both the
maerl bed and the sand site (Fig. 4B), where the rates
of O, uptake at dusk frequently were ~2-fold higher
than the corresponding values later in the night. No
changes in flow velocity, flow direction, bottom water
temperature, or O, concentration could otherwise
explain this difference. However, we cannot exclude
that temporal shifts in fauna activity also could have
contributed to the elevated rates of O, consumption
at sunset, a process that has been observed in other
shallow water habitats (Wenzhofer & Glud 2004).

The availability of PAR at the seabed was the main
driver of benthic O, production at both sites (Figs. 4 &
6). The community E, that is, the PAR level at which
GPP balances R, exhibited a distinct seasonal trend
(Table 2). At both sites, E. was lowest in winter
(~15 umol quanta m~2 s71). During the remaining sea-
sons the E. at the sand site was consistently ~2 times
higher than that at the maerl bed. The higher E, at
the sand site was largely a result of flow-induced
stimulation of O, uptake during the day. At the maerl
bed, daytime EC measurements were largely unaf-
fected by flow velocity. However at the more perme-
able sand site, high mean flow velocities (>5 cm s71)
induced a negative O, exchange rate that deviated
substantially from O, exchange rates measured at
similar irradiances under lower flow velocities
(<5 cm s71) (Fig. 8). Therefore, the net sediment O,
release from the photic zone within the sediments
under high irradiances was offset by a higher flow-
induced uptake rate of O, as a result of deep and
rapid pore-water advection (Berg et al. 2013).

A key component of the biogeochemical function-
ing of benthic environments is the entrapment and
degradation of newly settled organic material by sed-
iments and fauna (Middelburg et al. 2005). Both of
these processes are included within the EC flux
measurements. Interestingly, even though the maerl
bed had high densities of suspension-feeding brittle
stars and a highly porous upper framework, the C
degradation at the sand site still exceeded that of the
maerl bed (C deficit of ~4 mol m™ yr~! at the maerl
bed and ~7 mol m~2 yr~! at the sand site). This result
could reflect a higher entrapment efficiency of
organic material at the more permeable sand site.
Highly permeable sediments have been termed 'bio-
catalytic filters' for their ability to effectively entrap
and decompose organic matter (Huettel et al. 2014,
McGinnis et al. 2014). However, for hydraulic con-
nectivity in the surface sediments to persist, incorpo-
ration of fine sediments into the sand matrix must be
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Fig. 8. Photosynthesis—irradiance (P-E) relationship for both

sites showing the effect of flow velocity on discrete 10 min

eddy covariance (EC) O, exchange rates over an 8 h period

in April. The flow had little to no effect on the exchange

rates at the maerl bed during the day, but substantially stim-

ulated an O, uptake that offset the net photosynthetic O,
release at the more permeable sandy site

kept low due to low deposition rates or by repeated
cycles of current- and wave-induced sediment resus-
pension and winnowing. Erosion of sands occurs
above a critical u. threshold of ~0.7 cm s~ (Wiberg &
Smith 1987), which corresponds to a flow velocity of
~5 cm s7! at the maerl bed and ~9 cm s7! at the sand
site. This is well below the maximal u. values
observed at both sites during a typical tidal cycle in
Loch Sween (Fig. 3).

Comparison to global benthic primary productivity
estimates

Globally, complex light-exposed benthic ecosys-
tems such as maerl beds and permeable sediments
cover large areas of the inner shelf region and con-
tribute substantially to local and regional primary
production (Gattuso et al. 2006). Our range of GPP
estimates for the 2 sites in Loch Sween (from 0.7 to
1.8 mmol O, m 2 h™! for the maerl bed and from 0.4 to
3.3 mmol O, m~2 h7! for the sand site) exceed the
global average estimates for benthic microalgal pro-
ductivity for the 0 to 5 m depth range in temperate
regions (~0.8 mmol C m~2 h™!; Cahoon 1999). How-
ever, the Loch Sween GPP estimates are at the lower
end of those for the maerl bed in the Bay of Brest,
France (range from 0.2 to 5.6 mmol O, m~2 h~!; Mar-
tin et al. 2007), as well as EC-derived GPP estimates
for shallow (3 to 8 m deep) benthic habitats in a
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southwest Greenland fjord (range from 0.1 to
5.7 mmol O, m~? h™'; Glud et al. 2010, Attard et al.
2014). EC-derived GPP estimates in temperate sea-
grass beds are substantially higher (range from 2 to
20 mmol O, m™ h™!; Rheuban et al. 2014), as are
those for tropical coral reefs (up to 40 mmol O, m™
ht, Long et al. 2013). Therefore, while the benthic
communities of Loch Sween contribute substantially
to local and regional primary production, the GPP
rates are somewhat modest when compared to other
shallow benthic habitats.

Benthic chamber versus EC measurements

There are a growing number of studies within the
literature comparing the benthic community O,
exchange rates as resolved using chamber incuba-
tions versus the EC method. The 2 approaches have
been reported to provide similar rates for cohesive
sediments that lack large conspicuous macrofaunal
species, giving confidence in the 2 measurement
techniques (Berg et al. 2003, 2009). Many of the
studies that employed both methods in more com-
plex benthic systems such as permeable sands and
in those dominated by large macrofauna also sug-
gest good agreement between the average rates
(Table 4). The largest discrepancies between the 2
methods (up to a factor of ~4) are reported for highly

permeable sediments under dynamic flow conditions
(Berg et al. 2013). For coarse-grained sediments, the
interaction between the boundary-layer flows and
the sediment topography results in small lateral pres-
sure gradients that drive an advective-dominated O,
flux into the permeable seabed (Huettel & Gust 1992,
Huettel et al. 2003). Benthic chambers attempt to
artificially recreate these conditions but may not fully
capture the in situ dynamics. Therefore, we could
expect a wide range of reported values for the EC-
versus chamber-resolved O, fluxes in permeable
environments (EC:chamber range from 0.5 to 4.1;
Table 4).

In this study, we obtained the benthic O, uptake
rate from parallel measurements using multiple ben-
thic chambers and EC in the dark at 2 contrasting
shallow-water sites and in different seasons. To date,
these measurements constitute the most extensive
benthic chamber versus EC comparisons. The ben-
thic ecosystem of Loch Sween is comprised princi-
pally of permeable sediments and a patchy distribu-
tion of large epifauna and macroalgae (Fig. 1B,C),
which suggests substantial horizontal spatial hetero-
geneity in the O,-consuming processes. This is
reflected in the large variations between replicate
0.1 m? chambers by up to a factor of ~6 at the maerl
bed and ~8 at the sand site. Despite large variability
between individual chambers, the mean rates of O,
uptake in the dark estimated from the chamber

Table 4. Studies in various benthic settings that employed both chamber and eddy covariance (EC) measurements to estimate
the benthic O, uptake rate for non-photic sediments, classified as ‘muds’ and ‘sands’. Flow velocity is measured by the EC
instrument 10 to 15 cm above the seabed surface. Units for benthic chamber surface area are in m?. Whenever seasonal meas-
urements are available, the EC:chamber (EC:Ch) is presented as a range of values obtained, and the overall mean is presented
in brackets. The April measurements in Loch Sween were excluded from the overall average due to the benthic chamber
measurements being compromised during this campaign (see ‘Materials and methods: Benthic chamber measurements’)

Sediment EC:Ch Depth  Flow velocity Chambers Location Study
type (m) (cms™) (no. of replicates,
surface area)
Muds 1.4 12 2 4 Aarhus Bay, Denmark Berg et al. (2003)
1.1 8 2-4 6 Limfjord, Denmark Berg et al. (2003)
0.9 1450 1-3 2 Sagami Bay, Japan Berg et al. (2009)
0.9 50 1-13 4 Loch Etive, Scotland Glud et al. unpubl. data
Sands 4.1 3 31 5 Wakulla River, USA Berg et al. (2013)
2.2 1 0-5 5 Florida, USA Berg et al. (2015)"
1.5 74 1-10 1, 0. Tommeliten, North Sea McGinnis et al. (2014)
1.1 107 3-10 1,0.2 Half Moon Bay, USA Johnson et al. (2011)
0.9-1.3 (1.2) 5 2-20 10, 0.1 Loch Sween, Scotland This study®
0.7-0.8 (0.8) 95 3-17 3,0.2 Monterey Bay, USA Johnson et al. (2011)?
0.5 80 0-13 2,0.04 Oregon Shelf, USA Reimers et al. (2012)
Maerl bed 0.6-0.9 (0.8) 5 2-20 16, 0.1 Loch Sween, Scotland  This study®
“Seasonal measurements
PRevised EC rates from Berg & Huettel (2008)
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deployments in most cases compared well to those
resolved in parallel by EC (Table 3). At the maerl
bed, the ratio of the mean (+SD) benthic O, uptake
rate as resolved by EC to the chambers ranged from
06 +0.1 (n=4)to 0.9+ 0.3 (n=>5) with an overall
average of 0.8 + 0.2 (n = 16). At the sand site, the
range was from 0.9 £+ 0.1 m =4) to 1.3 £ 0.5 (n = 2)
with an overall average of 1.2 + 0.2 (n = 10). These
values are well within the range of the ratios typically
reported for coastal aphotic benthic systems (be-
tween 0.8 and 1.5; Table 4).

The agreement between the EC- and chamber-
resolved measurements presented here lends credi-
bility to the application of both methods in complex
environments. However, the large variation between
replicate chambers indicates that replication is
critical to integrate larger spatial scales and resolve
an O, uptake rate that is representative of the total
benthic community. The number of replicate cham-
bers required varies between sites and depends on
the amount of heterogeneity present. For example, in
a simulation study performed by Glud & Blackburn
(2002) for a deep-sea cohesive sediment dominated
by relict burrow structures (30 to 120 burrows m2),
4 replicate 0.1 m? benthic chambers were able to
determine the benthic O, uptake rate to within ~95 %
accuracy. This was reduced to ~80% when the
same analysis was applied at a more heterogeneous
coastal cohesive site dominated by sparsely distrib-
uted large epifauna (Glud & Blackburn 2002). Logis-
tical constraints frequently limit deployment of multi-
ple benthic chambers, and here the EC method holds
a clear advantage in its ability to integrate larger spa-
tial scales and to better resolve temporal dynamics in
the O, flux. In this respect, the EC method represents
a powerful new approach for detailed studies on ben-
thic O, dynamics in complex coastal environments
such as maerl beds and other permeable settings.
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