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INTRODUCTION

Analyses of resource and consumer stable isotope
composition have long been used to infer elemental,
energetic, and trophic pathways in aquatic and ter-
restrial food webs (Peterson & Fry 1987). Typically,
the number of potential food resources exceeds the
number of stable isotopes that can be used to infer
resource utilization. Because these types of mass bal-
ance calculations can only resolve n + 1 re sources,
where n = the number of stable isotopes considered,
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ABSTRACT: Bayesian mixing model analyses of re -
source and consumer stable isotope composition are
commonly used to infer elemental, energetic, and
trophic pathways in aquatic and terrestrial food webs.
However, the outputs of these models may be biased
towards prior or null generalist assumptions, but the
magnitude of this potential bias is unknown. I con-
ducted a series of experiments to determine how this
bias is affected by the geometry and end-member un-
certainty of resource polygons. These experiments
showed that bias is mostly due to isotopic overlap be-
tween resources and is very strongly cor related in a
sigmoid manner with the normalized surface area of
stable isotope resource polygons. The normalized sur-
face area, a classic signal to noise ratio in bivariate
space, is calculated by scaling the x and y ordinates
by the mean standard deviations (SD) for δ13C and
δ15N, respectively. When equilateral 3-resource poly-
gons have a surface area <3.4 SD2, the outputs of
Bayesian mixing models primarily reflect the prior
generalist assumption. The back-calculated bias for
85 recently published triangular polygons averaged
50 ± 28% (± SD). Analyses of regular resource poly-
gons with 4 to 6 resources required 3.1 to 8.0 times
larger normalized surface areas to constrain bias. Fur-
thermore, polygons with 4 or more resources gave
poor outcomes for minor diet components. There was
a strong bias for resources similar, and against re-
sources dissimilar, to the dominant resource. Overall,
Bayesian methods applied to underdetermined mod-
els and poorly resolved data very often give results
that are highly biased towards centrist and generalist
solutions.
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A white croaker (Micropogonias furnieri) being eaten by a
kelp gull (Larus dominicanus), the consumer in the super -
imposed resource polygon from Silva-Costa & Bugoni (2013).
This was one of the best-resolved polygons assessed in the
present study, with a normalized surface area of 34 SD2. The
polygon is comprised of freshwater fish (FF), marine fish
(MF), and intertidal marine invertebrates (IMI).

Image: Fernando Faria
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the majority of food web stable isotope analyses have
too many potential resources and not enough tracers
and are therefore mathematically underdetermined
(Schwarcz 1991, Phillips 2001, Fry 2013a). Natural
variability in resource and consumer stable isotope
composition exacerbates the underdetermined prob-
lem (Phillips & Gregg 2001, Moore & Semmens 2008,
Ward et al. 2010). Several ‘mixing model’ algorithms
have been proposed to resolve this problem (Phillips
& Gregg 2003, Moore & Semmens 2008, Parnell et al.
2010). Whether the underdetermined problem has
been, or even can be, resolved was the subject of a
recent debate (Fry 2013b, Semmens et al. 2013).
A.W.E. Galloway et al. (un published) showed that a
fatty acid based approach to these types of problems,
which has the advantage of being able to apply 20
or more tracers, gave much more accurate and pre-
cise outcomes than did 2 stable isotope analyses.
However, A.W.E. Galloway et al. (unpublished) also
showed that stable isotope based analyses gave very
accurate outcomes when there was very little uncer-
tainty for the stable isotope  values.

Based on the results summerized above, I tested the
hypothesis that bias for 2 stable isotope cases in
Bayesian mixing model outputs is caused by poorly
resolved resource polygons. This hypothesis was
tested by comparing the outputs for a fixed consumer
scenario across a wide gradient of normalized surface
areas for triangular resource polygons. Equilateral
triangular polygons with un even end-member uncer-
tainty and acute triangular polygons were also ex-
plored. The performance of regular 4, 5, and 6 end-
member resource polygons was compared to that of 3
end-member polygons. Finally, the normalized sur-
face area of actual triangular polygons was assessed
by carrying out a meta-analysis of papers in the
Bayesian mixing model literature that recently re-
ported the configuration of 3 end-member scenarios.

METHODS

Bias in triangular resource Bayesian mixing
model analyses

To test whether bias in Bayesian mixing model out-
puts is related to resource polygon resolution, in an
initial experiment I created a fixed triangular re -
source polygon and a fixed consumer comprised of
80% of the first resource and 10% of the second and
third resources. This hypothetical consumer was
tested because it was essential to test scenarios that
were either much more or much less than the prior,

i.e. 33.3% for a triangle. Uncertainty (i.e. standard
deviation, SD) values for the end-members were then
varied over a geometric gradient to create a series of
normalized resource polygons that ranged from
being much smaller to much larger than those nor-
mally seen in actual field studies (Fig. S1 in the Sup-
plement at www. int-res. com/  articles/ suppl/ m514
p001 _ supp.   pdf). The surface areas of the resource
polygons were normalized by dividing by the within-
polygon mean SD for the δ13C and δ15N values,
respectively. The length of each side of these trian-
gles was determined using the Distance Formula:

(1)

where x and y represent the normalized δ13C and
δ15N coordinates, respectively. The normalized sur-
face area of these polygons was then calculated
using Heron’s Formula:

(2)

where ab/bc/ca represent the first/second/third side,
and s represents the semiperimeter, i.e. one-half the
perimeter of the triangle. The untransformed data for
these cases were then run through MixSIR (Moore &
Semmens 2008) and SIAR (Parnell et al. 2010) based
versions of the FASTAR code (Galloway et al.
2014a,b), and the outputs were compared to the nor-
malized surface areas for these cases. These re sults
were also fit to a Boltzmann Sigmoid Function:

(3)

where A1 represents the prior lower asymptotic value,
A2 represents the final upper asymptotic value, x rep-
resents the natural log transformed surface area, x0

represents the point of inflection, and dx represents
the slope of the function at the point of inflection.
These results can also be represented as an expected
bias relative to the prior assumption and actual
correct value:

(4)

where meanBoltz (i.e. y from Eq. 3) represents the
average of the equilateral triangle simulations as
described by the Boltzmann Sigmoid Function,
‘assumption’ represents equal contributions from all
resources, and ‘correct’ represents the true value for
any resource.

In a second experiment, an equilateral triangular
polygon was created, with an 80/10/10 consumer,
and the resource SD values were varied for 3 differ-
ent cases. In the first case, the SD value for the dom-
inant resource was set to one-quarter of the SD val-
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ues for the minor resources. In the second (null) case,
the SD values were the same for all 3 resources. In
the third case, the SD value for the dominant re -
source was set to 4 times the SD value of the minor
resources. In all 3 cases, the aggregate average SD
values for the 3 resources were the same. These
cases were run through the code, and the outputs for
the 3 cases were compared.

In a third experiment, an acute isosceles triangle
was created with a height that was 4 times its base and
with all 3 end-members having the same SD. Then, 2
consumers were created, the first of which was com-
prised of 80% of the acute resource and 10% of the 2
obtuse resources. The second consumer was com-
prised of 80% of 1 of the obtuse resources, 10% of the
other obtuse resource, and 10% of the acute resource.

Bias in 4-, 5-, or 6-resource scenarios

In the fourth, fifth, and sixth experiments, the per-
formance of 2 stable isotope and 4, 5, and 6, respec-
tively, end-member resource polygons were tested.
In these experiments, regular (equal-sided) resource
polygons with equal variability for each resource and
a fixed 80/10/10 consumer were used (Fig. S2 in the
Supplement at www. int-res. com/  articles/ suppl/ m514
p001 _ supp.   pdf). As was previously done for the first
experiment, SD values for the resources were varied
over a geometric gradient to create a series of nor-
malized resource polygons that ranged from being
much smaller to much larger than typically seen. The
normalized surface areas of the regular polygons
tested were calculated accordingly:

(5)

where r represents the radius (center to a vertex) of
the polygon, N represents the number of sides (or
resources), and ‘sin’ is the sine function in radians.

Consumer sample size influences on mixing
model outputs

The original versions of MixSIR and SIAR ag gre -
gate outputs for cases where multiple consumers are
analyzed simultaneously in a way that reduces dis-
persion as consumer sample size increases. However,
the code used for most of the simulations in this paper
aggregated cases separately, so that the dispersion
when large samples sizes were considered was no
 di fferent than when only a single consumer was tested.

Because of this difference compared to the conven-
tional codes, I designed a seventh experiment to test
whether analyzing multiple consumers with the con-
ventional code would affect model accuracy and pre-
cision. Cases with consumer sample sizes of 1, 3, 5, 9,
13, 25, 49, and 101 were tested. All of the consumer
datasets considered, with the exception of n = 1, had
the same SD values representing the uncertainty
 typically associated with trophic fractionation in the
cases of carbon and nitrogen, and the mean producer
SD values for hydrogen. This experiment was based
on the data from a poorly resolved polygon in the
published literature (surface area = 3.5 SD2). The re-
source values used were −29.2 ± 1.5‰, −26.2 ± 2.6‰,
and −28.4 ± 4.6‰ for the terrestrial, benthic, and
pela gic δ13C ratios, respectively. Similarly, the δ15N
values used for these resources were −4.6 ± 0.6‰, 2.4
± 1.7‰, and 5.3 ± 2.3‰, respectively. The δ2H values
used were −129.5 ± 15.2‰, −180.4 ± 18.0‰, and
−198.0 ± 8.3‰, respectively. The hypothetical con-
sumer tested was comprised of 10/10/80 terrestrial/
benthic/ pelagic resources and had a stable isotope
com position of −28.3 ± 1.4‰, 4.0 ± 1.0‰, and −189.4 ±
13.8‰ for δ13C, δ15N, and δ2H, respectively.

Meta-analysis of triangular polygons

To determine the size distribution of stable isotope
based resource polygons, every paper that cited
either Moore & Semmens (2008) or Parnell et al.
(2010), n ∼ 500, was surveyed for triangular resource
polygons. This survey identified 74 cases where the
mean ± SD δ13C and δ15N values for 3 end-member
polygons were either directly provided or could be
 extracted from bivariate plots using the digitizing
software DigitizeIt 1.6.1 (see the Supplement at www.
int-res. com/  articles/ suppl/ m514 p001 _ supp.   pdf). An ad -
ditional 11 cases were identified where a third stable
isotope was also determined, i.e. 9 cases for δ2H and 2
cases for δ34S. In a few cases, these triangular
polygons differed from the resource polygons origi-
nally specified by the authors. For example, Cremona
et al. (2009) presented data for 8 aquatic macrophytes,
8 epiphyte biofilms growing on aquatic macrophytes,
and 4 suspended particulate matter (SPM) samples.
These data were collapsed to only 3 resources, i.e.
macrophytes, epiphytes, and SPM. However, in the
large majority of cases, the resource polygons ex-
tracted were those originally specified by the authors.
Once δ13C and δ15N coordinates were ob tained, they
were normalized, and the surface areas of these poly-
gons were calculated as described previously.
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RESULTS

Influence of polygon surface area and shape on
bias

When using the MixSIR version of the Bayesian
mixing model, the first experiment showed bias in
outputs that were very strongly related to the nor-
malized surface area of triangular polygons in a sig-
moid manner (Fig. 1, Table 1). When the normalized
polygon surface area was ≤1.1 SD2, the mean model
output was biased ≥80% towards the prior assump-
tion. For these poorly resolved polygons, the 95%
confidence interval for outputs also spanned nearly
the entire range of possible values, i.e. 2 to 85% for
the dominant (80%) resource. A polygon surface
area of 3.4 SD2 corresponded to 50% bias (Fig. 1). A
surface area of ≥10.8 SD2 reduced bias to ≤20% and
considerably reduced the 95% confidence interval
for the outputs for the dominant resource, i.e. 46 to
92% (Fig. 1). The experimental outcomes for the 2
minor diet resources were similar to those described
above.

When using the SIAR version of the Bayesian mix-
ing model, the first experiment yielded very similar
re sults as for the MixSIR version of the code (Table S1
in the Supplement at www. int-res. com/ articles/
suppl/ m514 p001_ supp.pdf). However, when well
resolved polygons were considered, the SIAR out-
puts were less accurate and much less precise than
MixSIR based outputs. The mean SIAR outputs also
had a structural bias that persisted even for the
largest polygons tested. Unless otherwise noted, the
results presented hereafter are based on MixSIR.

In the second experiment, an equilateral triangle
with a normalized surface area of 3.1 SD2 had its end-
member SD values varied between the dominant and
minor resources. In the null case, i.e. equal variability
for each resource, the mixing model output was 56 ±
20% for the dominant (80%) resource. When the
variability for the dominant resource was 4 times
larger than that for the minor resources, the mixing
model output was 50 ± 16% for the dominant re -
source. When the variability was one-quarter that for
the minor resources, the model output was 64 ± 21%
for the dominant resource. In the third experiment,
mixing model outputs for acute triangular polygons
were examined. These polygons were isosceles trian-
gles with a height that was 4 times greater than the
base, equal end-member uncertainty, and a normal-
ized surface area of 3.1 SD2. When the acute resource
was the dominant resource, the algorithm calculated
an average contribution of 70 ± 13% from this

resource, and contributions of 15 ± 13% for the 2
minor resources. When the dominant resource was
obtuse, the model calculated a 47 ± 23% contribu-
tion. The model also calculated a contribution of 38 ±
24% for the acute minor resource, and 15 ± 10% for
the obtuse minor resource.
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Fig. 1. (a) Triangular resource polygon tested. The grey dot
represents a fixed consumer comprised of 80% of the upper
left resource, and 10% of the other 2 resources. (b) Calcu-
lated resource contribution for the dominant resource (80%)
for the 80/10/10 three end-member equilateral scenario.
The gradient of normalized surface areas was generated by
systematically varying producer SD values, while leaving
the producer and consumer stable isotope values fixed. The
lower and upper dashed horizontal lines represent the gen-
eralist prior assumption and the correct value, respectively,
and the solid horizontal line represents the mid-point be-
tween these values. The filled circles depict the mean ± SD
of the outputs, and the outer envelope represents the 95% 

confidence interval
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Using equilateral triangles with equal variability
for each resource and a surface area of 3.1 SD2, the
influence of the consumer scenario considered was
also tested. For this analysis, a series of consumers
with varying contributions from the dominant re -
source (i.e. 100%, 90%, 80%, 70%, etc.), and even
contributions from the 2 minor resources were used.
When the dominant resource was 80% or greater,
model output bias consistently averaged ∼47%. As
expected, bias decreased somewhat when the hypo-
thetical consumer was less dominated by a single
resource, i.e. bias averaged 43% when the dominant
resource contributed 50%.

Bias in polygons > n+1

The results of the fourth through sixth experiments
were similar to those for the first experiment in sev-
eral regards (Fig. 2 and Table 1). For 4, 5, and 6 end-
member resource polygons, the calculated average
contribution and 95% confidence interval for a hypo-
thetical dominant resource (i.e. 80%) depended very
strongly on the normalized polygon surface area.
However, the polygon surface area required to con-
strain output bias increased substantially as more
resources were considered. As previously noted, a
surface area of 3.4 SD2 corresponded to 50% bias for
an equilateral resource polygon. For a square poly-
gon, this increased to 10.5 SD2, and for 5 and 6 end-

member polygons, surface areas of 20.6 and 30.3 SD2,
respectively, were required (Fig. 3). The fourth
through sixth experiments also showed a structural
bias of ~10% against the dominant resource even
when very large polygons were considered.

These 4, 5, and 6 end-member cases also indicated
poor performance for the minor resources. For exam-
ple, in the 5 end-member case, the calculated contri-
bution for the minor resource (10% contribution) that
was closest to the dominant resource in a regular
polygon (i.e. the second of 5 resources) and con-
verged on 10% for very large polygons (Fig. 4). The
contribution for the third resource in the series,

Resource               Number of resources
parameter            3                   4                  5               6
                                                                                       
A1                     0.334            0.253           0.200        0.167
A2                     0.803            0.750           0.757        0.729
x0                      1.247            2.187           2.872        3.156
dx                     0.832            0.851           0.994        1.016
r2                      0.9999          0.9999         0.9999      0.9999

Table 1. Boltzmann Sigmoid Functions for the 3-, 4-, 5-, and 6-
resource experiments. In the ideal case, the lower asymptotic
value (A1) would correspond to the prior assumption (i.e. 1/N),
and the upper asymptotic value (A2) would correspond to the
correct answer (i.e. 0.8 in this case). As is apparent from the
A2 parameter values for the 4, 5, and 6 end-member polygons,
the correct value was never achieved even when extremely
large polygons (i.e. >1000 SD2) were considered. These mod-
els were fit by using Excel Solver to minimize the model error
sum of squares. The experimental outcomes for 3 and 4 end-
member resource polygons are shown in Figs. 1 & 2. These
model results are for idealized polygons. The average bias for
any particular polygon will be similar, but individual cases
will vary depending on whether that end-member is obtuse
or acute and whether it has greater or lesser variability 

compared to other end-members of that polygon
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Fig. 2. (a) Rectangular resource polygon tested. The grey dot
represents a fixed consumer comprised of 80% of the upper
left resource, 10% of the next 2 resources in a clockwise
 direction and 0% of the fourth resource. (b) Calculated re-
source contribution for the dominant resource of an 80/10/10/0 

4 end-member square scenario. Other details as in Fig. 1
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which should also have been 10%, converged on 5%
for very large polygons. This calculated contribution
was very similar to that for the fourth potential
resource in this case, which should have been 0%.
Finally, the fifth resource in this case, which was
adjacent to the dominant first resource but should
have been 0%, was calculated to be ∼7% for very
large surface area polygons. In this case, as well as
the case for 4 and 6 end-member resource polygons
(not shown), physical proximity to the dominant
resource in the polygon was more strongly associ-
ated with the model outputs than was the actual cor-
rect answer (Fig. 4).

Consumer sample size

The model runs with the conventional code for
SIAR, which aggregates results when multiple con-
sumers are considered, showed that analyzing multi-
ple consumers simultaneously gave outputs that
were much more precise, but no more accurate when
a poorly resolved polygon (surface area = 3.5 SD2)
was considered (Fig. 5). This polygon was retested
after its resource SD values were multiplied by 0.53,

effectively increasing its normalized surface area to
12.1 SD2, which was the 90th percentile of the 85
published cases summarized below. When this well-
resolved polygon was tested, considering more con-
sumers led to moderate improvement in model per-
formance. For example, when only 1 consumer was
tested, the output indicated that the pelagic contribu-
tion (which should have been 80%) was 61%, and
the calculated contribution increased to 71% when a
consumer sample size of 13 was used (Fig. 5). As
expected, the well-resolved polygon gave much
more accurate outcomes irrespective of the number
of consumers tested. Although not shown, MixSIR
performed worse than SIAR in this experiment. In
both cases above, testing more consumers with
MixSIR did not improve model accuracy but did
greatly reduce  dispersion.

Characteristics of published triangular polygons

The 85 triangular polygons surveyed had a median
surface area of 3.9 SD2, and a 10th to 90th percentile
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range of 0.5 to 12.1 SD2 (Fig. 6). According to the sig-
moid response from the first experiment (Table 1),
this corresponded to an average bias of 50 ± 28%.
The δ13C and δ15N ordinates of these polygons had
average distances of 6.9 ± 4.2‰ and 4.4 ± 3.1‰,
respectively. These ordinates also had average SD
values of 1.8 ± 1.0‰ and 1.4 ± 1.0‰, respectively.
These dimensions gave a median absolute surface
area of 7.4‰2, and a 10th to 90th percentile range of
0.9 to 19.4‰2.

DISCUSSION

This analysis shows that the MixSIR Bayesian mix-
ing model (Moore & Semmens 2008) is an efficient al-
gorithm for resolving 2 stable isotope and 3 resource
based analyses provided the isotopic ratios for the
potential resources are quite distinct. Unfortunately,
the meta-analysis of recently published triangular
polygons showed that only about 13% of these poly-
gons were, in fact, well resolved (i.e. had less than
20% bias). Overall, bias for triangular polygons aver-
aged 50 ± 28%, indicating there is likely a strong bias
towards generalist outcomes in these types of analy-
ses (Fry 2013b). About 30% of the polygons consid-
ered were so poorly resolved (>75% bias) that it is
unlikely these could provide results that are differen-
tiated from the priors. This bias appears to be much
more severe for more complex resource polygon sce-
narios. When resource polygons exceeded the n + 1
criterion, Bayesian mixing model outputs exhibited
a negative structural bias of ∼10% for the dominant
resource even when extremely large polygons were
considered. For polygons with 4 or more resources,
there was also a pronounced bias for minor diet con-
stituents in favor of resources with similar stable iso-
tope ratios to the dominant resource. In these cases,
the mixing model only appears to correctly charac-
terize the dominant resource, and only when the
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polygon surface area was large. These outcomes are
qualitatively very similar to those reported by Phillips
& Gregg (2001), who found that uncertainty in stable
isotope analysis is strongly related to how distinct the
resources are from each other. However, the results
of the present study contrast markedly from the
statement of Parnell et al. (2010) that the Bayesian
mixing model SIAR works exceptionally well even in
underdetermined systems where core assumptions
are violated. In fact, both MixSIR, and to a somewhat
lesser extent SIAR, were very efficient algorithms for
finding the correct answer provided the resource
data were distinct and the underdetermined con-
straint was not violated. Conversely, output quality
was poor, and oftentimes completely non-informa-
tive, when these conditions were not met.

The bias towards the generalist prior for poorly re -
solved polygons is probably because when the re -
sources have overlaping stable isotope ratios, a very
wide range of solutions is plausible. If these types of
data were analyzed using a conventional algebraic
and Monte Carlo simulation approach, the wide
range of outputs would also include a high propor-
tion of outcomes <0% and >100%, which would be
an obvious red flag indicating that the resource poly-
gon being considered does not have a clear solution.
However, both MixSIR and SIAR force all re sults into
the >0% to <100% domain, which obscures what
would otherwise be a clear indication of model mis-
specification. These algorithms will always fit a
model and provide very detailed outputs with no
warnings even if the data are nonsensical (Parnell et
al. 2010). Both MixSIR and SIAR exhibited a general-
ist bias when the polygons were poorly resolved, but
in some experiments one algorithm performed better
than the other. In general, these algorithms are very
similar, with the most obvious difference being that
SIAR includes a residual error term whereas MixSIR
does not (Parnell et al. 2010).

The normalized surface areas of the 85 triangular
polygons (Fig. 6) indicates that on average about half
of the outcomes reported in the recent published lit-
erature mainly reflect the prior generalist assump-
tions inherent in most Bayesian stable isotope mixing
models. For example, the default prior for SIAR is the
uninformative uniform Dirichlet distribution, which
starts with all potential resources being equally im -
portant (Parnell et al. 2010). However, it is possible to
use informative priors if additional information on
diet or feeding is available. Only 13% of the 85 trian-
gular polygons had normalized surface areas greater
than 10.8 SD2, which indicated outputs that were less
than 20% biased. It should also be noted that mixing

model outputs for resources in triangular polygons
were more accurate and precise than otherwise ex -
pected, for an equilateral case, when that resource
was an acute end-member of the polygon or it was
less variable than the other end-members. Con-
versely, outputs for obtuse and more variable end-
members were worse. It is also noteworthy that
whereas the largest normalized triangular polygon
surveyed for this study had a surface area of 43 SD2,
the polygon used as an example by Jackson et al.
(2009) when debating the attributes of these types of
analyses had a surface area of 693 SD2. The fact that
this hypothetical polygon was 15 times larger than
the largest polygon observed in the meta-analysis
conducted for this study could  indicate that percep-
tions of what may constitute ‘typical’ resource mixing
polygons are askew.

The real situation may be worse than depicted
in Fig. 6 because the actual uncertainty for the re -
sources considered in the 85 polygons may be larger
than reported. Some of the studies summarized indi-
cated that resources were sampled at a very limited
spatial and temporal scale, meaning these were in
effect pseudo-replicated. Many studies only pro-
vided a cursory description of the sampling design
used to characterize resources. The overall average
resource SD values, i.e. 1.8 ± 1.0‰ and 1.4 ± 1.0‰,
respectively, for δ13C and δ15N, were much lower
than those reported by Cloern et al. (2002) who col-
lected 870 basal resource stable isotope samples (e.g.
terrestrial riparian vegetation, salt marsh vegetation,
aquatic macrophytes, and phytoplankton) and found
that within a plant group, δ13C and δ15N values varied
on averaged by ±5 to 10‰. Cloern et al. (2002) iden-
tified 3 modes of variability within their dataset, i.e.
(1) between plant species and microhabitats, (2) over
seasonal cycles of growth and senescence, and (3)
between living and decomposing biomass. The latter
point is especially germane because many field stud-
ies collect basal resources in 1 habitat (e.g. terrestrial
vegetation) and assume those stable isotope values
are representative of what is processed in another
(e.g. leaf litter in streams) without accounting for
microbial degradation.

Of the 85 actual polygons assessed, 74 were based
on 2 isotopes and 11 were based on 3 isotopes, with
deuterium the most common third isotope. Polygons
based on 3 isotopes followed the same normalized
surface area versus bias response summarized in
Fig. 1, but they were somewhat larger and therefore
less biased than 2-isotope triangular polygons. The
normalized surface area for 10 of the 3-isotope trian-
gular polygons was on average 44% larger than for
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the corresponding 2-isotope polygon for that dataset,
i.e. mean 6.2 ± 27 versus 4.3 ± 2.6 SD2. However, in
the case of Batt et al. (2012), adding deuterium as a
third tracer increased the polygon surface area by a
factor of 5. The improvement in resolution for these 11
cases resulted in a reduction in mean bias from 53 ±
21% to 38 ± 18% with the addition of a third isotope.

The most well-resolved triangular polygons, i.e.
those with surface areas greater than 10.8 SD2,
tended to be cases where very different resource
types were being compared. For example, the studies
of Semmens et al. (2009), Wootton (2012), Cummings
& Schindler (2013), and Silva-Costa & Bugoni (2013)
explored the contributions of marine and freshwater
or terrestrial resources to consumers in spatially sub-
sidized food webs (Polis et al. 1997). Jensen et al.
(2012), Xu et al. (2012), and Ruokonen et al. (2012)
studied benthic−pelagic or benthic−terrestrial sys-
tems. However, studying ecotones does not guarantee
a well-resolved resource polygon, as many ecotonal
food webs were actually poorly resolved. As previ-
ously noted, because the stable isotope ratios of par-
ticular basal resources can vary considerably tempo-
rally and spatially (Cloern et al. 2002), some resource
polygons could appear to be well resolved simply be-
cause they are based on a narrow range of conditions.

The experiment conducted with the conventional
SIAR code showed that considering multiple con-
sumers simultaneously greatly reduced output dis-
persion, but did not have a consistent effect on output
accuracy (Fig. 5). This is disconcerting because many
people conflate precision with accuracy, and when
Bayesian stable isotope mixing models are applied in
field settings, only output precision will be known.
This attribute of the conventional code can be easily
addressed by modifying the algorithm so that each
consumer case is treated completely independently
when reporting model outputs.

Analyses of 4, 5, or 6 end-member resource poly-
gons indicated that much larger surface areas are re-
quired to constrain bias. For example, a 4 end-mem-
ber polygon would have to have a 3.1 times larger
surface area (i.e. 10.5 SD2), than a triangular polygon,
to achieve 50% or less bias. Because any rectangle
can also be conceptualized as 2 triangles, tripling the
surface area of a triangular polygon by only adding a
single point can only be accomplished by adding a
very distal point. Conversely, in real applications, the
stable isotope values for a fourth resource could
easily fall close to one of the original resources or
even within the initial triangle. For regular polygons
with the same radiuses, 4-, 5-, and 6-sided polygons
will have surface areas that are respectively 1.5, 1.8,

and 2.0 times larger than a corresponding triangle. In
contrast, the results of the experiments with 4, 5, and
6 end-member resource polygons indicate that they
would have to be 3.1, 6.0, and 8.8 times larger, re-
spectively, to maintain the same level of bias for the
dominant component of the diet. These simulations
also indicated that the precision and accuracy for mi-
nor diet components de clined dramatically when the
n + 1 criterion was violated. When considering these
cases, minor re sources are never ruled out as being
important even when they actually contributed 0%
to the consumer tested. Poorly resolved resource iso-
topic data re sulted in higher estimated contributions
from minor or unimportant resources in all cases.
This indicates that in many field applications, mixing
model outputs for minor resources should be inter-
preted with great caution. Overall, these outcomes
indicate that using more than 3 resources for these
types of mixing model analyses is only warranted
when the additional resources are very distinct from
the original resources. Lumping multiple food re-
sources down to 3 will in most cases give less biased
outcomes for dominant and minor diet components.

Bayesian mixing models can also be biased to -
wards the prior generalist assumption when fraction-
ation-corrected consumers fall outside of the re -
source polygon (Parnell et al. 2010, Smith et al. 2013).
Consumers falling outside of the resource poly gon
may indicate that either the potential food sources or
the consumer trophic enrichment has been misrepre-
sented. Smith et al. (2013) developed a creative
Monte Carlo based approach to quantitatively test
whether the point-in-polygon assumption is met and
thus whether a Bayesian mixing model analysis is
even warranted. In cases where the consumer does
not fall within the resource polygon, Bayesian mixing
models will provide misleading results.

Fry (2013a) pointed out that in cases where con-
sumers fall in the region adjacent to the polygon cen-
troid, mixing models will inevitably output equal
contributions from all potential resources. For exam-
ple, in a regular hexagonal resource polygon, a con-
sumer that is the mathematical average of all re -
sources could be comprised of 50/50 contributions of
any 2 opposite resources in the polygon. Alterna-
tively, they could be comprised of 33/33/33 of the
first, third, and fifth resources, etc., as well as an infi-
nite number of permutations between these simple
ex amples and 16.7% contributions from all 6 re -
sources. An interesting elaboration of Fry’s (2013a)
point from this study is that when considering a per-
fectly average (centroid) consumer in a hexagonal
resource scenario, specialist consumers (e.g. 50/50
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for the first and fourth resources) are actually statisti-
cally excluded as plausible outcomes for larger
resource polygons. For example, for regular hexago-
nal cases with surface areas >4 SD2, a 50% consumer
falls outside of the 95% confidence interval. For con-
sumers similar to the centroid, larger polygons assure
precise generalist outcomes.

RECOMMENDATIONS

Investigators can use the Boltzmann Sigmoid Func-
tions summarized in Table 1 and Eqs. (3) & (4) to
assess whether their particular polygon falls within
the well or poorly resolved domains. Investigators
should also compare values from conventional alge-
braic analyses to the means from Bayesian mixing
models. The program IsoError can also be used with
triangular polygons as an alternative to Bayesian
mixing models (Phillips & Gregg 2001). IsoError will
yield unbiased mean and error estimates when only 1
or 2 isotopic tracers are available. Even more impor-
tantly, all stable isotope mixing model analyses
should present a plot of their poly gons, and make the
mean ± SD values for each resource and consumer
readily available. Assumptions regarding consumer
isotopic fractionation and trophic level should be
explicitly stated. Investigators should also acknowl-
edge that Bayesian mixing models are not a panacea
for poorly resolved data.

Every investigator should quantify the tendency of
their own resource polygon to misclassify consumers.
The simplest test for misclassification error is to
quantify the tendency of Bayesian mixing models to
misclassify the raw resource data on which they are
based. This test is not confounded by uncertainty
related to the assumed consumer isotopic fractiona-
tion or trophic level. To demonstrate, consider the
moderately well resolved (surface area = 7.6 SD2) 3-
isotope triangular polygon reported by Hondula &
Pace (2014) (Table 2). When these resource isotopic
values were run through MixSIR, an average mis-
classification of error of 26 ± 4% was obtained. When
these data were run through SIAR, the average error
increased to 46 ± 6%. For example, MixSIR classified
the isotopic values for microalgae as representing
75% microalgae, 13% macroalgae, and 12% macro-
phytes (Fig. 7). This indicates that any individual out -
come below 12% is within the expected background
error for this particular polygon. Although the origi-
nal authors did not consider 8 resources simultane-
ously, because they reported the mean ± SD isotopic
values for all 8 resources used to obtain their triangu-

10

                          δ13C            δ15N          δ2H    SD C    SD N  SD H

Microalgae      −23.7     5.4   −141.4   3.0        0.6     32.8
Macroalgae     −18.2     9.1   −137.9   2.9        1.4     46.1
Macrophytes   −11.9     5.8    −94.7    2.0        1.3     11.6

Table 2. Stable isotope values for microalgae, macroalgae,
and macrophytes from Hondula & Pace (2014). These values
are based on the mean ± SD values reported for the individ-
ual components of these groups. Microalgae: benthic micro-
algae and phytoplankton; macroalgae: Agardhiella, Co di um,
Gracilaria, and Ulva; macrophytes: Spartina and Zostera
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Fig. 7. Triangular polygon based on the data of Hondula &
Pace (2014) (see Table 2 for raw data). (a) The δ13C and δ14N
isotope values; however, δ2H values were also used for the
calculations. For this polygon, most of the differentiation
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lar polygon these can be used to assess misclassifica-
tion error when a polygon is extremely underdeter-
mined, i.e. 8 resources with only 3 isotopes. In this
case, the misclassification error averaged 81 ± 1%
because the Bayesian mixing model always used all 8
resources in its solutions. In several cases, the partic-
ular resource that was being asses sed was not even
classified as the dominant resource. For example,
when the isotopic values for Spartina were run
though the model, the solution included 38% Zoste-
ria and only 19% Spartina. When phytoplankton iso-
topic values were run through the model, Ulva classi-
fied as 26% compared to only 20% for phytoplank-
ton. This misclassification error was greatly reduced
when the resource SD values were changed to
extremely low values, i.e. SD/100. Misclassification
error was larger when these data were processed
with SIAR, and in this case, uncertainty associated
with the hypothetical consumers was very influential.

Finally, researchers should consider employing ad -
ditional dietary tracers. For some systems, fatty acids
have proven to be robust dietary tracers that make it
possible to explore basal resource contributions at a
much finer scale than possible when only using a few
isotopes (Galloway et al. 2014b). Most basal resource
types synthesize 10 to 20 different fatty acid mole-
cules, some of which are very characteristic for par-
ticular plant, algal, or bacterial groups (Galloway et
al. 2012, Taipale et al. 2013). Dietary fatty acids have
also been shown to leave strong signatures in some
consumers (Brett et al. 2006, Galloway et al. 2014a).
With additional research, other compounds may
prove to be useful tracers, and future research on this
topic is very much needed. Fortunately, the Bayesian
mixing model framework can be easily modified to
accommodate multiple tracers (Nosrati et al. 2014).

CONCLUSIONS

The sigmoidal bias models reported in Table 1 pro-
vide a basis to predict whether future, or even past,
Bayesian mixing model analyses are markedly
affected by bias towards the prior assumption. As
should be intuitive, these results show that Bayesian
mixing models can only resolve diet contributions
when the food resources considered are well re -
solved and distinct. These results also show that the
undetermined constraint creates a structural bias
against the dominant resource in cases where the n +
1 criterion is violated, i.e. the resources considered
exceed the tracers used by ≥2. In these cases, the
Bayesian mixing model also poorly resolves minor

food resources and never rules them out as being
potentially important. Investigators should quantify
the tendency of their own polygons to misclassify
data. Due to the mathematical limitations imposed by
the underdetermined constraint, employing a greater
number of dietary tracers is the most promising
means to improve the performance of this class of
models (Fry 2013a).

Acknowledgements. Thanks to Eric Ward, Gordon Holt-
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