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ABSTRACT: In migratory birds, environmental conditions in both breeding and non-breeding
areas may affect adult survival rates and hence be significant drivers of demographic processes.
In seabirds, poor knowledge of their true distribution outside the breeding season, however, has
severely limited such studies. This study explored how annual adult survival rates of black-legged
kittiwakes Rissa tridactyla on Hornøya in the southern Barents Sea were related to temporal vari-
ation in prey densities and climatic parameters in their breeding and non-breeding areas. We
used information on the kittiwakes’ spatiotemporal distribution in the non-breeding season
gained from year-round light-based tracking devices (geolocators) and satellite transmitters, and
kittiwake annual adult survival rates gained from a multistate capture-mark-recapture analysis of
a 22 yr time series of colour-ringed kittiwakes. In the post-breeding period, kittiwakes concen-
trated in an area east of Svalbard, in the winter they stayed in the Grand Banks/Labrador Sea
area, and in the pre-breeding period they returned to the Barents Sea. We identified 2 possible
prey categories of importance for the survival of kittiwakes in these areas (sea butterflies Theco-
somata in the Grand Banks/Labrador Sea area in winter and capelin Mallotus villosus in the Bar-
ents Sea in the pre-breeding season) that together explained 52% of the variation in adult survival
rates. Our results may have important implications for the conservation of kittiwakes, which are
declining globally, because other populations use the same areas. Since they are under the influ-
ence of major anthropogenic activities including fisheries, international shipping and the offshore
oil and gas industry, both areas should be targeted for future management plans.
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INTRODUCTION

The relationship between adult survival in long-
lived migratory species and environmental condi-
tions in both breeding and non-breeding areas is
important in understanding demographic processes
and population dynamics. For many migratory birds,
however, including most marine birds, the very lim-
ited knowledge of their distribution outside of the
breeding season has constrained studies of the rela-
tionship between demography and environmental
conditions (Runge & Marra 2005, Ratikainen et al.
2008, Schaub et al. 2011, Smith & Gaston 2012). For
pelagic seabirds, of which many species are severely
threatened by global extinction, such studies are
 crucial (Croxall et al. 2012, Frederiksen et al. 2012,
Lewison et al. 2012).

The recent advance of tracking technologies, such
as miniaturized year-round light-based tracking de-
vices (GLS loggers or hereafter geolocators), has revo-
lutionized our knowledge of the non-breeding range
of migrant species (e.g. Phillips et al. 2004, Gonzáles-
Solís et al. 2007, Guilford et al. 2009, Egevang et al.
2010, Seavy et al. 2012, Smith & Gaston 2012). Com-
bining such data with statistical modeling of long-
term capture-mark-resighting (CMR) data now allows
us to explore in detail the relationships between envi-
ronmental conditions in both breeding and non-
breeding areas and adult survival rates. As yet, very
few studies have investigated such relationships (but
see Schaub et al. 2011), and we know of only 2 seabird
studies that link adult survival to environmental con-
ditions in both the breeding and non-breeding areas
(Ramos et al. 2012, Smith & Gaston 2012) and none
that address temporal changes in prey availability in
non-breeding areas and adult survival rates.

Even small changes in adult survival can signifi-
cantly impact the population dynamics in long-lived
seabirds, since adult survival has a strong effect on
lifetime reproduction (Lebreton & Clobert 1991,
Stearns 1992). Worrying in this respect is the growing
number of studies documenting a negative im pact of
climate on the adult survival rates of marine birds
(e.g. Harris et al. 2005, Jenouvrier et al. 2005, Sandvik
et al. 2005, LeBohec et al. 2008). Climatic effects are,
however, most often indirectly mediated through tem-
poral changes in prey availability, via changes in prey
abundance (e.g. Sandvik et al. 2005), but they may
also affect prey availability directly through shifts in
the prey’s spatial distribution (e.g. Peron et al. 2010).

Most marine ecosystems show pronounced tempo-
ral and spatial variation in oceanographic processes
and trophic interactions that are often driven by cli-

matic processes, and these may lead to fluctuations
in important fish stocks and disruptions in preda-
tor−prey interactions (Godø 2003, Durant et al. 2005,
Grebmeier et al. 2006, Gjøsæter et al. 2009, Stige et
al. 2010, Certain et al. 2011). Especially for top pred-
ators such as seabirds, such fluctuations in prey spe-
cies may have negative effects on both survival and
reproduction (Lack 1968, Cairns 1992, Furness 2003,
Oro et al. 2004, Cury et al. 2011) and in some cases
may even drive populations towards extinction (Erik-
stad et al. 2013).

Since day length and food availability tend to be at
a minimum in winter, conditions in the wintering
range may strongly influence survival (Gaston 2003,
Frederiksen et al. 2008a). The effects of environmen-
tal variation on adult survival may, therefore, be
more profound outside the breeding season (Schaub
et al. 2011, Smith & Gaston 2012). However, during
the bree ding season, the costs of reproduction are
also known to impact survival (Golet et al. 1998, Oro
& Furness 2002), and may also have direct effects
on subsequent winter ecology (so called carry-over
effects) (Golet et al. 1998, Ylönen et al. 1998, Harri-
son et al. 2010). To be able to determine what factors
and time periods have the greatest impact on adult
survival, it is important to consider factors in both the
breeding and non-breeding seasons.

The Atlantic population of the black-legged kitti-
wake Rissa tridactyla (hereafter kittiwake) has expe-
rienced widespread population declines in recent
decades (Frederiksen 2010). The Norwegian popula-
tion has decreased by 6−8% per year since the mid-
1990s (Barrett et al. 2006) and is currently catego-
rized as endangered on the Norwegian Red List
(Kålås et al. 2010). The reasons for the declines over
such a large scale are not fully understood, but there
are indications that food shortages, possibly linked to
an increase in fishery activity, are im portant (e.g.
Frederiksen et al. 2004, 2008b, 2012).

Kittiwakes are good candidate species as sentinels
of environmental change in the marine system. They
are surface feeders with limited capacity to switch
prey, and they seem to operate at their energetic ceil-
ing (Welcker et al. 2010), which makes them par -
ticularly vulnerable to changes in the marine system
(Fur ness & Tasker 2000). As such, both spatial and
temporal environmental changes can affect their
demographic traits. A recent study by Frederiksen et
al. (2012) documented the non-breeding distribution
of kittiwakes from a widespread selection of colonies
across the North Atlantic (including the present
study population), providing the unique opportunity
to extract environmental covariates (such as sea sur-
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face temperature [SST] and temporal data of prey
density) from the identified non-breeding areas and
combine them with important demographic traits,
such as adult survival rates.

In order to collate representative data on prey avail-
ability for kittiwakes in their non-breeding areas,
knowledge of their diet throughout the year is im -
portant. Such data stem, however, mainly from the
breeding season, when the kittiwakes predominantly
feed on invertebrates and small energy-rich schooling
fish (up to 15−20 cm), the composition of which differs
between different ecosystems. In the North Sea, they
mainly feed on lesser sandeel Ammodytes marinus
(Lewis et al. 2001), in the Newfoundland and Labra -
dor Sea area on capelin Mallotus villosus (Carscadden
et al. 2002), and in the Barents Sea they switch be-
tween capelin and herring Clupea harengus (Barrett
2007). In the pre-breeding season, polar cod Bore-
ogadus saida have been found in stomach samples of
kittiwakes (Erikstad 1990). Knowledge of their diet in
the non-breeding season is poor (e.g. Frederiksen et
al. 2012), but a study by González-Solís et al. (2011) of
kittiwakes breeding on Hornøya suggests that they
feed on a lower trophic level (zooplankton) outside of
the breeding season. Some studies have shown that
they may feed on a variety of large zooplankton
 species, e.g. Calanus spp., amphi pods (Hyperiidea),
euphausiids and pteropods (Thecosomata) (Lydersen
et al. 1989, Mehlum & Ga brielsen 1993, Lewis et al.
2001, Karnovsky et al. 2008).

The aim of the present study was to explore the
relationship between potential prey availability and
climatic factors from known non-breeding areas and
adult survival rates of kittiwakes breeding in a
colony in the southern Barents Sea. Our main goal
was to assess which environmental conditions and
which time period had the greatest impact on this
key demographic trait. By combining tracking data of
kittiwakes from the colony and knowledge of kitti-
wake diet in their main non-breeding areas, we were
able to extract data on potential important environ-
mental factors from large-scale databases and enter
them as covariates in a multistate CMR analysis and,
hence, assess their impact on annual adult survival
rate of kittiwakes from the study colony.

MATERIALS AND METHODS

We used a 22 yr (1990−2011) time series of re -
sighted breeding kittiwakes that were individually
marked with colour- or letter-coded rings at the
colony of Hornøya (70° 23’ N, 31° 09’ E) in the south-

ern Barents Sea, where searches for the birds were
made every year during the breeding season and
where the population has declined by 70% since
1990 (Barrett et al. 2006).

Kittiwakes are long-lived, cliff-nesting seabirds
that lay 1−3 eggs and have a circumpolar, subarctic
and Arctic distribution (Coulson 2011). Their mean
breeding life-span on Hornøya in 1989−2003 was
estimated to be 8 yr (Sandvik et al. 2005); however,
one individual was sighted at an age of >26 yr (Bar-
rett 2010).

Non-breeding distribution

The non-breeding distribution of adult kittiwakes in
the North Atlantic has recently been extensively
mapped using light level geolocators (Bogdanova et
al. 2011, González-Solís et al. 2011, Frederiksen et al.
2012). The data used in this study concern birds nest-
ing on Hornøya, which were used in both the 2008−
2009 study by González-Solís et al. (2011) and in
2008−2009 and 2009−2010 by Frederiksen et al.
(2012). These data give important information on the
non-breeding distribution of the study population and
are used as background information for the analysis
in the present study. The initial data processing is de-
tailed in Frederiksen et al. (2012). Birds were tracked
from one breeding season to the next (n = 6 in
2008−2009, n = 14 in 2009−2010) and the monthly
data included in the present study are 1−10 Septem-
ber, 21−31 October, 1−30 November, 1−31 December,
1−31 January, 1−20 February and 4−30 April. Data
from July and August were excluded because of the
constant daylight in the Barents Sea. Data around the
equinoxes were also excluded because latitude esti-
mates are then unreliable (Phillips et al. 2004).

We also included data from 5 adult kittiwakes nest-
ing in Hornøya deployed with platform terminal
transmitters (PTTs or hereafter satellite transmitters;
A. Ponchon et al. unpubl.) from 2010 (n = 5). Fixed
kernel densities of kittiwake distribution were esti-
mated with Hawth’s Analysis Tools for ArcGis using
the quartic approximation and a raster cell size of
20 km (Beyer 2004). The smoothing factor (also
known as band width or the h statistic) was 50 and
200 km for the satellite transmitter and geolocator
data, respectively. Kernel contours (%) are presented
in maps with a North Pole stereographic projection.

In 2008, 2009 and 2010, all kittiwakes nesting in
Hornøya equipped with geolocators and satellite
transmitters went straight north after the breeding
season to an area east of the Svalbard archipelago
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(EOS hereafter) (between 75° N and 80° N, and 15° E
and 35° E,) and stayed there until October (Figs. 1A,B
& 2C). In October they started to migrate west
towards the Grand Banks/Labrador Sea area (GBLS
hereafter) in the NW Atlantic (Fig. 1B),
where most birds stayed from Novem-
ber to February (Fig. 1C). In February,
the first birds migrated back to the Bar-
ents Sea (BS), and by March all birds
had returned. In April, all birds were
close to the breeding colony (Fig. 1D).

CMR modeling of adult 
kittiwake survival

The CMR analysis started with the
Cormack− Jolly−Seber (CJS) model (Le -
breton et al. 1992). All birds were cap-
tured only once, and attempts made to
resight them in the following years. We,
therefore, denote the recapture rate as
resighting rate.

We assessed the goodness-of-fit
(GOF) of the CJS model using U-CARE
software (Choquet et al. 2009a). By
doing so, we examined whether the
model fitted the data and whether there
was any heterogeneity in the resighting
probabilities. This was done by evaluat-
ing the overdispersion coefficient, c-hat.
Test 3.SR, a test component in the GOF
test that tests the assumption that all
marked individuals alive at time i have
the same probability of surviving to i + 1
(transient effect), showed that there was
a transient effect in the data (N[0,1] =
−0.105, df = 13, χ2 = 87.98, p ≈ 0, c-hat =
6.77), and test 2.CT, which tests the
assumption of independence in the re-
sighting rate (i.e. trap-happiness or
trap-shyness) showed that there was
trap-happiness in the data (N[0,1] =
−23.40, df = 19, χ2 = 677.09, p ≈ 0, c-hat =
35.64). We, therefore, used the method
proposed by Gimenez et al. (2003), who
used a multi-state model, with 3 states,
adding an unobservable state for non-
resighted birds in the previous year (the
probability of having not been seen
before), to correct for heterogeneity in
resighting probabilities (details in Rei -
ertsen et al. 2012).

To estimate and compare the annual survival
rates of adult kittiwakes, we used the program E-
SURGE (Choquet et al. 2009b). A time-dependent
model was the starting point for the model selec-
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Fig. 1. Distribution of adult kittiwakes from Hornøya at different times of
the year, as revealed by geolocators over 2 non-breeding seasons. The pan-
els in the first row show an overview of the Barents Sea, and those in the sec-
ond row show an overview of the North Atlantic including the Barents Sea.
The 25, 50, 75 and 90% kernel contours (red, orange, yellow and green, re-
spectively) are shown for the periods (A) 1−10 September, (B) 21−31 October,
(C) 1−31 Decem ber and (D) 4−30 April. n = 6 (2008−2009), n = 14 (2009−2010)
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tion, denoted as phi(t)p(f+t), where phi was the
annual adult survival and p was the re-sighting
probability, t was time dependence and f was the
transition between states when we took into
account trap- happiness in the model. By comparing
the time-dependent model with the constant sur-
vival, denoted as phi(i)p(f+t), the constant re-sight-
ing model phi(t)p(f ), or both, phi(t)p(f ), where i
denotes a constant model, we assessed the appro-
priate model for annual survival and re-sighting
probability.

Inclusion of covariates

We included covariates in the models to examine
whether they could explain the variation observed in
the kittiwake adult survival rates. We started by
including only one covariate at a time to assess the
impact of each covariate on the survival rate, and
then we extended the models using 2 covariates.

In wild populations, adult survival is most likely to
be influenced by multiple factors (e.g. Burnham &
Anderson 2002), and models with full time variation
usually provide the best description for rich data sets.

Finding a model with covariates that explain all the
variation in survival is, therefore, unlikely, and resid-
ual unexplained variation after accounting for the
effect of covariates can be expected (Grosbois et al.
2008). We assessed the ability of each covariate to
describe significant variation in survival, using
analysis of deviance tests (ANODEV: F-test statistic
with ncov and n−ncov−1 degrees of freedom, where
ncov represents the number of covariates included
and n is the number of parameters of the time-depen-
dent model) (Skalski et al. 1993, Grosbois et al. 2008,
Lebreton et al. 2012), which is an established way of
evaluating the significance of covariates. To assess
the effect of the covariates on the kittiwake adult sur-
vival rate, we used an approximated R2 statistic,
which compared the constant and the time-depen-
dent survival models, which is done using the for-
mula [Deviance (covariate model) − Deviance (con-
stant model)]/[Deviance (time-dependent model) −
Deviance (constant model)] (Gaillard et al. 1997, Bar-
braud et al. 2000, Jenouvrier et al. 2006). This gives
us the proportion of explained variation (Grosbois et
al. 2008, Lebreton et al. 2012), which is denoted as R2

in Tables 1 & S3 (in the Supplement at www. int-res.
com/ articles/ suppl/ m509 p289 _ supp .pdf).
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Fig. 2. Spatial distribution of capelin (coloured areas) and kittiwakes (black-contoured areas) in (A) 2008, (B) 2009 and (C)
2010. The data from 2008 (n = 6) and 2009 (n = 14) are based on light level geolocators, and the data from 2010 (n = 5) are based
on satellite transmitters. The lower 3 panels show the survey areas of capelin between 20 and 30 August in (D) 2008, (E) 2009
and (F) 2010. Kernel contours for capelin are 25, 50, 75 and 90% (red, orange, yellow and green, respectively) and for 

kittiwakes 50 and 75% (black; hatched and unhatched, respectively). Red stars: Hornøya

http://www.int-res.com/articles/suppl/m509p289_supp.pdf
http://www.int-res.com/articles/suppl/m509p289_supp.pdf
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The model selection was performed using QAICc

(quasi-likelihood Akaike’s information criterion cor-
rected for small sample size and overdispersion)
(Burnham & Anderson 2002), where the model with
the lowest QAICc value was considered the best.
ΔQAICc is the difference between the QAICc of a
given model and the QAICc of the best model.
According to Burnham & Anderson’s (2002) scale of
ΔQAICc model interpretation, models with scores of
ΔQAICc ≤2 are strongly plausible, 4−7 less plausible
and ≥10 improbable. Survival and resighting proba-
bility estimates are given with 95% confidence inter-
vals. We also used model averaging to assess the
effect of each covariate on adult survival rate. Model
averaging provides an average weighted estimate of
the covariates used in a given number of models
(Burnham & Anderson 2002).

A detailed description of how the covariates from
the different areas and time periods were selected is
given in the Supplement (see www. int-res. com/
articles/ suppl/ m509 p289 _ supp .pdf), and a list of all
the covariates used in the CMR analysis is given in
Table 2. For EOS in the autumn, we used acoustic
data of capelin (CapelinEOS) and polar cod
(PcodEOS) from the yearly joint Norwegian−Russian
ecosystem surveys as covariates (for a detailed de -
scription see Skern-Mauritzen et al. 2011). An
overview of the survey area covered in 2008, 2009
and 2010 and the resulting capelin distribution is
given in Fig. 2. The acoustic data of capelin used in
the figures were log-transformed and are from
20 August to 30 September. Kernel contours (%)
were calculated and presented for capelin distribu-

tion using the same method as described for kitti-
wakes (smoothing factor was 50 km). We also used
SST data (SSTautEOS), which were extracted from
the Extended Reconstruction SST data set (available
on a 2° × 2° grid; Smith et al. 2008, NOAA 2012), for
EOS (75° N, 80° N, 15° E and 35° E) during the post-
breeding period (mean of August−September). For
GBLS, we used data from the continuous plankton
recorder survey (CPR data) from the winter period
(November−February) from 1990 to 2010. The data
were provided by the Sir Alister Hardy Foundation
(SAHFOS) and consisted of monthly mean number of
individuals of amphipods (Hyperiidea), euphausiids
(Euphausiacea total), Calanus finmar chicus and
pteropods (Thecosomata total). The area from which
we extracted CPR data was within 40° N, 62° N,
38° W and 60° W. CPR methods are described in
Lindley (1982). We also used SST from the same area
in winter (mean of October−January) and the princi-
pal-component-based indices of the North Atlantic
Oscillation (NAO) (NCARS 2012) as climatic covari-
ates for this area and time period.

For the pre-breeding in BS, we used the data from
ICES (2011) for the total biomass of capelin, (1-group)
herring, and the eastern and the western distribution
of polar cod in BS, which is defined as stock numbers
of a given age on 1 January multiplied by weight at
age and reflect the estimated densities of the fish spe-
cies on 1 January. Additionally, for the area around
Hornøya in the pre-breeding (monthly means of
 February−April) and breeding periods (means of
May−July) (between 70° N, 72° N, 28° E and 34° E)
SST was used as climatic covariate. Average breeding
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Model k Deviance QAICc ΔQAICc QAICc wt F p R2

phi(t )p(f+t) 42 10349.93 10434.58
phi(CapelinTot+ThecoDec)p(f+t) 25 10405.13 10455.36 0 0.97 9.17 0.002 0.52
phi(CapelinTot+PcodEOS)p(f+t) 25 10412.01 10462.24 6.87 0.03 7.21 0.005 0.46
phi(CapelinTot+EuphDec)p(f+t) 25 10417.54 10467.77 12.41 0.00 5.93 0.01 0.41
phi(ThecoDec+PcodEOS)p(f+t) 25 10429.32 10479.55 24.19 0.00 3.78 0.041 0.31
phi(PcodEOS)p(f+t) 24 10432.47 10480.68 25.32 0.00 7.02 0.016 0.28
phi(CapelinTot)p(f+t) 24 10433.87 10482.08 26.71 0.00 6.61 0.019 0.27
phi(EuphDec)p(f+t) 24 10451.51 10499.72 44.36 0.00 2.33 0.143 0.11
phi(ThecoDec)p(f+t) 24 10458.36 10506.58 51.21 0.00 1.05 0.318 0.05
phi(i )p(f+t) 23 10464.66 10510.86 55.49 0.00 0.00 0 0

Table 1. Overview of the most important models of kittiwake adult survival and their neighbouring models, with different en-
vironmental covariates. Phi is the survival rate and p is the re-sighting rate. The notation t indicates time-dependent, f indi-
cates the transition between 2 states and is a model where the re-sighting rate has been corrected for trap-happiness and tran-
sience, and i indicates a constant model. The notations and explanations for the covariates are given in Table 2. Models are
sorted by ascending QAICc (quasi-likelihood Akaike’s information criterion corrected for small sample size and overdisper-
sion) and ΔQAICc (the difference between the QAICc of a given model and the QAICc of the best model) is given for covariate
models only. QAICc wt: QAICc weight. A total overview of the model selection is given in Table S3 in the Supplement 

(see www.int-res. com/ articles/ suppl/m509p289_supp.pdf)

http://www.int-res.com/articles/suppl/m509p289_supp.pdf
http://www.int-res.com/articles/suppl/m509p289_supp.pdf
http://www.int-res.com/articles/suppl/m509p289_supp.pdf
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success in the previous year (BSL1) was also used as a
population-level covariate for the breeding season.

Some of the covariates had missing values for some
years. These included Calanus finnmarchicus, Hy -
peri idea, Euphausiacea and Thecosomata in Decem-
ber 1991. To obtain a complete time series, we used
the method developed by Colebrook (1975), which
multiplies the long-term monthly mean correspon-
ding to a missing month in a given year by the ratio
of the sum of the non-missing values in that year to
the sum of the corresponding long-term monthly
means. Fish and plankton covariates were log-trans-
formed prior to analysis to achieve a linear relation-
ship on a log scale.

Covariates with linear temporal trends were de -
trended, using the residuals from the regression
between the parameter and the year (Table S2 in the
Supplement). All covariates were checked for auto-
correlation after detrending (see Table S1 and Fig. S1
in the Supplement for an overview of colinearities
between and temporal variation in the covariates),
and we did not enter covariates with high correlation
in the same model (Table S1 in the Supplement). Sig-
nificant autocorrelation (p < 0.05) was when R ≥ 0.44.

RESULTS

An overview of the best models in the model se -
lection and their neighbouring models is given in
Table 1, and a total overview of the model selection is
given in Table S3 in the Supplement.

Overall, the model with the lowest QAICc (Table 1)
was the model with time dependency in both the sur-
vival rate and the resighting rate, where we had cor-
rected for transience and trap-happiness (Fig. 3). Sur-
vival varied extensively with time (mean phi = 0.85,
range = 0.66−0.98). There were 2 severe drops in the
survival rate; one in 1994 (phi = 0.66, SE = 0.05) and
one in 2003 (phi = 0.74, SE = 0.04; Fig. 3). Models cor-
rected for trap-happiness were clearly better (lower
ΔAICc) than models without such a correction
(Table S3 in the Supplement).

None of the models with covariates improved the
model with full time-dependency of both the survival
probability and the re-sighting rate, because of the
presence of residual unexplained variation as ex -
plained in the methods. We, therefore, only com-
pared the difference between the QAICc values
(ΔQAICc) for models that in cluded covariates.
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Time period Area Covariate Covariate explanation Source
notation

Autumn East of Sval- CapelinEOS Acoustic assessment of the capelin stock IMR
(Sep) bard (EOS) PcodEOS Acoustic assessment of the polar cod stock IMR

SSTautEOS Sea surface temperature NOAA
Winter Grand Banks/ ThecoDec Continously plankton recorded (CPR) SAHFOS
(Nov−Dec) Labrador Sea data of the suborder Thecosomata

(GBLS) ThecoNov CPR data of Thecosomata SAHFOS
HypDec CPR data of Hyperiidea SAHFOS
HypNov CPR data of Hyperiidea SAHFOS
EuphDec CPR data of Euphausiacea SAHFOS
EuphNov CPR data of Euphausiacea SAHFOS
CalDec CPR data of Calanus finmarchicus SAHFOS
CalNov CPR data of Calanus finmarchicus SAHFOS
SSTwinterGBLS Sea surface temperature NOAA

Winter North Atlantic NAOPC Principal component based indices of NCARS
(Dec−Mar) the North Atlantic Oscillation (2012)

Spring Barents Sea CapelinTot Total biomass of capelin ICES
(Mar−Apr) (BS) Herring1Y 1-group herring ICES

PcodEast Total biomass of polar cod in the eastern ICES
part of the Barents Sea

PcodWest Total biomass of polar cod in the western ICES
parts of the Barents Sea

SSTspringHorn Sea surface temperature NOAA
Summer Around SSTsummerHorn Sea surface temperature NOAA
(breeding season) Hornøya BSL1 Breeding success, lagged 1 yr

Table 2. Overview of all covariates used in the capture-mark-resighting analysis with time periods and areas of interest. The
notation used in the model selection is explained, and data sources are indicated. IMR: Norwegian Institute of Marine Re-
search; NOAA: National Oceanic and Atmospheric Administration (USA); SAHFOS: Sir Alistair Hardy Foundation (UK); ICES: 

International Council for the Exploration of the Sea (Denmark)
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Among the covariate models, the model that in -
cluded temporal variation of the total biomass of
capelin in BS (CapelinTot) and the temporal variation
of Thecosomata density in December in the GBLS
(ThecoDec) was clearly the best (QAICc weight =
0.97; Table 1). This model was 6.87 ΔQAICc units bet-
ter than the second best covariate model that in -
cluded the total biomass of capelin in BS and the
acoustic data of polar cod in EOS (PcodEOS) (QAICc

weight = 0.03; Table 1). Model averaging of the 3
covariates included in these models gives estimates
of 0.40, 0.50 and −0.008 for CapelinTot, ThecoDec
and PcodEOS, respectively. The effect of both Theco-
somata in GBLS in December and the total biomass
of capelin in BS on adult kittiwake survival are thus
very strong compared with polar cod in EOS in the
post-breeding period. Estimates of the covariates
from the top model explaining adult survival were
both positive (0.41 [range = 0.30−0.52] and 0.52
[range = 0.33−0.70] for CapelinTot and ThecoDec
with 95% confidence intervals). The temporal trends
in both the time-dependent model and the best
covariate model are shown in Fig. 4.

When considering models with single covariates,
they all had a very high QAICc, and QAICc weights
were very close to zero. Thus models with 2 covari-
ates were clearly better than single-covariate mod-
els (Table 1). The best single-covariate model was
the one with acoustic data of polar cod in EOS,
which explained 28% of the variation in adult sur-
vival but was 26.32 ΔQAICc units higher than the
overall best covariate model (Table 1). Capelin in
BS and the density of Thecosomata in GBLS were

26.71 and 51.21 ΔQAICc units higher, respectively,
than the overall best covariate model (Table 1).
None of the models that included climatic covari-
ates was ever better than models including prey
densities. The best climatic model included The-
coDec and SST in EOS in the post-breeding season
(SSTautEOS) (ΔQAICc = 22.48, R2 = 0.32; Table S3
in the Supplement). The models including covari-
ates from the breeding season had a much higher
QAICc than the best covariate models (ΔQAICc =
55.19 and 56.71, R2 = 0.02 and 0.01, for SSTsum-
merHorn and BSL1, respectively).
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Fig. 3. Temporal variation of kit-
tiwake adult survival rates
(solid line; error bars are ±95%
confidence limits) and the best
covariates, total biomass of
capelin in the Barents Sea (grey
area) and detrended Thecoso-
mata density (monthly mean no.
of ind. for specified area; see
‘Materials and methods’) in De-
cember in the Grand Banks/
Labrador Sea area (dotted line) 

between 1990 and 2010
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Fig. 4. Temporal variation in kittiwake adult survival from
the time-dependent model with no covariates (d) and the
model with total biomass of capelin in the Barents Sea and
Thecosomata in the Grand Banks/Labrador Sea in Decem-

ber (s) between 1991 and 2010
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DISCUSSION

The best covariate model explaining the temporal
variation of kittiwake adult survival included the
total biomass of capelin in the BS and the monthly
mean density of Thecosomata in GBLS in December.
This suggests that prey densities in the BS and the
GBLS area, which both seem to be important non-
breeding areas for kittiwakes from Hornøya (and
many other kittiwake populations, e.g. Bogdanova et
al. 2011, Frederiksen et al. 2012), affect adult survival
of kittiwakes.

Capelin in the Barents Sea

Capelin is one of the most abundant fish species in
the BS (Orlova et al. 2010), and the stocks fluctuate
greatly (Ushakov & Ozhigin 1987). During the period
of the present study, the capelin stock collapsed
twice (around 1994 and 2003) (Gjøsæter et al. 2009),
and both collapses coincided with a corresponding
drop in the adult survival rate of kittiwakes (Fig. 2).
The collapse in 2003 was accompanied by an excep-
tional die-off of adult birds in the region in early
spring (Barrett et al. 2004). Capelin plays a key role
in the pelagic ecosystem of the Barents Sea (Orlova
et al. 2010) and follows a characteristic seasonal
migration pattern (Fauchald et al. 2006, Gjøsæter et
al. 2011). It is an important grazer of zooplankton
(Hassel et al. 1991, Gjøsæter et al. 2002, Stige et al.
2009) and an important food source for Atlantic cod
Gadus morhua, seabirds and marine mammals (Fol -
kow et al. 2000, Nilssen et al. 2000, Bogstad &
Gjøsæter 2001, Fauchald et al. 2011).

In general, kittiwakes are known to feed on school-
ing fish (Lewis et al. 2001, Carscadden et al. 2002),
and in the southwest BS (Hornøya), capelin is the
main prey during the breeding season (Furness &
Barrett 1985, Barrett 2007). It has also been shown
that kittiwake breeding success on Hornøya de -
creases when the abundance of capelin is low (Bar-
rett 2007, A. Ponchon et al. unpubl.). Although we do
not know in detail the diet of kittiwakes during the
non-breeding season, the results of this study and
those of Barrett et al. (2004) show that the temporal
variation in the BS capelin stock may have a strong
impact on the yearly variation in kittiwake survival
rates. Kittiwakes from Hornøya stay in the BS from
March to October, i.e. the pre-breeding season, the
breeding season and post-breeding season, when
they move to EOS. It is likely that the capelin densi-
ties in the BS when the kittiwakes return in March−

April are critical for their survival. This return coin-
cides with the capelin spawning migration to wards
the coast of Norway and Russia in March− April
(Gjøsæter et al. 2011), a time when the fish are full of
energy-rich gonads (Montevecchi & Piatt 1984). In
the pre-breeding season, the northern BS is still cov-
ered with ice and primary production is low, such
that the seabirds are constrained to feed on mainly
pelagic fish such as 1-group herring and capelin
(Fauchald et al. 2011). The capelin spawning migra-
tion is highly concentrated in space and time
(Fauchald et al. 2011), and it is very likely that kitti-
wakes are especially sensitive to the abundance and
distribution of this energy-packed fish at this time of
the year, since they need to build energy reserves
prior to reproduction.

After the breeding season, the kittiwakes move
quickly to EOS (Figs. 1A & 4C). Capelin distributions
in the post-breeding period show a limited overlap
with the kittiwake distribution (Fig. 4). Acoustic data
of capelin and polar cod from this area in this time
period did not, however, correlate with kittiwake sur-
vival, which suggests that kittiwakes find other prey,
e.g. zooplankton in EOS in the post-breeding period,
as also suggested by González-Solís et al. (2011).
Unfortunately, there are no temporal plankton data
from EOS that could have been used to test directly
whether conditions from this area also were impor-
tant for kittiwake survival. Another implication is
that capelin seems to have the highest impact on
 kittiwake survival during the pre-breeding and/or
breeding season.

Thecosomata in the GBLS

The other prey covariate which entered the top-
rank model was the density of Thecosomata in GBLS
in December, a time when most of the kittiwakes from
Hornøya were present in that area. There is some ear-
lier evidence that kittiwakes feed at lower trophic lev-
els in winter and that they probably feed more on a
variety of large zooplankton species, such as am-
phipods, pteropods and euphausiids (Mehlum &
Gabrielsen 1993, Karnovsky et al. 2008, González-
Solís et al. 2011, Frederiksen et al. 2012), than in the
breeding season when their main prey is fish (e.g.
Lewis et al. 2001, Carscadden et al. 2002, Barrett
2007, A. Ponchon et al. unpubl.). Furthermore, Kar -
novsky et al.’s (2008) study from the North Water
Polynya showed that kittiwakes there fed extensively
on the pteropod Limacina helicina and that they had
fatty acid signatures resembling the signatures of the
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little auks Alle alle that feed exclusively on zooplank-
ton (Karnovsky et al. 2008). This supports our hypo -
thesis that Thecosomata is a likely food for kittiwakes.

Thecosomata is a taxon of pelagic swimming sea
snails also called sea butterflies or pteropods. They
are rich in lipids, live their whole life in a planktonic
form, and can be found in large concentrations in the
upper layer of the water. They play an important role
in the marine food web, in particular at high latitudes
(Comeau et al. 2012), and are important food sources
for herring and capelin and for higher predators, such
as whales and seabirds (Hunt et al. 2008, Orlova et al.
2011, Comeau et al. 2012). The density of Thecoso-
mata in December declined steeply be tween 1990
and 2011 (Fig. 2), possibly as a result of ocean acidifi-
cation (Lischka et al. 2011). Thecosomata, such as Li-
macina helicina, have an aragonitic shell, which
makes them particularly sensitive to acidification, a
process that is expected to be most serious in Arctic
oceans (Steinacher et al. 2009, Comeau et al. 2012)
and which will be more severe when ocean tempera-
tures increase (Lischka et al. 2011). Kittiwakes from
most of the breeding colonies in the north Atlantic
spend their winter in this area (Frederiksen et al.
2012); hence, the steep de cline in Thecosomata abun-
dances could be an important driver of the overall de-
cline in the North Atlantic kittiwake populations.

SST

Since both the temporal and spatial variance in
SST may influence the distribution of prey independ-
ent of total density, we used un-lagged SST from the
different areas and time periods together with prey
category data in the models but found no apparent
direct effects of SST. Although kittiwakes are very
sensitive to changes in the marine system, they are
also highly mobile, especially in the non-breeding
period, when they are not constrained by the need to
return regularly to the colony and can easily move
around searching for available food (Fauchald 1999,
Pinaud & Weimerskirch 2005, Certain et al. 2011).
This could indicate that kittiwakes are more sensitive
to overall prey density as such and not to small-scale
changes in the spatial distribution of prey linked to
oceanographic changes. Increasing SST, however,
could also result in a vertical shift of preys in the
water masses (i.e. prey move to deeper and colder
water), thus making them inaccessible to kittiwakes
that cannot dive, even if prey densities are high.

None of the models that included any climatic
covariates (SST and NAO) could compete with the

best models in the model selection. This may indicate
that kittiwakes are not directly affected by the cli-
mate factors in these areas and that their abilities to
move around may buffer this effect. Additionally, this
may give some support to the explanation that kitti-
wakes are more sensitive to overall prey densities in
these areas than to the spatial changes of the prey.

None of the breeding-season covariates (i.e. breed-
ing success or SST in the summer near the colony)
could explain any temporal variability in adult sur-
vival, which is in contrast to other studies (Oro & Fur-
ness 2002, Frederiksen et al. 2004). However, as
stressed by Frederiksen et al. (2004), identifying fac-
tors outside the breeding season was very difficult at
that time because of the limited knowledge of kitti-
wakes’ non-breeding distribution, and the impor-
tance of the conditions in the non-breeding areas
could not be ruled out as an explanation of the adult
survival variability.

CONCLUSIONS

This study demonstrates the importance of linking
the knowledge of the winter distribution of seabirds
and density of the prey they feed on in their winter-
ing areas to temporal variation of adult survival rates.
Although it has been suggested that adult survival
may be primarily influenced by prey densities and
oceanographic conditions in the wintering area (Gas-
ton 2003, Daunt et al. 2006, Wanless et al. 2007, Fred-
eriksen et al. 2008a, Harris et al. 2010), lack of data
on migration patterns and the whereabouts of impor-
tant wintering areas has precluded the search for
causal explanations. This study is among the first to
examine the influence of prey densities in non-
breeding areas on the survival of seabirds. The study
is highly exploratory and based on scarce loggerhead
data, but it suggests that Thecosomata in the GBLS
and capelin in the BS are important prey species for
kittiwakes in the non-breeding season. This needs to
be tested further. Both the BS and the GBLS are
impacted by intense an thropo genic activities, such as
fisheries, international shipping and the offshore oil
and gas industry, with several reports of operational
and accidental discharges of hydrocarbons (Hedd et
al. 2011). All these activities pose risks to seabirds,
and the knowledge of how important these areas are
to a species that is globally declining has strong
implications for conservation and management of
both these areas.

The migration part of our study is based on only
3 yr of data and a rather low number of tracked
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individuals. There is therefore a strong need for a
larger sample of logger data over more years to
examine the stability and evidence of winter
migration patterns. However, although the sample
size from Hornøya is small, there is evidence that
birds from several populations return to the same
areas in different years (Frederiksen et al. 2012, B.
Moe et al. unpubl., A. Ponchon et al. unpubl.).
Also, the time series of CMR data is 22 yr long,
and since we found such strong correlations
between the survival rate and the covariates from
the main areas revealed by migration data, it is
plausible that there is some stability in the migra-
tion pattern. A challenge for future studies of
demography and causal mechanisms will be to
map both the stability of wintering areas over time
and not only the density of prey, but also the spa-
tial distribution of the prey in different areas. Such
information is essential for the conservation and
management of any seabird, including the kitti-
wake, a species that is declining globally.
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