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Introduction

The science of stable isotope mixing models has
tended towards the development of modeling prod-
ucts (e.g. IsoSource, SIAR, MixSIR) where method-
ological advances or syntheses are published in tan-
dem with software packages (Phillips & Gregg 2003,
Moore & Semmens 2008, Parnell et al. 2010). While
statistical methods for isotopic mixing models have

advanced rapidly, this approach has also afforded an
easy avenue toward the application of analytic tech-
niques without a clear understanding of the mecha-
nistic underpinnings. A review by Fry (2013) incor-
rectly characterized the outputs of existing mixing
model tools and promoted alternative methods that
are subjective in interpretation and not rooted in a
likelihood paradigm (whether maximum likelihood
or Bayesian). We clarify the statistical basis for, and
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ABSTRACT: Fry (2013; Mar Ecol Prog Ser 472:1−13) reviewed approaches to solving under -
determined stable isotope mixing systems, and presented a novel approach based on graphi -
cal summaries. He inaccurately characterized the statistics and interpretation of outputs from
IsoSource and more recent Bayesian mixing model tools (e.g. SIAR, MixSIR), however, and as an
alternative promoted an approach — not based on likelihood methods — that uses graphing and 2
new metrics for tracking source contributions to a mixture. Fry’s approach does not provide statisti-
cal probability densities associated with source contribution parameter estimates, has little appli-
cability to complex mixing systems such as hierarchical models, and relies on the subjective inter-
pretation of graphing products. We clarify the analytic theory underlying common mixing model
approaches and provide an analysis of the 4-source, 2-tracer underdetermined mixing system ex-
ample in Fry (2013), using both a Bayesian mixing model and Fry’s graphical analysis and
summary metrics. We demonstrate that properly interpreted Bayesian approaches yield distribu-
tions of parameter estimates that can reflect multi-modality, covariance and parameter uncertainty.
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interpretation of, existing mixing model tools such as
IsoSource and SIAR. For illustration, we build on
Fry’s example of a 4-source, 2-tracer square mixing
system to show that existing Bayesian mixing model
methods provide a better interpretation of uncer-
tainty in the solution space than Fry’s graphical
approach and summary metrics.

Statistical basis of mixing models

Fry (2013) first focused on reporting the outputs of
IsoSource and SIAR, stating that both produce point
estimates of source contributions to a mixture along
with uncertainty intervals based on statistical sub-
sampling. Fry’s criticism of these outputs was that
sampling frequency does not equate with probabil-
ity. However, the output frequency of posterior sam-
pling resulting from Bayesian mixing models is pre-
cisely related to probability. A plot of the posterior
sampling density from a Bayesian model run pro-
vides an explicit assessment of the relative likelihood
of the entire compositional parameter space (which
may or may not feature multiple or flat peaks; Fig. 1).
Although IsoSource is based on an empirical rather
than a statistical (likelihood-based) approach, Iso -
Source also produces histograms of source propor-
tions that represent parameter uncertainty due to the
underdetermined nature of the system. Unlike

Bayesian tools (i.e. SIAR or MixSIR), IsoSource uses
only source and mixture isotopic means and does not
propagate uncertainty due to isotopic (or trophic
enrichment factor) variability. Because Fry (2013) did
not consider the philosophical differences among the
3 modeling approaches (IsoSource, Bayesian, and
graphical mixing models), we address them briefly
below.

Fry (2013) referred to both IsoSource and SIAR as
frequentist in their outputs, but neither method is
based on frequentist statistics. In the case of Iso -
Source, the modeling approach relies on iteratively
identifying all sets of proportional source contribu-
tions that match the isotope signatures of the mix-
ture, based on a defined tolerance. Unlike frequentist
or Bayesian methods, IsoSource does not assess the
probability of the mixture data given proportional
source contribution values. While a frequentist
approach assumes a fixed hypothesis (that is without
probability), IsoSource focuses on identifying the
range and frequency of source proportion hypothe-
ses that solve the mixing model given the specified
tolerance. Fry incorrectly asserted that all source
contributions represented in the IsoSource output are
equally likely. Within the unique sets of proportions
identified by IsoSource, a specific source contribu-
tion (say, 30% for Source 1) may be represented
many times, while another (say, 90% for Source 1)
may be represented very infrequently. The frequency
of occurrence of a particular source contribution thus
characterizes the number of unique solutions associ-
ated with that contribution relative to all other contri-
bution values. Because of this, Phillips & Gregg
(2003) emphasized that the outputs of IsoSource
should be characterized in terms of the distribution of
the solutions, not just of a single value such as the
mean or most likely value.

Since Moore & Semmens (2008) introduced Bay es -
ian mixing models, most analytic advances to mixing
model methods have been rooted in Bayesian statis-
tics. Frequentist analyses treat the parameters (θ) as
fixed and the data as random; Bayesian methods
assume the opposite — that the parameters are un -
known but the data are fixed —and describe uncer-
tainty in the parameters probabilistically based on
observed data, P(θ |data). Because most mixing
model studies aim to probabilistically characterize
the diet contributions of sources to a mixture based
on observed data, rather than to test specific null
hypotheses (e.g. ‘all source contributions are equal’),
a Bayesian approach is prudent (for further advan-
tages of Bayesian methods, see Moore & Semmens
2008, Parnell et al. 2010, Ward et al. 2010).
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Fig. 1. Simulated source and mixture data, including a
source polygon based on source data means and a ‘danger
zone’ polygon halfway between the source polygon and the
centroid (ΣMIN < 50%, where ΣMIN is the sum of minimum 

source contributions calculated by IsoSource or SIAR)
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To evaluate the posterior likelihood of source con-
tributions, Bayesian modeling approaches such as
SIAR make use of Markov Chain Monte Carlo
(MCMC) sampling methods. Fry (2013) incorrectly
stated that MCMC techniques perform statistical
subsampling of the range of feasible solutions. While
this description is an accurate characterization of
IsoSource, Bayesian methods such as MCMC approx-
imate the entire posterior distribution of model
parameters. A posterior density curve thus provides
an explicit estimate of the relative likelihood for all
parameter values. For underdetermined mixing
models, Fry pointed out that likelihood densities can
be multimodal, and that credible intervals (e.g. 95%
CIs) for such estimates can be misleading. We agree,
and strongly advocate a graphical representation of
the entire posterior distribution of source proportion
parameters (Moore & Semmens 2008); this is a rou-
tine component of reporting Bayesian analyses
(Chen & Shao 1998). Multi-modal posterior distribu-
tions arise when multiple disparate compositional
parameter sets have relatively high likelihood. In
such cases, multi-modality may be reduced by: (1)
incorporating more consumer data; (2) including
prior information (Moore & Semmens 2008, Ward et
al. 2010); (3) changing source geometry by re-group-
ing sources (Phillips et al. 2005, Ward et al. 2011); (4)
including residual error (Parnell et al. 2010). How-
ever, there are also cases when isotope data from
consumers are simply not informative with respect to
estimating source contributions. While Fry criticized
credible intervals in these cases as misleading, we
think that they represent an accurate reflection of
uncertainty and should not be used to justify the
abandonment of likelihood based methods (whether
frequentist or Bayesian). Finally, while Fry promoted
post hoc approaches to the constraint of underdeter-
mined mixing model solutions based on additional
information (e.g. gut content data), we note that
Bayesian methods provide a concise framework for
the direct integration of prior information into the
mixing model analysis (Moore & Semmens 2008).

Graphical vs. Bayesian analysis of
 underdetermined mixing systems

The graphical analysis of mixing models proposed
by Fry (2013) has no basis in a likelihood framework
(whether frequentist or Bayesian), ignores uncer-
tainty in both source and mixture data, and does not
provide probabilistic estimates of source contribu-
tions. Additionally, it is unclear how the approach

might be extended to systems with more than 2 tra -
cers, given the reliance on interpretation through
visualization. To use the graphical approach advo-
cated, one must reduce source data to a single mean
point, and then construct a polygon chart (our Fig. 1).
Within this polygon, Fry proposed the construction of
a secondary ‘danger zone’ polygon that defines
halfway points between the exterior polygon side-
walls and the centroid. Fry reasoned that mixture
data points falling within this danger zone are domi-
nated by the assumed centroid contributions and are
little constrained by the measured data. Such a plot-
ting exercise does not make it possible to draw con-
cise conclusions about source contributions to a mix-
ture. Like Fry, we advocate plotting isotope data in
the context of mixing model geometry to evaluate the
utility of a mixing model approach. However, we see
no advantage in relating mixture data to an arbitrary
‘danger zone’ polygon over the graphical representa-
tion of posterior source contribution parameters from
Bayesian mixing model approaches.

Bayesian methods are powerful for addressing
questions of cause and consequence (e.g. Giroux et
al. 2012), where the key objective is to identify differ-
ences in foraging patterns among different popula-
tions, demographic groups, or individuals. Such
approaches do not depend on precise measures of
consumption, because they focus on inference of dif-
ferences among groups. By quantifying the variation
at different levels of social organization in the con-
sumer population, Bayesian mixing models can
decompose the trophic niche of a population into
associated levels of population structure (Semmens
et al. 2009). In contrast, the interpretation of niche
space in a multi-level mixture population using
graphical analysis lacks an objective basis.

Fry (2013) proposed 2 mathematical summary cal-
culations that provide metrics for the strength of mix-
ing model solutions, based on the outputs of Iso -
Source and SIAR: ΣMIN, the sum of minimum source
contributions calculated by IsoSource or SIAR, and %
resolved, the difference between the minimum and
maximum source contributions, subtracted from 100.
We think that the summary metrics proposed suffer
the same limitations as parameter credible intervals,
namely that they will fail to accurately characterize
the likelihood distribution for source contribution
parameters when such distributions are multimodal
(e.g. Fig. 2). Both of Fry’s metrics provide mathemat-
ical descriptors of the range of mixing solutions, but
neither provides an explicit assessment of the uncer-
tainty in the estimates of proportional source contri-
butions to the mixture.
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Contrasting Bayesian and graphical approaches to
mixing models: an example

To facilitate a discussion of the relative merits of
Bayesian versus graphical mixing models, we ex -
pand on Fry’s (2013) 4-source, 2-tracer example (his
Fig. 1A). Specifically, we maintain the geometry of
the example, but add variability into the data (for all
sources and the mixture, n = 5, variance = 1.3; our
Fig. 1). The addition of variability to the example
more accurately reflects the type of data that ecolog-
ical mixing model studies rely on. For instance, this
sample size and variability matches that of the man-
grove source data from the case study Fry addressed
(Kon et al. 2009). Next, we construct a graph of the
source and danger area polygons (ΣMIN < 50%; Fig. 1)
and a graph of the % resolved metric advocated by
Fry (2013; our Fig. 2). Finally, we build and apply a
simple fully Bayesian mixing model (Ward et al.
2010) and generate posterior distributions for the
proportional contribution terms (Figs. 3 & 4). The R
code used for data simulation and all analyses is pro-
vided in the Supplement at www.int-res.com/ articles/
suppl/m490p285_supp/.

The posterior distributions for the proportions in
our example reflect multi-modality (Fig. 3). Given
this multi-modality, a researcher would be remiss in
reporting the posterior distributions based solely on
summary statistics such as means or medians with
associated credible intervals. Bayesian methods are
at their most powerful when models yield complex
posterior likelihoods, since plots of posterior surfaces

accurately characterize the full breadth of this com-
plexity. In contrast, the % resolved metric proposed
by Fry (2013; our Fig. 2) suffers the same limitation
that Bayesian credible interval summary statistics
have when reported without a plot of posterior densi-
ties — they only characterize the range of solutions
without identifying modality in the parameter likeli-
hoods and provide little insight into the covariance of
the parameter solutions.

Fig. 4 indicates that the posterior distributions of
the source contributions are highly correlated. This is
a direct result of the geometry of the system and
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Fig. 2. Resolved metrics (%) for each source based on the
proportional source contribution parameter posterior densi-
ties generated by a fully Bayesian mixing model. Bars:
parameter ranges for each source contribution parameter; 

bold: resolved values (1 − range, %)

Fig. 3. Posterior densities of proportional source contribution 
parameter generated by a fully Bayesian mixing model

Fig. 4. Draftsman’s plot of posterior source contributions,
showing interrelations between the posterior parameter 

densities
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leads to unavoidable uncertainty in the individual
(marginal) source contribution estimates (shown in
Fig. 3). If these correlations are not reported, it may
lead to mis-interpretation of the model output, e.g.
when reporting (from Fig. 3) that the proportions for
both Source 1 and Source 2 might be around 0.3,
when in fact if the proportion from Source 1 is large,
the proportion from Source 2 is necessarily small. We
see these correlation plots as being vital to the evalu-
ation of model behavior.

Finally, the interpretation of Fry’s (2013) graphical
approach presents a challenge when realistic vari-
ability occurs in isotope data. In our example, some of
the mixture data fall outside the danger zone poly-
gon, due exclusively to random error. In such a situa-
tion, a researcher might optimistically conclude that
a portion of the mixture population supports mixing
model interpretation based mostly (>50%) on meas-
urement rather than assumption. On the other hand,
the majority of the mixture data fall within the
 danger zone, suggesting (pessimistically) that the
geometry of the source data leads principally to in -
terpretation based on assumption (using Fry’s termi-
nology). Bayesian mixing models avoid this sub -
jectivity by affording a synthesis of the source and
mixture data in a model framework that integrates
data variability in the generation of posterior para -
meter estimates. These posterior parameter esti-
mates thus provide a clear picture of the extent of
uncertainty in source contributions to the mixture
population.

Concluding remarks

Plotting stable isotope data is a necessary first step
in any mixing model; however, such plotting exer-
cises by themselves do not adequately characterize
uncertainty in parameter estimates. Fry (2013) high-
lighted the importance of such plots, and provided
guidance for interpreting these plots in the context of
isotope geometry. Fry advocated applying his graph-
ical techniques and summary statistics in concert
with existing mixing model outputs. Implicit in such a

dual approach is the assumption that the outputs of
existing mixing models do not provide actual statisti-
cal probability densities associated with source con-
tribution parameter estimates. This assumption is
accurate for IsoSource, but not for the more recent
class of Bayesian mixing models. When properly
applied, Bayesian mixing model tools yield complete
posterior probability densities for source contribution
parameters that encapsulate both variability in ob -
served data and uncertainty due to isotope geometry.
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