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ABSTRACT: Recovery of sea otter populations in Prince William Sound (PWS), Alaska, has been
delayed for more than 2 decades following the 1989 'Exxon Valdez' oil spill. Harwell & Gentile
(2013; Mar Ecol Prog Ser 488:291-296) question our conclusions in Bodkin et al. (2012; Mar Ecol
Prog Ser 447:273-287) regarding adverse effects that oil lingering in the environment may have
on sea otters. They agree that exposure may continue, but disagree that it constitutes a significant
risk to sea otters. In Bodkin et al. (2012), we suggested that subtle effects of chronic exposure were
the most reasonable explanation for delayed recovery of the sea otter population in areas of west-
ern PWS, where shorelines were most heavily oiled. Here, we provide additional information on
the ecology of sea otters that clarifies why the toxicological effects of oral ingestion of oil do not
reflect all effects of chronic exposure. The full range of energetic, behavioral, and toxicological
concerns must be considered to appraise how chronic exposure to residual oil may constrain
recovery of sea otter populations.
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Introduction

In Bodkin et al. (2012), we presented data describ-
ing frequency of intertidal foraging of sea otters in
the northern Knight Island Archipelago (NKIA), an
area of Prince William Sound (PWS), Alaska, that was
heavily oiled in 1989 and where oil persists in inter-
tidal sediments (Short et al. 2004, 2006, 2007). We
concluded that between 2003 and 2005, individual
sea otters were exposed to oil from 2 to 24 times
per year. Our exposure rate estimates explicitly
accounted for the probability of otters encountering
oil at the tidal levels and on the substrates where oil
occurred. Estimated exposure varied considerably
among individuals, and all otters increased fre-
quency of intertidal foraging during late spring and
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early summer, a time when most adult females were
nursing pups, which may be more vulnerable to
effects of exposure to crude oil (Bodkin et al. 2012).
Based on the estimated frequency of encountering
intertidal oil (and the presence of oil in foraging pits),
we concluded that chronic exposure to lingering oil
was delaying sea otter recovery. It was not possible to
quantify the exposure, and biological and ecological
effects of long-term exposure are difficult to resolve
and remain largely unknown (Bodkin et al. 2012).
Harwell & Gentile (2013) agree with our conclusion
that a pathway of exposure to lingering 'Exxon
Valdez' oil exists and generally agree with our esti-
mates of rates of encountering oil. However, they
disagree with our conclusion that this exposure con-
stitutes a significant risk to sea otters. Harwell &
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Gentile (2013) reiterate results of their risk assess-
ment model (Harwell et al. 2010), which accounted
for exposure through ingestion of PAHs, and con-
clude that a toxicological response by sea otters to
chronic oiling is implausible and therefore lack of
recovery of sea otters at Knight Island cannot be
attributed to lingering oil.

Assessment of risk for wild animals is complicated,
however, as exposure to toxins is but one of many
stressors faced by individuals, and these stressors
may have synergistic interactions, resulting in cumu-
lative effects that may extend well beyond those
reflected by end points measured under controlled
laboratory conditions with limited duration of expo-
sure. Laboratory studies do not embody cumulative
effects of lifetime toxin exposure, which in combina-
tion with other environmental stressors will elevate
the ecological risk (see also Peterson et al. 2003). Fur-
thermore, exposure to a combination of multiple
PAHs and the unresolved complex mixture (UCM)
fraction (Bodkin et al. 2012) may enhance toxicity,
from interacting effects among compounds and
with the natural environment (Laskowski et al. 2010,
Silins & Hogberg 2011) and from the many unidenti-
fied UCM compounds (Scarlett et al. 2007).

Here we describe adaptations and behaviors of
wild sea otters that contribute to the risk of adverse
effects from chronic exposure, with possible popula-
tion level effects that may have contributed to the
observed lack of full recovery over 2 decades (Bodkin
et al. 2011). These additional risk factors are not
included in the laboratory-based exposure models
considered in Harwell et al. (2010) or Harwell & Gen-
tile (2013).

External oiling

Deleterious physiological effects of external oiling
on sea otters are well documented (Costa & Kooyman
1982, Siniff et al. 1982, Davis et al. 1988, Williams et
al. 1988, 1995). Oil contamination of sea otter pelage
will vitiate its water repellence and impair its ther-
moregulatory function; this results in hypothermia,
which is physiologically costly in cold aquatic
habitats.

In experimental oiling of 11 to 25% of a sea otter's
pelage with 35 to 60 ml of crude oil, Costa & Kooy-
man (1982) documented an average decline in sub-
cutaneous body temperature of 8.8°C and a 40 to
120 % elevation in oxygen consumption. One animal
in 5 died 11 d after 1 experimental oiling and wash-
ing (Costa & Kooyman 1982). Results of these experi-

ments are conservative, as otters were washed fol-
lowing experimental oiling and provided with plenti-
ful food.

Based on studies of lingering oil in intertidal sedi-
ments at NKIA, wild sea otters occasionally will have
encountered volumes of oil similar to experimental
levels (Short et al. 2004). Additionally, animals in the
wild will not be washed, must acquire their own food,
and ambient air and water temperatures are lower in
Alaska than they were in California, where the
experiments were conducted. Even with lesser levels
of contamination, there would be a metabolic cost.

Harwell at al. (2010) recognize the potential for
external oiling of pelage, and include it in their
model as a source of ingested PAHs, via grooming,
but do not consider associated energetic costs. As
demonstrated by Costa & Kooyman (1982) and sup-
ported by observations after the 'Exxon Valdez' spill
(Williams et al. 1995), however, relatively minor
external oiling, left untreated, contributes to morbid-
ity and mortality in sea otters.

Energetic costs of altered activity

Sea otters live on a strict energy budget with little
plasticity for unanticipated energetic costs (Yeates et
al. 2007), especially at northern latitudes where ther-
mal conditions are most challenging. In Alaska, sea
otters spend 9 to 12 h d™! foraging, 11 to 12 h d~! rest-
ing,and2to3h d~'in other behaviors such as travel-
ling and grooming (Garshelis et al. 1986, Bodkin et
al. 2007, Esslinger et al. 2011). Experimental studies
demonstrated increased grooming and elevated
basal metabolic rates in otters exposed to relatively
small amounts of external oil (Costa & Kooyman
1982, Siniff et al. 1982, Davis et al. 1988).

Chronic exposure to oil will require increased
grooming, as it is essential to maintain insulative
properties of the pelage. This will affect the overall
activity budget, with a reduction in either resting or
foraging time. The energetic burden of restoring con-
taminated fur is unknown but will be costly, because
grooming ranks with surface swimming as the most
energetically demanding of sea otter behaviors (Yeates
et al. 2007).

Behavioral and demographic responses
Sea otters display dietary specialization (Tinker et

al. 2007, 2008) and occupy small home ranges, on the
order of a few km to a few tens of km of shoreline
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(Garshelis et al. 1984, Jameson 1989, Ralls et al. 1996,
Estes et al. 2003). Lingering 'Exxon Valdez' oil in
PWS is aggregated in intertidal habitats that were
heavily oiled in 1989 (Short et al. 2004, 2006, 2007),
and coincides with the area where sea otter recovery
has been delayed (Bodkin et al. 2011).

The extent to which sea otters avoid oiled habitats
is unknown. Otter foraging pits were equally fre-
quent on oiled and unoiled beaches in western PWS,
suggesting avoidance may be minimal (Bodkin et al.
2012). However, if otters avoid oil, then longer-term
behavioral modifications may include social disrup-
tion, permanent relocation away from oiled shore-
lines, and utilization of alternative foraging habitats
or prey species, as availability of the species and
habitats they prefer is restricted by contamination.
Females with small pups may be affected dispropor-
tionately, as levels of intertidal foraging are high dur-
ing the post-parturition period (Bodkin et al. 2012).
Thus while avoidance would reduce exposure poten-
tial, it also could be associated with increased ener-
getic costs that may adversely affect survival and
ultimately population growth.

Furthermore, it is important to consider how sea
otters recover from large-scale reductions in popula-
tion abundance. At NKIA, where mortality approached
90 % (Bodkin & Udevitz 1994), recovery presumably
included recruitment of juveniles from adjacent areas,
consistent with normal juvenile dispersal (Jameson
1989, Ralls et al. 1996). Juvenile sea otters rely heav-
ily on intertidal forage species (Doroff & Bodkin
1994), elevating their exposure risk and contributing
to low survival rates (Monson et al. 2000, 2011), in
this case until sometime after 2003, when sea otter
abundance began to recover (Bodkin et al. 2011).

Individual variation in exposure

Chronic exposure to lingering oil will not necessar-
ily affect all individuals equally. Recently weaned
sea otters forage in the intertidal more than adults,
leading to greater oil exposure than we calculated
based on our time-depth recorder data (Bodkin et al.
2012), which included adults and sub-adults (Age 3).
Moreover, individual foraging strategies modify site-
specific exposure (e.g. Johnson et al. 2009, Miller et
al. 2010). Thus, there may be a bimodal distribution
of exposure and of subsequent toxicological effects.

Temporal variation in exposure also contributes to
differences among individuals. We found a higher
frequency of foraging in the intertidal in late spring
and early summer, possibly in response to greater

energetic content of intertidal prey (Esslinger et al.
2011). This coincides with a spring peak in pupping
in PWS (Garshelis et al. 1984). Further, regardless of
season, female sea otters with newborn pups forage
to a greater extent in intertidal areas (USGS unpubl.
data), increasing exposure to risk. Neonate sea otters
stay with their mother and are entirely dependent
on her for nourishment and grooming, so both will
thus be more susceptible to adverse effects of ex-
ternal and internal oil exposure than independent
individuals.

Conclusions

Harwell et al. (2010) concluded that there is no
plausible risk of toxicological effects from oil expo-
sure, but we find no plausible alternative to the con-
clusion that presence of lingering oil has been a con-
straint to recovery of species inhabiting nearshore
areas that were heavily oiled in 1989 (Monson et al.
2000, 2011, Bodkin et al. 2002, Ballachey et al. 2003,
2011, 2012, Miles et al. 2012; see also Esler et al.
2002, 2010, 2011, Golet et al. 2002, Jewett et al. 2002,
Thomas et al. 2007, Springman et al. 2008, Esler &
Iverson 2010, Iverson & Esler 2010). Other explana-
tions for population depression described by Harwell
& Gentile (2013) do not adequately explain the spa-
tial distribution of the observed effects.

We attribute the difference between Harwell et al.
(2010) and our conclusions, at least in part, to the fact
that they limited their assessment to oral ingestion of
oil. We argue that toxicological effects and energetic
costs of chronic exposure represent stressors that act
synergistically with natural stressors in the environ-
ment to produce cumulative effects that cannot be
duplicated in laboratory studies on which Harwell et
al. (2010) based their model, whereas studies of sea
otters and other species have provided ample evi-
dence of demographic and biochemical differences
between individuals in oiled versus unoiled areas
since 1989.

Exposure has extended throughout the lifetime of
individuals at risk, may have occurred through
inhalation and transdermal absorption in addition to
ingestion during foraging and grooming, and may
have led to metabolic costs and behavioral alter-
ations that reduced survival. Furthermore, the rates
of ingestion modeled by Harwell et al. (2010) were
based largely on data from 2002 and later, when
exposure was diminishing and adverse effects of oil
appeared to be moderating, which is consistent with
the population recovery underway in sea otters (Bod-
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kin et al. 2011) and sea ducks (Esler & Iverson 2010,
Iverson & Esler 2010, Esler et al. 2010, 2011).

Finally, we reiterate the conclusions of Peterson et
al. (2003) that, given delayed effects on multiple spe-
cies following the 'Exxon Valdez' spill and continu-
ing release of hydrocarbon pollutants into marine
environments, (1) risk assessment modeling and esti-
mation of natural resource injury need to be recon-
sidered, and (2) development of ecosystem-based
toxicology is required to understand and ultimately
predict chronic, delayed, and indirect long-term risks
and effects.
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