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ABSTRACT: Bodkin et al. (2012; Mar Ecol Prog Ser 447:273-287) assessed the frequency at which
sea otters Enhydra lutris might encounter subsurface oil residues from the ‘Exxon Valdez' oil spill.
They concluded that a pathway exists for exposures of sea otters to residual oil in the intertidal
zone, and imply that this pathway has delayed recovery of sea otters. We agree that the potential
exposure pathway exists, and the Bodkin et al. (2012) estimates of the frequency of encountering
subsurface oil residues (4 to 10 times per year) comport with our previously published studies (2 to
7 times per year). However, we disagree that this pathway constitutes a significant risk to sea
otters. We discuss results from our quantitative ecological risk assessment using an individual-
based model that specifically simulated this pathway of exposures to a population of 500000 sea
otters. This conservative model predicted that assimilated doses of polycyclic aromatic hydrocar-
bons in subsurface oil residues to the 1-in-1000™ most-exposed sea otters would be 1 to 2 orders
of magnitude below the chronic effects thresholds that we established using USEPA data and
methodology. When we artificially increased the rate of encountering subsurface oil residues, it
required 4 to 10 encounters per day to reach effects levels. We conclude that the subsurface oil
residues from the oil spill could not plausibly be responsible for any individual- or population-
level effect on the sea otters at northern Knight Island.

KEY WORDS: Sea otter - 'Exxon Valdez' oil spill - Ecological risk assessment - Enhydra lutris -

Individual-based models

Introduction

Bodkin et al. (2012) explored the frequency at
which pits that are excavated by sea otters Enhydra
lutris while foraging for infaunal prey in the inter-
tidal zone potentially could intersect subsurface oil
residues (SSOR) remaining from the 'Exxon Valdez'
oil spill. They concluded that infaunal foraging by
sea otters in western Prince William Sound (PWS;
Alaska), the distribution of sea otter pits in the inter-
tidal zone, and the presence of SSOR in the vicinity of
foraging areas demonstrate a potential pathway for
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sea otters to be exposed to the polycyclic aromatic
hydrocarbons (PAHs) in SSOR. We reached the same
conclusion in Harwell et al. (2010a).

To estimate these frequencies, Bodkin et al. (2012)
reported new studies that monitored the diving pat-
terns of sea otters near northern Knight Island (NKI;
an area in PWS that was heavily oiled by the spill)
using 19 time-depth recorders recovered between
2003 and 2008. Additionally, in summer 2008 they
surveyed the intertidal zone of soft-sediment beaches
of NKI for the presence and location of sea otter pits.
Their calculations resulted in a frequency of sea
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otters encountering SSOR of 10 times per year (range
2 to 24, n = 15) for females and 4 times per year
(range listed both as 2 to 4 and 2 to 5, n = 4) for males.
By comparison, the estimates of Harwell et al. (2010a;
their Table 2) were about 2 to 7 times per year,
depending on the sea otter class (7 classes of sea
otters were distinguished based on age and gender);
consequently, the Bodkin et al. (2012) estimates of
the frequency of sea otter encounters with SSOR
comport with our previously published estimates.

Thus, while we agree with Bodkin et al. (2012)
about the existence of this potential exposure path-
way, and while we do not dispute their methodology
or their quantification of the frequency of sea otters
encountering SSOR, we differ in assessing what it
means simply to identify a potential pathway of ex-
posure. We believe that this disagreement relates to
an apparent misunderstanding of the concept of 'eco-
logical risk'. Our perspectives derive from this back-
ground: We led the development of the US Environ-
mental Protection Agency's (USEPA) ecological risk
assessment framework 20 yr ago (USEPA 1992, 1998,
Gentile et al. 1993), in which an exposure pathway is
only the first step in characterizing ecological risk.
This framework and associated guidelines have now
been widely adopted throughout the federal govern-
ment and in many other venues (e.g. CERN 1999,
Norton et al. 2003, Cormier & Suter 2008). We first
applied it to the ‘Exxon Valdez' oil spill by assessing
the ecological significance of remaining risks more
than 15 yr after the spill (Harwell & Gentile 2006) fol-
lowing the methodology and criteria that we also
developed for USEPA (Gentile & Harwell 1998). We
qualitatively assessed the oil spill risks compared
with the other major anthropogenic and natural
stressors impinging on the PWS-Gulf of Alaska eco-
system (Harwell et al. 2010b), we quantified the
ecotoxicological risks to sea otters from remaining oil
residues (Harwell et al. 2010a, 2012), and we used
the ecological risk framework to assess ecological
recovery of the PWS ecosystem (Harwell & Gentile
2013, Harwell et al. 2013). Thus, our extensive ex-
perience in designing and conducting ecological
risk assessments informs us that there is a great deal
more to understanding risk than implied by Bodkin
et al. (2012).

Risks to sea otters
Bodkin et al. (2012) implied, as the title of their arti-

cle itself suggests, that the pathway for continuing
exposures to SSOR has led to long-term effects on

PWS sea otters. However, having a pathway of expo-
sure does not necessarily mean there is a significant
risk; there must also be sufficient assimilated doses
from the exposure pathways, as assessed against
appropriate toxicity reference values, to cause eco-
logically significant effects. Bodkin et al. (2012) also
stated that PAH exposure levels cannot be quanti-
fied, and that the biological and ecological conse-
quences remain unknown. Again, we disagree: there
is a rich history of ecological risk assessments being
used to quantify exposures, project the ecological
consequences, and inform ecological risk manage-
ment and regulatory decision-making processes (e.g.
Bartell et al. 1992, Ferenc & Foran 2000, Suter 2007,
Barnthouse et al. 2008, and most issues of the journal
‘Human and Ecological Risk Assessment’ since its
inception in 1995).

Characterizing the risk requires these steps
beyond just identifying a pathway of exposure: (1)
quantitatively predicting the doses of PAHs that a sea
otter would assimilate per SSOR-encountering event;
(2) estimating how those doses vary over the popula-
tion and from that, estimating the doses that the
most-exposed sea otters would experience; (3) devel-
oping the chronic toxicity reference values (TRVs) for
sea otters and the PAHs based on appropriate
USEPA-approved laboratory studies and methods;
(4) comparing the distribution of assimilated doses
against the TRVs to derive the distribution of quanti-
tative hazard quotients (the ratio of assimilated dose
to TRV); (5) from that, assessing the distribution of
predicted effects on individual sea otters; and (6)
extrapolating the distribution of individual-level
effects to judge the potential for effects on the at-risk
subpopulation. Finally, attributing putative effects on
a subpopulation of sea otters to this one pathway of
exposure must not only consider that specific risk
picture, but also consider the range of other stressors
impinging on the subpopulation to reach a conclu-
sion of attributable risk.

We have already followed these steps to assess this
specific pathway (Harwell et al. 2010a, 2012) using
an individual-based model (see DeAngelis & Gross
1992, Munns et al. 2007) that we developed to quan-
tify all plausible routes of PAH exposures of sea
otters at NKI. The model is stochastic, capturing
measured environmental variability for the parame-
ters affecting exposures. By simulating 500 000 indi-
viduals in each scenario, the variability in exposures
was thoroughly characterized just as the sea otters
living in the NKI environment would experience it.
Many sensitivity analyses were conducted to explore
effects of different model parameters, model struc-
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tures, and sources of uncertainty on results, and alto-
gether >1 billion sea otter hours were simulated to
capture environmental, SSOR, and sea otter varia-
bility. To provide a conservative risk assessment, we
rank-ordered the assimilated doses and focused on
the 99.9% quantile (1-in-1000" most-exposed) in-
dividuals, i.e. the sea otters who just happened to
have the most SSOR encounters at the highest PAH
concentrations.

The effects component of the risk assessment fol-
lowed USEPA (2005, 2007) to establish appropriate
chronic TRVs for PAH exposures. TRVs are defined
as the dose from chronic exposures above which eco-
logically relevant effects might occur to wildlife
species and below which it is reasonable to expect
that such effects would not occur (USEPA 2005).
We derived the no-observed-adverse-effects level
(NOAEL) and lowest-observed-adverse-effects level
(LOAEL) TRVs from about 40 mammalian toxicity
studies in the USEPA Eco-SSL database (USEPA
2007), conservatively using the geometric 95 % lower
confidence limits for TRVs. Resulting exposures,
characterized as assimilated doses to the 99.9%
quantile most-exposed sea otters, were estimated by
our base model to be ~30 to 125 times lower than the
NOAEL TRV threshold and ~75 to 310 times lower
than the LOAEL threshold (the range varying across
the 7 modeled classes of sea otters). None of the sen-
sitivity analyses came within an order of magnitude
of the effects thresholds on even the single-most-
exposed individual in the simulated population of
500000 individuals (i.e. the 99.9998 % quantile). We
concluded therefore that there was no plausible risk
to any individual sea otter at NKI from ‘Exxon
Valdez' oil residues (Harwell et al. 2010a). When we
now use the version of the model that allows assign-
ment of a specific rate of SSOR encounters, the rates
estimated by Bodkin et al. (2012) result in even lower
risks than projected by our base model.

We also assessed what would be required to cause
population-level effects on sea otters by creating
hypothetical exposure regimes of sufficient magni-
tude to force effects to occur (Harwell et al. 2012).
Model results showed that even for the most-exposed
individuals, it would take many months of continuous
exposure at ~4 and ~10 pits intersecting SSOR per
day for NOAEL and LOAEL TRV levels, respectively,
to be reached. This rate contrasts with our base
model predictions of one SSOR-intersecting pit
occurring, on average, about once every 50 to 180 d,
depending on the sea otter class. This illustrates just
how far the SSOR-encountering rates estimated by
Bodkin et al. (2012) (4 to 10 times per year compared

to 4 to 10 times per day) actually are below the rates
necessary to cause any plausible effects on even the
most-exposed sea otters.

We examined other quantiles of exposures, includ-
ing 96 %, i.e. where assimilated doses to the most-
exposed 4 % of the population would exceed effects
thresholds. That quantile matches the rationale of
Bodkin et al. (2002) (that the overall western PWS
population increased at a rate of ~0.04 yr~! while the
NKI subpopulation remained constant over an 8 yr
period [1993 to 2001] at ~75 individuals) in conclud-
ing that the NKI subpopulation of sea otters contin-
ued to experience effects. That rate translates into a
net absence of ~3 additional sea otters per year at
NKI if that subpopulation were growing at the same
rate as the total PWS population. Based on the 96 %
quantile results (see Fig. 3 in Harwell et al. 2012), it
would require >25 SSOR-intersecting pits per day for
such a net absence to result from SSOR toxicity, a
rate that far exceeds the frequencies of 4 to 10 times
per year estimated by Bodkin et al. (2012).

Bodkin et al. (2012) also presented new informa-
tion on seasonality of sea otter foraging behavior,
pointing out that rates may differ over the year
by more than an order of magnitude between the
highest (24 yr™!) and lowest (2 yr!) frequencies of
encountering SSOR, and suggesting that estimates
that do not account for this seasonality can produce
biased exposure risk. While the seasonality issue is
interesting, we point out that either rate remains 2
orders of magnitude below our conservative esti-
mates for the thresholds for effects (4 to 10 encoun-
ters per day). Thus the seasonality of foraging rates
does not effectively result in any significant bias
under current conditions in PWS and does not affect
our conclusions.

Other data, both pre- and post-spill, on sea otter
abundance at NKI and other parts of PWS are equiv-
ocal, and some authors argue that there has not been
a long-term depression in sea otter subpopulation
numbers at NKI caused by the oil spill (e.g. Garshelis
& Johnson 2001, 2013a,b; see also Figs. 3, 6 & 7 in
Bodkin et al. 2011 to judge the plausibility of an
ongoing effect on the NKI subpopulation of sea
otters, particularly when considering all data up to
the present instead of only the selected 8 yr period).
However, even if one accepts Bodkin et al.'s (2002,
2012) argument that sea otters at NKI are experienc-
ing a subpopulation-level effect, our quantitative risk
assessments indicate that such an effect could not
plausibly be caused by exposures to residual subsur-
face oil from the '‘Exxon Valdez' oil spill. While we
certainly understand there are uncertainties in eco-
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logical modeling (just as there are important uncer-
tainties in laboratory and field studies), the fact that
the projections from our conservative model for the
highest-exposed individuals are so far below effects
thresholds provides confidence in our conclusions.

Attributable risks

Bodkin et al. (2012) stated that since they estab-
lished a potential pathway for SSOR exposure to sea
otters, that pathway is a logical explanation for pur-
ported subpopulation effects, but this both erro-
neously equates exposure with risk (contrary to
USEPA 1998) and erroneously presumes that ‘Exxon
Valdez'-derived PAH toxicity is the only stressor to
consider. To the contrary, other stressors do exist in
PWS (Harwell et al. 2010b). USEPA's (2010) guidance
for multi-stressor environments is to establish plausi-
ble causal relationships between stressor and effects
and apply abductive inference (Josephson & Joseph-
son 1996) to identify which hypothesis best explains
the available information. USEPA (2010) follows
Hill's (1965) criteria as adapted for ecological issues
(Fox 1991, Beyers 1998): (1) co-occurrence — an
effect occurs only where and when its cause occurs;
(2) sufficiency — the causal factor should be of suffi-
cient magnitude (e.g. intensity, frequency, duration)
to produce the observed effect; (3) temporality — a
cause must precede its effect; and (4) coherence —
the relationship between cause and effect must be
consistent with scientific knowledge and theory.

In that context, consider the Bodkin et al. (2012)
explanation of a putative absence of a few sea otters
per year: exposure to residual PAHs from an oil spill
that happened more than 2 decades previously.
However, those PAHs are in mostly inaccessible,
buried deposits of oil residues that occur almost
solely where sea otters do not dig for clams. There
are 2 reasons for this: (1) only ~12% of SSOR was
found to occur in the lower intertidal zone (Short et
al. 2006), the only intertidal zone where sea otters
actually forage for infauna (Dean et al. 2002, Bodkin
et al. 2012), even though the probabilities of SSOR
encounters calculated by both Short et al. (2006) and
Bodkin et al. (2012) are based on the incorrect
assumption that sea otters forage throughout the
intertidal zone; and (2) SSOR occurred in sediments
under a surface covering of stable armor composed of
coarse gravel, cobble, and boulders (Hayes & Michel
1999, Taylor & Reimer 2008) but rarely in unarmored,
finer-grained sediments (Taylor & Reimer 2008),
which is the primary clam habitat in PWS. Moreover,

to cause even such a small reduction in the rate of
growth of the subpopulation, sea otters would have
to encounter those buried oil residues more than 25
times per day continuously for weeks or months; that
rate contrasts with Bodkin et al.'s (2012) own analyses,
which indicate the expected rate of SSOR encounters
of 4 to 10 times per year. Thus, their proposed ‘logical
explanation’ fails the sufficiency criterion.

Alternative hypotheses derive from the other stres-
sors impinging on PWS that could affect sea otters.
Harwell et al. (2010b) developed qualitative concep-
tual models of the natural and anthropogenic drivers
and stressors of the PWS-Gulf of Alaska ecosystem,
which showed that natural stressors truly dominate
and shape this ecosystem, especially climatic and
oceanographic variability (e.g. Stabeno et al. 2004,
Mundy & Olsson 2005). In particular, climate regime
shifts over the past few decades have caused high
variability in abundance of forage fish and many
marine mammals and sea birds that depend on them
(e.g. Trites et al. 2007, Overland et al. 2008, Estes et
al. 2009). The relative importance of natural variabil-
ity only increases over time, as natural variability
remains unabated while the signal of the effects from
the oil spill continuously diminishes. Thus, while the
oil spill related stressors rose to the level of critical
importance to the ecosystem immediately after
‘Exxon Valdez', the long-term spill related stressors
have become inconsequential in comparison to natu-
ral processes (Harwell et al. 2010Db).

To follow one example, USFWS (2005) listed as
‘threatened’ the coastal Alaskan sea otter population
west of but not including PWS, because the popula-
tion in the region had declined by 55 to 67 % since
the mid-1980s, and over 90 % in some areas. Estes et
al. (1998) and USFWS (2005) stated that the dramatic
sea otter population decline was most likely attribut-
able to increased transient killer whale predation.
This was suggested to be driven by large changes in
the killer whale's prey resource base (in particular
the collapse of the Steller sea lion and harbor seal
populations in the western Pacific Ocean), which in
turn may have been driven by climatic shifts and
overfishing (e.g. NRC 2003).

Thus, as an example of an alternative hypothesis
for a putative depression of NKI sea otter numbers, a
single killer whale off NKI could consume a few sea
otters relatively quickly (i.e. the annual net absence
of 3 sea otters could occur in a single bout of killer
whale feeding; see Williams et al. 2004). Indeed, 2 of
the 3 attacks of killer whales on sea otters that have
been directly observed occurred off NKI (Hatfield et
al. 1998), and Vos et al. (2006) found 5 dead sea otters
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in the stomach of a dead killer whale in Latouche
Passage, just south of Knight Island. Anthropogenic
stressors also could cause effects on sea otters, such
as subsistence harvesting (e.g. 5 to 10 % of the Knight
Island sea otter population was legally harvested by
Alaskan Natives in 2000 and 2003; Garshelis & John-
son 2013a,b), or perhaps even the extraordinarily
intense sampling of sea otters at NKI over the past 2
decades, as documented in many Trustees-spon-
sored publications (www.evostc.state.ak.us), might
have encouraged a few sea otters to seek another
place to live (e.g. sea otters tend to leave areas with
high boat traffic; Garshelis & Garshelis 1984).

There are other potential causes (see Garshelis &
Johnson 2013b, Harwell & Gentile 2013), but we do
not claim that any one of these necessarily caused
detectable effects on the NKI subpopulation. We do,
however, assert that PAH toxicity from SSOR could
not reasonably be the responsible agent. Clearly,
judicious application of the USEPA (2010) stressor-
identification guidance would not focus on oil spill
derived PAH toxicity.
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